Optimization model for large-scale air traffic flow management
Andrew Churchill, David Lovell, Michael Ball

Motivation
Large scale air traffic flow management model needed for:
- Strategic planning
- Congestion prediction
- Traffic management coordination
- Dynamic airspace configuration

Reducing complexity
- Model does not rely on the current center & sector paradigm
- Considers a simplified network of routes and specific capacitated elements, including:
 - Weather systems
 - Busy airports or multiple airport systems

Hierarchy of airspace modeling
This model provides highest level in effort:

Strategic plans & aggregate flows
- Tier 1: Strategic
 - Wide area weather forecast

Regional weather forecast
- Tier 2: Tactical
 - Regional TFM initiatives

Real-time weather & flight data
- Tier 3: Opportunistic
 - Immediate actions

Case study
- Scenario constructed with real weather systems and schedule
- Airport capacities reflect nominal values
- Weather system duration drawn from forecast data, capacity estimated empirically

Structure
Large scale integer program minimizes a weighted sum of ground and airborne delays, considering:
- Airport and airspace capacity constraints
- Network forcing constraints
- Aircraft connectivity constraints
Based on earlier work by Bertsimas, Lulli, and Odoni

Delay propagation
- Captured by applying a flow model of individual aircraft into and out of large airports

Flights from previous time periods
- Arrivals: a_{t+2}, a_{t+1}, a_t
- Departures: d_t
- B_{t+1}, B_t, B_{t+1}

Continuing work
- Develop automated system for identifying disruptions and network structure surrounding them
- Create more sophisticated case study
- Reduce model complexity