Comparative Performance Evaluation of Routing Protocols for Mobile AdHoc Networks (MANETs)

D. Dharmaraju, M. Raissi-Dehkordi, J. Jou, J. Baras

Objective

- To study the performance of various routing algorithms in Mobile AdHoc networks with real-time traffic.
- This would aid in network management decisions in choosing the appropriate routing protocol for the corresponding traffic scenarios.

Simulation Scenario

- 50 nodes move around in a 1500mx500m rectangular grid with a maximum velocity of 40 m/s.
- Mobility Model: Random-waypoint model.
- Radio Propagation: Two-ray ground propagation model.
- Only 20 nodes engage in mutual communication with each other. The other 30 nodes act as routes (if necessary).
- Simulations are run in m-2 for 20 minutes. Nodes are silent for 60% of the time.

Traffic Models

- Voice: ON/OFF model.
- Data: ON/OFF model.
- ON period: Exponentially distributed with mean 0.25 sec.
- OFF period: Exponentially distributed with mean 0.65 sec.
- Content Delivery: CBR connection with a high rate of 300kbps.

Traffic Models-contd.

Routing Protocols for AdHoc Networks

The routing protocols considered are:
- ADHOC On-Demand Routing Protocol (AODV)
 - This protocol operates via a QUERY-REPLY mechanism, and sequence numbering
- Temporally Ordered Routing Algorithm (TORA)
 - This protocol operates by the construction of a Directed Acyclic Graph (DAG).
- Dynamic Source Routing (DSR)
 - This is a source routing based protocol

Performance Comparison

This material is based upon work supported by the Space and Naval Warfare Systems Center San Diego under Contract No. N66001-00-C-8063.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and not necessarily reflect the views of the Space and Naval Warfare Systems Center - San Diego.