Communications Network Economics

Jianwei Huang

Network Communications and Economics Lab
Department of Information Engineering
The Chinese University of Hong Kong

March 2017
The Role of Economics in Networking

1. Explain operator behaviors
2. Predict network equilibrium
3. Envision network services
4. Provide policy recommendations
Explain Operator Behaviors

- Operators of similar sizes upgrade technologies at different times
- A tradeoff between market share and upgrading cost
- Network effect provides additional benefit to late upgrade

On-demand data offloading from cellular networks to Wi-Fi networks
When, where, and how much to offload?
Market clearing through an iterative double auction mechanism

Monetization of the public Wi-Fi networks
Free ad-sponsored Wi-Fi access vs. premium paid Wi-Fi access
Optimal pricing mechanisms based on user valuation, visiting frequency, and advertisement concentration

Provide Policy Recommendations

- TV white space as golden **unlicensed spectrum resources**
- White space **database operator** manages the interferences
- Information market provides **differentiated** service to users

Media Coverage

- Coverage by CUHK and in 20+ Hong Kong and Mainland Chinese news agencies (e.g., Mingpo, Sina, Sohu, and ChinaDaily)
Economics of User-Provided Networks

Joint work with Ming Tang & Lin Gao (CUHK)
Haitian Pang & Shou Wang & Lifeng Sun (Tsinghua University)
A user obtains network connectivity from a network provider.
No network connectivity outside the network coverage.
Clear distinction between “providers” and “users”.
Users serve as micro-providers, offering connectivity to other users

- Exploit the diversity of user devices
- Extend coverage and service of network operators
- Better match demand and supply in heterogeneous networks
Commercial UPNs

<table>
<thead>
<tr>
<th></th>
<th>Fixed Hosts</th>
<th>Mobile Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network-Assisted</td>
<td>Fon</td>
<td>Karma</td>
</tr>
<tr>
<td>Autonomous</td>
<td>BeWiFi</td>
<td>Open Garden</td>
</tr>
</tbody>
</table>
Costs and Incentives

- Resource sharing **induces costs**:
 - Reduced internet access bandwidth
 - Increased data usage cost
 - Reduced battery energy (for *mobile* users)

- Proper incentive mechanisms are **critical** for the success of UPNs
Costs and Incentives

Resource sharing induces costs:

- Reduced internet access bandwidth
- Increased data usage cost
- Reduced battery energy (for mobile users)

Proper incentive mechanisms are critical for the success of UPNs

We will focus on the incentive mechanism design for UPN-based mobile video streaming.
Single-User Video Streaming

My downloading speed is 0.5Mbps, want to watch video.

I can watch 240p in YouTube Live, with the downloading speed of 0.5Mbps.

My downloading speed is 1Mbps, do not watch video.

My resource is idle.
Multi-User Cooperative Video Streaming

My downloading speed is 0.5Mbps, want to watch video.

My downloading speed is 1Mbps, do not watch video.

Cooperate

I can watch 720p in YouTube Live, with the downloading speed of 1.5Mbps.

Resource is utilized, any reward for me?
Crowdsourced Mobile Video Streaming

Crowdsourcing network resources from multiple near-by mobile users from potentially different service providers.

Each mobile user watches a different video.
Adaptive BitRate Streaming

To achieve flexible Quality of Experience in wireless video streaming

- Single user case: choose the bitrate of each video segment based on real-time network conditions and user QoE preferences.
Multi-User Collaborative Video Streaming

- **Three** decisions when downloading a video segment

 - **Receiver Selection:** Whose segment?
 - **Bitrate Adaptation:** What bitrate?
 - **Cost Compensation:** How much to pay?
Multi-User Collaborative Video Streaming

- Three decisions when downloading a video segment
 - Receiver Selection: Whose segment?
 - Bitrate Adaptation: What bitrate?
 - Cost Compensation: How much to pay?

- Need decentralized and asynchronous algorithm without complete network information
Social Welfare, Utility, and Cost

- User n downloads a segment of bitrate r for user m at time t_0
User n downloads a segment of bitrate r for user m at time t_0

Social welfare

$$W_{nm}(r) \triangleq U_m(r) - C_n(r)$$
Social Welfare, Utility, and Cost

- **User** n downloads a segment of bitrate r for **user** m at time t_0

- **Social welfare**
 \[
 W_{nm}(r) \triangleq U_m(r) - C_n(r)
 \]

- **Utility of receiver user** m
 \[
 U_m(r) \triangleq \log(1 + \theta_m r) - \phi^{QD} [R_m^{PRE} - r]^+ - \phi^{REB} [T_n(r, t_0) - B_m^{CUR}]^+
 \]
 - (Private) valuation information θ_m
 - (Private) state information $\mu = (R_m^{PRE}, B_m^{CUR})$
Social Welfare, Utility, and Cost

