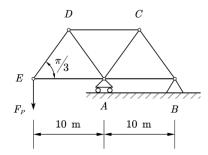

Homework 2

Due: 11.59 pm, February 23, 2024

Question 1: 5 points

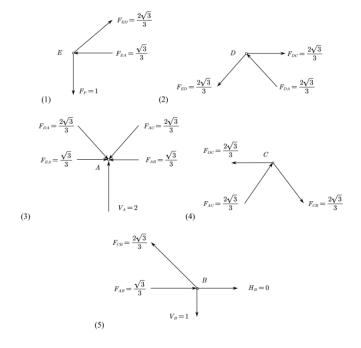
Using method of sections, determine the forces in members A, B, and C. State if the members are in tension or compression.



 $\sum F_{x} = 0 \rightarrow F_{A} + \frac{6}{\sqrt{72}}F_{B} + \frac{6}{\sqrt{45}}F_{C} = 0$ $\sum F_{y} = 0 \rightarrow \frac{6}{\sqrt{72}}F_{B} - \frac{3}{\sqrt{45}}F_{C} - 9 = 0$ $\sum M_{BC} = 0 \rightarrow F_{A}(6) - 3(6) - 3(12) = 0$ $F_{A} = 9 \ kips, F_{B} = 4.24 \ kips, F_{C} = -13.42 \ kips$

Members A and B are in tension, and member C is in compression.

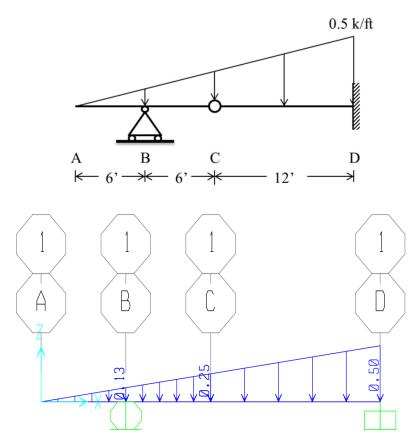
Question 2: 10 points


If the maximum force that any member can support is 17 kips in tension and 12 kips in compression, determine the maximum force F_P can be applied on the following structure (all the angles are $\pi/3$).

Use method of superposition for this linear elastic structure and assume $F_P = 1 \ kips$, the vertical reaction forces at A and B are:

$$\sum M_{A} = 0 \rightarrow V_{B} = 1 \ kips \ (downward)$$
$$\sum F_{y} = 0 \rightarrow V_{A} = 2 \ kips \ (upward)$$

Use the method of joint to calculate the force in each member starting from joint E:

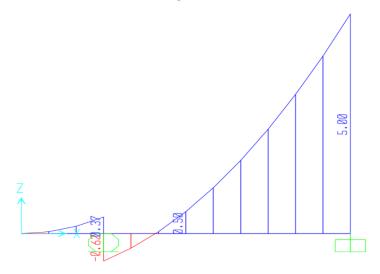

Hence, the maximum tension and compression forces are the same and have the value of $\frac{2\sqrt{3}}{3}$

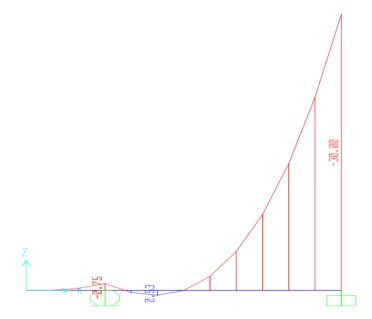
Therefore, the compression controls, and the maximum possible value for F_P is calculated as follows:

$$F_P = \frac{12}{\frac{2\sqrt{3}}{3}} * 1 = \frac{18}{\sqrt{3}} = 6\sqrt{3} = 10.4 \ kips$$

Question 3: 15 points


Determine the shear and moment throughout the beam. Draw the shear and moment diagrams for the beam. Draw the deflected shape of the beam.


Reactions: $R_B = 1$ kips, $R_D = 5$ kips


Deflected Shape:

Shear Diagram: $V_A=0, V_{B,left}=0.375~{\rm kips}, V_{B,right}=-0.625~{\rm kips}, V_C=0.5~{\rm kips}, V_D=5~{\rm kips}$

Moment Diagram: $M_A = 0$, $M_B = -0.75$ kips. ft, $M_C = 0$, $M_D = -30$ kips. ft

