Random graphs for WSN security

Osman Yağan and Armand M. Makowski

Wireless sensor networks and security

- WSNs are distributed collections of sensors with limited capabilities for computations and wireless communications.
- Deployed in hostile environments where communications are monitored, and nodes are subject to capture and surreptitious use by an adversary.
- Cryptographic protection needed to ensure secure communications, and to enable sensor-capture detection, key revocation and sensor disabling.
- A proposed solution: Random key predistribution!

A random key predistribution scheme (Eschenauer and Gligor 2002)

- Before deployment, each sensor node is independently assigned K distinct cryptographic keys which are selected at random from a pool of P keys.
- These K keys form the key ring of the node, and are inserted into its memory.
- Any pair of sensors can then establish a secure link between them if they are within transmission range of each other and if their key rings have at least one key in common.

Q: Given integers P and K with $K \leq P$, how do we select the parameters P and K to make the probability of secure connectivity as large as possible?

The full visibility case: Random key graphs $K(n; \theta)$

- Full visibility: Sensors are all within communication range of each other.
- n: The number of nodes.
- P: The size of the key pool.
- K: The size of each key ring.
- With $\theta = (P, K)$, let $K(\theta)$ denote the random set of K distinct keys assigned to node i. Assume the random sets $K_1(\theta), \ldots, K_n(\theta)$ to be LLI with
 \[
 \Pr(K_i(\theta) = S) = \binom{P}{K}, \quad S \in \mathcal{P}_K
 \]
- The probability of any pair of sensors having a common key is given by
 \[
 \Pr(K_i(\theta) \cap K_j(\theta) \neq \emptyset) = 1 - \left(1 - \frac{K}{P}\right)^2 \approx \frac{K^2}{P}
 \]
- Quantity of interest
 \[
 P(n; \theta) := \Pr[K(n; \theta) \text{ is connected}]
 \]

Main results

Consider any pair of functions $K, P : \mathbb{N} \to \mathbb{N}$ such that $K_n \leq P_n$ for all $n = 1, 2, \ldots, n$. Define the sequence $\alpha_n : \mathbb{N} \to [0, 1]$ as the deviation function associated with this scaling as

\[
\Delta_n = \frac{\log n + \alpha_n}{n}, \quad n = 1, 2, \ldots
\]

A zero-one law for connectivity:

Theorem 1 Consider any admissible pair $K = K_n$ and $P = P_n$ such that $P_n \geq \sigma n$ for some $\sigma > 0$. We have

\[
\lim_{n \to \infty} P(n; \theta) = \begin{cases} 0 & \text{if } \lim_{n \to \infty} \Delta_n = -\infty \\ 1 & \text{if } \lim_{n \to \infty} \Delta_n = +\infty \\ \end{cases}
\]

The double exponential result:

Theorem 2 Consider any admissible pair $K = K_n$ and $P = P_n$ such that $P_n \geq \sigma n$ for some $\sigma > 0$. We have

\[
\lim_{n \to \infty} P(n; \theta) = e^{-c},
\]

where

\[
c = \frac{K^2}{P}
\]

Other application areas of random key graphs

- Recommender systems using collaborative filtering - Marbach 2008
- Netflix, Amazon, etc. use recommender systems.
- Users rate the movies they have seen or the products they have purchased.
- A recommender system uses this data to predict the taste of each particular user, and to suggest movies or products that they might like.
- Suppose two Netflix subscribers, say Bob and Alice, rate K movies out of the P possible movies provided by Netflix. In recommending a movie for Alice, a recommender system can make use of Bob’s movie ratings if they have rated at least one movie in common.
- Under the assumption that users rate the same number of movies, random key graphs can be used to model such collaborative-based recommender systems and to evaluate their performance.

- Modeling the small world effect - Yağan and Makowski 2009
- Six degrees of separation - Milgram’s experiments suggest that the social network in the United States is small.
 - The path lengths between pairs of individuals are short.
- Social networks are highly clustered - If Alice and Bob have a common friend, say Carol, it is very likely that Alice and Bob are also friends.
 - Much more likely than some randomly chosen Alice and Bob being friends.
- Watts and Strogatz: A random graph is considered to be a small world if it has high clustering coefficient and yet small average path length.
- Clustering coefficient of random key graphs

Theorem 3 For any admissible pair $K = K_n$ and $P = P_n$, we have

\[
P_{k \sim j \mid \beta_{k \sim j} = 1} = \frac{\Delta_n}{P + K}
\]

with $i \sim j$ denoting the event that the nodes i and j have at least one key in common and then linked to each other.

- Recall that $P_{k \sim j} \geq \Delta_n^2$.
 - K and P can be adjusted so as to satisfy $P_{k \sim j} + \frac{1}{K} \geq \Delta_n^2$.
 - Whenever $P \gg K$, the random key graph is highly clustered.
- Byarsczyk has recently shown that the average path length in a random key graph is small.
- Under suitable parameter selection random key graphs are small worlds!