1. Introduction and Motivation

- Why maps and curves?
 - Maps contain important information for military and intelligence agencies
 - Curve is one of the major components in maps
- Representation of digital map
 - Raster Map
 - An image represented by a 2D array of pixels
 - Vector Map
 - Geometrical primitives are used to represent objects
- Challenges
 - Resilience to geometric attacks, such as rotation, scaling, and translation (RST)
 - Resilience to D/A-A/D conversion, such as printing-and-scanning
- Current embedding techniques for binary documents
 - Fragile and used for authentication and annotation e.g., flip pixels or perturb vertices
 - Can not survive D/A-A/D conversion
 - Difficult to deal with the RST issue
- Our approach
 - New feature domain
 - Coordinates of control points in B-spline representation of curves
 - Spread spectrum embedding and correlation-based detection
 - Robust to collusion and printing-and-scanning attacks

2. Data Hiding Algorithms

- Feature extraction
 - B-spline representation of curves
 - Parameterizing curves using the B-spline model
 - Control points
 - Given a set of properly chosen samples on the curve, its B-spline control points can be obtained using the least square technique
- Embedding fingerprints
 - Orthogonal noise-like sequences are taken as digital fingerprints
 - Spread spectrum additive embedding: a scaled version of the fingerprint sequence is added to the coordinates of the set of control points
 - $c'_i = c_i + \alpha w_i$
 - c_i: original control points
 - w_i: fingerprinting sequence
 - α: scaling factor
 - c'_i: marked control points
 - A fingerprinted curve can be constructed from the marked control points
- Detecting fingerprints
 - Registration with the original unmarked curve, which is available to a detector in fingerprinting applications
 - Extract control points of the test curve and compute the difference to arrive at an estimated fingerprint sequence
 - $w^T_{ii} = (c^T_{ii} - c_T)/\alpha$
 - c_{ii}^T: control points extracted from the test curve
 - w^T_{ii}: estimated fingerprinting sequence
 - Correlation-based detection
 - Evaluate the similarity between the estimated fingerprinting sequence and each fingerprint sequence in the database by correlation coefficient ρ and Z-statistics
 - $Z = \log \left(\frac{1+\rho}{1-\rho} \right) \sqrt{\frac{2(n+1)-3}{2}}$
 - If the similarity is higher than a threshold (3-6 for Z-statistics), then with high probability the corresponding fingerprint sequence is present in the test curve

3. Experimental Results

- Fingerprinting topological map
- Resilient to collusion attacks
- Resilient to the printing-and-scanning attack

4. Conclusions and Future Work

- New data hiding algorithm for curves
 - Parameterizing curves using the B-spline model
 - Resistant to collusion attacks
 - Resistant to the printing-and-scanning attack
- Applications for protecting maps and drawings
- Future work
 - Automatic registration for RST resilient fingerprinting
 - Printing-and-scanning tests for large scale maps
 - Fingerprinting other documents, such as drawings, signatures, and handwritten notes.