Homework 4

(Due: Friday, April 19, 2024)

Question 1: 10 points

The cantilever beam structure shown in Figure 1 carries a uniform load $w(\mathrm{~N} / \mathrm{m})$ along its entire length.

Figure 1: Cantilever beam carrying a uniform load.

The beam is fully fixed at point A and the flexural stiffness EI is constant along the beam. The coordinate system is positioned at point A .
[1a] (5 pts) Starting from the differential equation,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\left[\frac{M(x)}{E I}\right], \tag{1}
\end{equation*}
$$

and appropriate boundary conditions, show that:

$$
\begin{equation*}
y(x)=\left(\frac{w}{24 E I}\right)\left(6 L^{2} x^{2}-4 L x^{3}+x^{4}\right) . \tag{2}
\end{equation*}
$$

[1b] (5 pts) Using the results of question [1a] as a starting point, compute the support reactions at A and B for the propped cantilever shown in Figure 2

Figure 2: Propped cantilever beam carrying a uniform load.

Question 2: 20 points

Consider the cantilever shown in Figure 3.

Figure 3: Front elevation view of a cantilever.

The cantilever has constant section properties, EI, along its entire length (a+b). A vertical load $\mathrm{P}(\mathrm{kN})$ is applied at point C .
[2a] (3 pts) Use the method of moment area to show that the vertical deflection of the cantilever at point C is:

$$
\begin{equation*}
y_{C}=\frac{P(a+b)^{3}}{3 E I} . \tag{3}
\end{equation*}
$$

[2b] (3 pts) Use the method of moment area to show that the vertical deflection of the cantilever at point B is:

$$
\begin{equation*}
y_{B}=\frac{P a^{2}}{6 E I}[3 b+2 a] . \tag{4}
\end{equation*}
$$

Now suppose that a roller support is inserted below point B as follows:

Figure 4: Front elevation view of a cantilever supported by a roller at point B.
[2c] (3 pts) Show that the vertical support reaction at B is:

$$
\begin{equation*}
V_{b}=\frac{P}{2}\left[\frac{3 b+2 a}{a}\right] . \tag{5}
\end{equation*}
$$

[2d] (3 pts) Hence, derive a simple expression for the bending moment at A.

Finally, let's replace the roller support below point B with a spring.

Figure 5: Cantilever supported by a spring at point B.
[2e] (4 pts) Show that the support reaction, V_{b}, is now given by the equation:

$$
\begin{equation*}
V_{b}\left[\frac{1}{k}+\frac{a^{3}}{3 E I}\right]=\frac{P a^{2}}{6 E I}[3 b+2 a] . \tag{6}
\end{equation*}
$$

[2f] (4 pts) Explain why V_{b} for spring support (i.e., equation 6) is always lower than for roller support (i.e., equation 5).

Question 3: 10 points

Consider the cantilevered beam structure shown in Figure 6.

Figure 6: Front elevation view of a cantilevered beam structure.

Notice that segments A-B and B-C have cross-sectional properties EI and 2EI, respectively.
[3a] Use the method of moment-area to compute the rotation at point A.
[3b] Use the method of moment-area to compute the vertical deflection of the beam at point C .
[3c] Draw the deflected shape of the beam.

