Optimal Power Control for Wireless Queueing Networks
Tolga Girici and Anthony Ephremides

Abstract
- Optimally controlling transmit power for jointly minimizing:
 - Energy expenditure
 - Buffer overflow
- Considered System
 - Wireless Link,
 - Finite-capacity buffer,
 - Random packet arrivals,
 - Choosing from two alternative power levels.
- Result
 - Optimal policy is of threshold type.

System Model
- Wireless Link
 - Finite buffer capacity (length= K)
 - Bernoulli packet arrivals (rate= λ)
 - Equal length packets (length= 1 bit)
- Control: ut: Power control decision
 - Two alternative power Levels (P1<P2)
 - ut is allowed only when xt=0.
- State, xt: Buffer occupancy in the t-th slot (x(t)ε{(0,1,...,K)})
 - State Transitions
 - State Transition Equations:
 \[d_{i,j}(u) = x_{j}P_{i} = 1 + Q_{i}X_{i} = \frac{x_{j}}{x_{j}P_{i}} \]
 - Energy Expenditure cost:
 \[E(x) = \sum_{i=1}^{n} c_{i}(u)(Q_{i})^{X_{i}}(x) \]
 - Single Stage Cost:
 \[g(x,u) = \max \{g(x,u)\} \]
 - Dynamic Programming Equations:
 \[V^{*}(x) = \min \{g(x,u)\} \]

Motivation
- Energy Efficiency
 - A key concern in wireless networks,
 - Limited and non renewable power supplies.
 - Power Control, Traditional Work:
 - Mitigating effects of interference,
 - Satisfying some QoS constraints,
 - SINR, BER constraints (Poschini(93), Yates(95))

Optimality of Threshold Policy
- For 0≤x<K, optimal policy chooses P2 if:
 \[c_{1}(P2) - c_{1}(P1) = \frac{Q_{i}}{(1-Q_{i})}X_{i} = (1-Q_{i})X_{i} \]
- Here h_{i} = x_{i}^{X_{i}}(x)
- Theorem: For P1<P2 the below inequalities hold in every iteration n:
 - For x≥x_{n}: c_{i}(P2)≥c_{i}(P1)
 (1)
 - For x=0: c_{i}(P2)≥c_{i}(P1)
 (2)
 - For x=K: c_{i}(P2)≥c_{i}(P1)
 (3)

Practical Determination of Thresholds
- Let 0≤h≤K be the threshold value.
- Queue state probabilities π = [π₁, π₂, ..., πₚ] can be found by solving the Markov chain below:
- Find t* minimizing the cost below:
 \[d_{i,j}(u) = \min \{g(0,0), g(1,1), g(2,2), g(x,2)\} \]
- Results
 - The optimal power control policy of threshold type.
 - Optimal threshold
 - Increases as P1 approaches to P2,
 - Decreases as the arrival rate increases,
 - Decreases as the discount factor α increases.