//;h
. { International Counci il on Systems Engineering

A Process Modeling Framework for
Formal Validation of Panama Canal
System Operations

Mark Austin and John Johnson,
Department of Civil Engineering and ISR,

University of Maryland, College Park, MD 20742.

. . Outli
. u I n e International Counci il on Systems Engineering

* Motivation

« Early Validation of Systems

« Automated Composition of Process Models
« LTSA

* Lockset Process Model

* Model Checking

« Conclusions/Future Work

H“dﬂﬂ

6

hoa ﬁ'oﬂ

Pacific

Ocean

GATUN GATUN PEDRO MIGUEL MIRAFLCRES MIRAFLORES
LOCKS LAKE LOCKS LAKE LOCKS

Presented to the INCOSE 2008 Symposium page 3

—~
Motivation INCOSE

International Council on Systems Engin

Left: Congestion in the Miraflores lock and lake.

Right: Limitations of present-day canal capacity...

Motivation INCOSE

s

International Council on Systems Engineering

G

7=

The Panama Canal is currently undergoing a US $5.25 billion renovation.

-

Cross section of water saving basins and a laterally filled lock chamber

Presented to the INCOSE 2008 Symposium page 5

7\\

3
.. SE Education at UMCP INCOSE

. { International Council on Systems Engineering

Industrial-Age Systems Information-Age Systems

Small, simple, Linear Large, complex, nonlinear

Systems of Components System of systems

Dominated by hardware Combinations of hardware, software and
communications

(" R

Many present-day systems | pecision Making }-:::1— Knowledge <

. \ J Understandin
are limited in their situation Pattorms
awareness and ability to E— y

. ormanon
look ahead and predict .)= Understanding
Sensors @ Relati
events. © o ®0 o , . elations
@ @ o _b" Data —

Increasing cost to fix errors

V

9 “
Requirements

\ 2
I
Preliminary Design

\ P
Detailed Design

\ A
Implementation

\, v
T
Testing

\

Z

Traditional Approach to Airportal
Design and Test.

Phase where
design decisions
are made.

Phase where
design errors
are found.

Early Validation of Systems

Requirements]

v

Formal Representation
of Requirements

v

-

System Architecture]

v

[

Implementation]

INCOSE

International Council on Systems Engineering

Build little design logic
models.

Analyze them thoroughly
for potential violation of
requirements.

Don’t move forward until
design (or parts of design)
are provably correct.

Reduced reliance on
testing here ... to minor
issues.

Early detection of errors and "system operation” that

is "correct—by—construction”...

~
Composition of Models INCOSE

International Council on Systems Engineering

N wa
N

Environment Reactive System

Sensors
Constraints Components
Commands

Subsystems

~

User—Supplied

Automated Composition

Model of Environment Distributed System Model

Presented to the INCOSE 2008 Symposium page 8

W
! What is LTSA?
M

The labeled transition system analyzer (LTSA) is...

verification tool for concurrent systems. It mechanically checks
that the specification of a concurrent system satisfies the
properties required of its behavior.

It is particularly suitable for high-level modeling and
verification of systems dominated by processes that
have concurrent behaviors, including interaction with
other processes.

LTSA supports specification animation to facilitate
interactive exploration of system behavior.

—~
Working with LTSA INCOSE

International Council on Systems Engineering

& L715 Analyser :0 7 (O] x|
File Check Build Window Help Onptions -
a.call Il_ a.call
JEGif| Resutts | cio0 | Target [cLENT_servER] service ;
a.wait
/**% Concurrency: 5tate Models and Java Programs ;I a.continue [V a.continue
* Jeff Magee and Jeff Kramer a.call
& séivice v b.call
*/ ﬂ-W‘ti' I~ bowait
CLIENT = (call->wait-»continue->CLIENT). I” b.continue
SERVER = (request->service->reply->3ERVER). [~ serice
| ICLIENT_SERVER = (a:CLIENT || b:®IENT || SERVER) 4 ﬂ
A{{a,b}.calk/requeyt, {a,b}.wait/reply}.

LTSA Animator: Simulates the behaviour of
the model.
L

LTSA Draw: Draws the state diagram of the
model and animates with the LTSA animator.
As we change the state of any object in the
LTSA animator, the corresponding state in
the diagram also changes.

LTSA Editor: used to write FSP models and
check them for deadlocks.

& .75 Draw - SERVER

h:CLIENT

await
b wait

IJava Applet Window

W
> M i INCOSE
M Od e I F O rm u Iatl O n International Council on Systems Engineering
C
From requirements to architectures....
Goals of the system...
[Requirements J Scenarios / Use case models....
I Properties of interest
! Identify main events, actions, and interactions
I Identify and define main processes ...
I Identify and define properties of interest ...
V Structure processes into an architecture
[Model] Check traces of interest ...
Check properties of interest ...

