We need to find an optimal way to share the downlink capacity of the system among spot-beams so that the queues are utilized efficiently, and flows are served at maximum sustainable rates at the NOC.

Each flow \(f_i \), is assigned a time-share \(w_i \) of the burst duration of the beam \(B_j \), based on the load of the queue and the type of the flows forwarded to the queue. \(M \) beams share access to \(N \) antennas, and the beam \(B_j \) gets a time-share \(w_j \) of the frame duration of the antenna it is assigned to.

For a packet belonging to a unicast flow is forwarded to a single beam queue, corresponding to the location in which the user resides.

In a multicast flow, users may reside in multiple beam locations, and packets need to be duplicated and stored in multiple spot-beam queues.

Therefore, we want to find the optimal vector \(w = (w_1, w_2, \ldots, w_M) \) that would minimize the variance of the rates of a flow across beams for all flows:

\[
\text{argmin} \sum_{i} \left(\frac{w_i}{N_i} \right)^2
\]

where \(\sum_{i} \frac{1}{N_i} = 1 \), and \(N_i \) is the number of beams flow \(f_i \) is forwarded to such that:

\[
0 \le w_i \le 1, \quad \forall i
\]

and \(A_n \) is the set of beams accessing antenna \(n \).

The solution vector, \(\{w_1, w_2, \ldots, w_M\} \) is given in close form:

\[
\left(w_1, w_2, \ldots, w_M \right) = \frac{1}{N} \left(\frac{1}{N_1}, \frac{1}{N_2}, \ldots, \frac{1}{N_M} \right)
\]

We observe that this optimization in general benefits a small number of multicast flows.

In Table 2 shows the results when the system is loaded with 20 active unicast flows and 50 active multicast flows as averaged over 500 session configurations.