Control of a Magnetostrictive Actuator with Application to Micropositioning
Xiaobo Tan/ John S. Baras and P. S. Krishnaprasad

Introduction

Magneostriiction:
Some ferromagnetic materials (e.g., Terfenol-D) have the following properties: strains are generated in response to an applied magnetic field; Mechanical stresses in the materials produce measurable changes in magnetization. This phenomenon can be used for actuation and sensing.

Applications:
Flight control, Machine control, Micro-positioning, Ultrasonics, Robotics, Vibration control, etc.

Micropositioning Control Problem:
Given a desired position of the actuator head, find the input current in the coil, such that the final value of the actual position matches the desired one.

Challenge:
The hysteretic behavior exhibited by magnetostrictive actuators presents a challenge for control.

Value Inversion Approach

- The Preisach operator is used to model the hysteresis and the original control problem is formulated as a value inversion problem for the Preisach operator
- The discretized Preisach operator is treated as a finite state machine (FSM), and the value inversion problem is transformed into a state reachability problem for the FSM
- A state space reduction scheme is proposed to save storage space and computation time
- An algorithm is developed to generate the best representative state in each equivalent class of states

Experimental results

- Scheme 1 is better than Scheme 2, since as a trajectory inversion scheme, the latter does not allow input reversals for each desired value and has less control freedom than Scheme 1 does.
- Scheme 3 delivers the worst performance since the hysteretic behavior is not taken into account.

References:

This work was supported by the Army Research Office under ODDR&E MURI Program Grant No. DAAG55-97-1-0114 to the Center for Dynamics and Control of Smart Structures (through Harvard University)