A Novel Model for Tool-Wear Estimation

S. Varma/J. S. Baras

Aim: To estimate wear in a milling tool from information present in the acoustic emissions during metal cutting.

Data: Samples from accelerometer mounted on tool spindle.

Approach: Model the wear process as a Hidden Markov Model.

Sound - is affected by wear level.

- is an indicator of wear rate

Three elements:

- \(r(t) \) - Wear rate at time \(t \), is Markov.
- \(w(t) \) - Wear level at time \(t \).

\[
\begin{align*}
 w(t) &= w(0) + \sum r(t) \\
x(t) &= \text{Feature vector derived from the sound (observations)}
\end{align*}
\]

\[
x(t) \sim P_{\eta(t),w(t)}(x)
\]

Isolating wear-rate features

1) Create classifier using only wear-level information.
2) Use classifier on training data to separate high-wear segments from low-wear segments.
3) Use Fischer discriminant to pick out features that most separate high-wear from low-wear.

Average absolute wear error in 0.001 inch

<table>
<thead>
<tr>
<th>Type of classifier</th>
<th>Training set</th>
<th>Testing set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using wear-level information only.</td>
<td>0.46</td>
<td>0.42</td>
</tr>
<tr>
<td>Using wear-level and wear-rate information</td>
<td>0.33</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Baum-Welch Algorithm:

1) Start with a good guess for all parameters. (Transition probabilities and \(P_{\eta(t),w(t)}(x) \))
2) Take all sequences of \(r(t) \) that start from \(w(0) \) and end at \(w(T) \).
3) Compute expected values for parameters.
4) Iterate until convergence.