A Simple Example

International Council on Systems Engineering

I@)SE
e

M

Two friends talk over coffee

- N
eee Terminal — tcsh — 70x27 Jock.telk
/Users/austin/ltsa3.0/Austin 277>> more conversation.lts =] jack Trait
/7 . jack:PERSON
/{ Jack and Diane have conversation over coffee
/7

jack.drink
// create a person who: (1) talks and drinks coffee, or
/7 (2) just waits and then drinks coffee Jeckrink

diane talk

PERSON = (talk -> drink -> PERSON
| wait -> drink -> PERSON).
diane:PERSON

// Jack and Diane meet

| |JACK_AND_DIANE_MEET = (jack:PERSON || diane:PERSON).

/{ To learn, conversation needs to be two way diane drink

TWO_WAY = (jack.talk -> diane.talk -> TWO_WAY).
// conversation should be polite

| |JACK_AND_DIANE_LEARN = (JACK_AND DIANE MEET || Two_WAY) / {
jack.talk/diane.wait, diane.talk/jack.wait }. JACK_AND_DIANE_MEET

/7
// End:
/Users/austin/ltsa3.0/Austin 278>> D

C—
Jack and Diane Talk!! INCOSE

International Council on Systems Engineering

N N
Wl
s
OO0 LTSA - conversation.lts
File Edit Check Build Window Help Options
D »E@ - o =S85 JACK_AND_DIANE_LEARN B |
" Edit Output Draw '
JACK_AND_Dl) ##% jack talk A
TWO_WAY M
|UACK_AND_C
diane.talk diane drink
./
disne drink jack drink
JACK_AND_DIANE_LEARN
N
v
<™ <€ TSl
A

Presented to the INCOSE 2008 Symposium page 13

£
Framework for Model Development INCOSE

International Council on Systems Engineering

M
{Scheduler) { Passageway Control) Action (Canal System)
Initiate Passage Sequences
East-Bound Monitor W= East-Bound Passageway Control W) Gates Pumps
West—Bound Monitor g - - - - - - - -] West—Bound Passageway Control |- - - - - - - - _ _ O O O [] D |:|
Observations Observations
Ordered ‘I ‘ Al Action ‘
: S;jpere I : Operational Observations | Sequences : Observations (Ship Passage)
! | ! Constraints | !
I Requests | | !
| T T (TrafficDemand) ¢ = "~~~ °7°7°7777777T
, ! - East-Bound Passage
|]
| S — Q % - West—Bound Passage
2! State of Traffic Demand ~\~ \ Ship
1 Passage
e East West Actions
al
v
i
: Constitute
|
|
Ao S East-Bound Queue West—-Bound Queue
—_y
| 2
: =) Arrival Arrival ﬁ
I .g &
|
! - East-Bound Ships West—Bound Ships
|

. OO0 .o s EIEIEE

II@)SE

Lockset Process Model
C

International Council on Systems Engineering

Lock System Architecture Lock 2

Lock 1 H Y
1 I_I

Component—level Processes

[Ship 1 J [Ship 2 low:Gate low: Pump mldd.le Gate thh Pump thh Gate
I I

i<

[1..NoShips].({east: SHIPS) GATESYSTEM and PUMPSYSTEM processes

—

east: TransitDemand

v

east:ShipControl east:PassagewayControl west: PassagewayControl

Lockset—Level Processes T $?

|

|

' e

s ’L Scheduler o

| on Systems Engineering

International Counci

- - - GATE Openg e

—@® | ®

clozegate

S I PUMP pumpup

pumpdown

Scheduler Design

East—Bound Traffic

INCOSE

International Council on Systems Engineering

West—Bound Traffic

east:acquire east.depart
D ——— = -
Lock System I:l
we west.depart west:acquire
e EE—
ww
east.request west.request
- Scheduler et
ww
Scheduler Process Model - -
west.request west.request
—_— - -
SCHEDULER =
west.depart west.depart Current Traffic Direction
east.request east.depart East West
A East ~es——W~ West
east.request ¢ ? east.depart High r?se r?se
e Water Level # ‘
east.request ¢ T east.depart Low lower lower
Y East ~t——W~ West

~
Scheduler Design INCOSE

International Council on Systems Engineering

Terminal — vim 93x22

ol

SCHEDULER = SCHEDULER[0][O][East][Low],
SCHEDULER[we:0..NoShips] [ww:0..NoShips][td:TrafficDirection] [wl :WaterLevel] = (

// Register requests to transit lock in east- and west-bound directions.

when (we <= Noships) [S].east.request -> SCHEDULER[we+l][ww][td][wl]
| when (ww <= Noships) [S].west.request -> SCHEDULER[we][wwtl][td][wl]

