An Explicit Optimal Scheme for Distributed Lossy Compression

Min Ye and Alexander Barg
University of Maryland, College Park
Institute for Systems Research

Abstract
We show that polar codes can be used to achieve the rate-distortion functions in the problem of hierarchical lossy compression also known as the successive refinement problem.

Introduction
Polar coding was introduced by Arikan in the seminal paper [Arıkan ’09]. Let \(n = 2^n; G_n = \left(\frac{1}{2} \right)^n \). Arikan showed that given a binary-input channel \(W \), there is a sequence of linear codes, whose generator matrices are appropriately chosen from the rows of \(G_n \) achieving the symmetric capacity of \(W \). Later it was proved that polar codes work equally well for source coding [Arıkan ’10].

Polar Coding Scheme [Honda and Yamamoto ’13]

\[\mathcal{L}_X \mid Y \quad \mathcal{H}_X \mid Y \]

\{1, 2, \ldots, n\}

- \(X \sim P_X \)
- \(X \) and \(Y \) are independent
- \(\mathcal{L}_X \mid Y \) and \(\mathcal{H}_X \mid Y \) are uniformly random
- \(\lim_{n \to \infty} \text{H}(X | Y) = \text{H}(X) \)

Achieve optimal rates for both channel and source coding.

Polar Codes for Lossy Source Coding

Rate-Distortion:
- Source \(X \sim P_X \) over a finite alphabet \(\mathcal{X} \)
- Distortion function \(d : \mathcal{X} \times \{0, 1\} \to [0, \infty) \)
- Rate-distortion function \(\mathcal{R}(D) = \min_{P_{1|X}} \text{I}(X; T) \), where \(P_{1|X} \) is such that \(\text{I}(X; T) \leq D \).

Polar Coding Scheme [Honda and Yamamoto ’13]

- Objective: to approximate the distribution \(P_{1|X} \).

Succesive Refinement of Information

The source \(X \) is said to be successively refinable with distortions \(D_1 \) and \(D_2 \) if and only if there exists a conditional distribution \(P_{1|W} \) with \(\text{E}_{X,W}(X,T) \leq D_1 \), \(\text{E}_{X,W}(X,W) \leq D_2 \).

Theorem 1. (Koshelev ’80, Equitz and Cover ’91) Let \(X \) be a source and let \(T, W \) be two binary random variables. The source is successively refinable with distortions \(D_1 \) and \(D_2 \) if and only if there exists a conditional distribution \(P_{1|W} \) with

\[\frac{1}{n} \sum_{i=1}^{n} I(X; T) \to R(D_1), \quad \frac{1}{n} \sum_{i=1}^{n} I(X, W) \to R(D_2), \]

and such that \(X, W, T \) satisfy the Markov condition

\[X \to W \to T. \]

References