// East-bound assignments to ascend the lock system.

| when (we >= 1 && td == East && wl == Low) [i:S8].east.acquire ->
ascend ->» [i].east.depart -> SCHEDULER[we-1][ww][West][wl]
| when (ww == 0 && we >= 1 && wl == Low) [L:8] .east.acquire ->
ascend ->» [i] .east.depart -> SCHEDULER[we-1][ww][East][wl]
| when (we >= 1 && td == East && wl == High) [i:S].east.acquire ->
resetlow -> [i].east.depart -> SCHEDULER[we-1l][ww][West][Low]
| when (ww == 0 && we >= 1 && wl == High) [L:8].east.acquire ->

resetlow -> [i].east.depart -> SCHEDULER[we-1l][ww][East][Low]

MI West-bound assignments to descend the lock system. J

—
Lockset Behavior INCOSE

International Council on Systems Engineering

\‘ “L
s
' ™
[1].eastrequest
[1].eastrequest
[1].east.request [1].west.acquire [1].east.acquire
[1].west.request [1].west.acquire [1]eastacquire [1].eastdepart [1].westacquire [1].westacquire [1].westdepart [1]eastacquire

<

[1].west.depart [1].west.request

[1].west.depart [].west.nequest/

LOCKSET_SYSTEM /
\ [ll'ms“depm ‘

[1].westrequest

[1]).eastdepart

Presented to the INCOSE 2008 Symposium page 19

—~
Model Checking INCOSE

International Council on Systems Engineering

Requirements Process
. . Repair Process
Formal Representation Selection of Model et
Property Specification Process Modeling
———————— Model Checking B S

Property Satisfied.... Not satisfied plus

counter example

' ' v

Insufficient Simulation -~ Location of error
Memory

3

International Council on Systems Engineering

\2'4 ’/
. Design Properties INCOSE
C

We would like to design systems that have properties that are
guaranteed to be satisfied.

Safety A safety property asserts that nothing bad
happens..

Liveliness | A liveliness property asserts some good
“‘eventually” happens..

Progress A progress property asserts that it is always
the case that eventually an “action” will be
executed..

~
Model Checking INCOSE

International Council on Systems Engineering

In practice the model checking procedure has two steps: (1) unfold the finite
state machines into trees, and (2) exhaustively search the tree to see if the
property specification is violated.

Example path: ABACCCB N N

II@)SE

Model Checking
C

Subsystem—level Process Hierarchies Plan View of Networked Processes
[C] Subsystem Process C
al bl
Process A Process B
A 5 - a2 b2 -
ad a3 b3 b4
n—a 1
cl c2 c3 cd
[D] d1 d2 d3 d4
{3 {(H—I
el e2 2 fl
1 D 1 .
E F Process E E E Process F

Subsystem Process D

II@)SE

. M Od e I C h e C ki n g International Council on Systems Engineering
A\ :

Sequence of Simplified Process Hierarchies

Problem 1. Validate Behavior of Subsystem C

L)

Problem 2. Validate Behavior of Subsystem D

>

—
System Flood Property INCOSE

International Council on Systems Engineering

N 4
N

atlantic.ascend

atlantic resethigatlantic low . puratlantic Jow . pumpeatlantic low.opengate atlantic Jow operatlantic Jow closeatlantic low.pu

atlantic:SYS_FLOOD

atlantic.{descend , low.{closegate, opengate, pumpdown, pumnpup}, resetlow}
atlantic.{ {ascend , descend } , low.{closegate, opengate, pumpdown} , {resethigh, resetlow} }
atlantic.{ {ascend , descend } , low . {closegate, opengate, pumpup}, {resethigh, resetlow} }

atlantic.{ {ascend , descend } , low.{closegate, pumpdatlantic low closegate:thigh, resetlow} }

atlantic.{ {ascend , descend } , low.{opengate, pumpdown, pumpup}, {resethigh, resetlow} }

LINNSN

atlantic. { {ascend , descend } , low.{closegate, pumpdown, pumpup}, {resethigh, resetlow} }

AN

atlantic.{ {ascend , descend } , low.{opengate, pumpdown, punpup}, {resethigh, resetlow} }

AN\

\ 7

Presented to the INCOSE 2008 Symposium

page 25

. II@SE

W
C O n CI u S i O n S International Council on Systems Engineering
<

This is a work in progress -- so what’s next?

*Models for System-Level Operations (l.e., the Full Canal)
*Sensors, Non-Deterministic Models of Travel Demand
*Use of abstraction to simplify complexity of validation computations

How to systematically simplify the validation of system—level concerns?

 —
~o— Validation of System—Ievel Concerns
.~
C* D# : Property Automata for System—TLevel Concerns :
‘ ‘ | o e e - |
! [
: abstraction : abstraction
| l
cC D