- **User** \(n \) downloads a segment of bitrate \(r \) for **user** \(m \) at time \(t_0 \)

- **Social welfare**

 \[
 W_{nm}(r) \equiv U_m(r) - C_n(r)
 \]

- **Utility of receiver user** \(m \)

 \[
 U_m(r) \equiv \log(1 + \theta_m r) - \phi^{QD} \left[R_m^{\text{PRE}} - r \right]^+ - \phi^{\text{REB}} \left[T_n(r, t_0) - B_m^{\text{CUR}} \right]^+
 \]

 - (Private) valuation information \(\theta_m \)
 - (Private) state information \(\mu = (R_m^{\text{PRE}}, B_m^{\text{CUR}}) \)

- **Cost of downloader user** \(n \)

 \[
 C_n(r) \equiv G_n^{\text{CELL}}(r) + E_n^{\text{CELL}}(r) + E_{nm}^{\text{WIFI}}(r)
 \]

 - Cellular data payment
 - Cellular energy
 - WiFi energy
Design Objectives

- **Truthfulness**: users truthfully reveal their utility functions despite of private information
- **Efficiency**: design a resource allocation mechanism to maximize the social welfare
- **Optimality**: design a resource allocation mechanism to maximize the downloader’s benefit
Design Objectives

- **Truthfulness**: users truthfully reveal their utility functions despite of private information

- **Efficiency**: design a resource allocation mechanism to maximize the social welfare

- **Optimality**: design a resource allocation mechanism to maximize the downloader’s benefit

- **Efficiency and optimality** are conflicting objectives.
Design Objectives

- **Truthfulness**: users truthfully reveal their utility functions despite of private information
- **Efficiency**: design a resource allocation mechanism to maximize the social welfare
- **Optimality**: design a resource allocation mechanism to maximize the downloader’s benefit
- Efficiency and optimality are conflicting objectives.
- We will focus on achieving truthfulness and efficiency through a multi-dimensional auction mechanism
Auction-Based Incentive Mechanism

User 1
(Ready to download)
Initiate an auction

User 1, 2, 3
Submit bid with
(bitrate, price)
-Bitrate Adaptation

User 1
Winner & Payment
-Receiver Selection
-Cost Compensation

Initiate an Auction

User 1's Segment
User 2's Segment
User 3's Segment
Auction-Based Incentive Mechanism

User 1
(Ready to download)
Initiate an auction

User 1, 2, 3
Submit bid with
(bitrate, price)
-Bitrate Adaptation

User 1
Winner & Payment
-Receiver Selection
-Cost Compensation
Auction-Based Incentive Mechanism

User 1
(Ready to download)
Initiate an auction

User 1, 2, 3
Submit bid with
(bitrate, price)
-Bitrate Adaptation

User 1
Winner & Payment
-Receiver Selection
-Cost Compensation

User 2
Winner & Payment
Challenge: Multi-Dimensional Bids

- Each bid is multi-dimensional: \((\text{bitrate}, \text{price})\)
 - \((0.2\text{Mbps}, 20\text{¥})\) vs. \((0.4\text{Mbps}, 35\text{¥})\) vs. \((1.3\text{Mbps}, 70\text{¥})\)

- How to rank vectors to decide the winner and the payment?

- Solution: Second Score Auction
Score Function

- Score function: transforms a multi-dimensional bid to a scalar
 - Determined by the auctioneer (mechanism design)
 - Each user m can have a unique score function $S_m(r, p)$
Score Function

- Score function: transforms a multi-dimensional bid to a scalar
 - Determined by the auctioneer (mechanism design)
 - Each user m can have a unique score function $S_m(r, p)$
- Winner: bidder with the highest score
- Payment: determined by the second highest score
Score Function

- Score function: transforms a multi-dimensional bid to a scalar
 - Determined by the auctioneer (mechanism design)
 - Each user m can have a unique score function $S_m(r, p)$
- Winner: bidder with the highest score
- Payment: determined by the second highest score
- How to choose the score function?
Additive Score Function

\[S_m(r, p) = p - C_n(r) \]

- Difference between the bidder m’s price and the downloader n’s cost
- All bidders have the same score function (related to downloader n)
Winner Selection and Payment Determination

- **Winner** = the bidder with the highest score

\[m^* = \arg \max_{m \in \mathcal{N}_n} (p_m - C_n(r_m)) \]
Winner Selection and Payment Determination

Winner = the bidder with the highest score

\[m^* = \arg \max_{m \in \mathcal{N}_n} (p_m - C_n(r_m)) \]

Winner’s bitrate = the winner’s bid bitrate \(r_{m^*} \)
Winner Selection and Payment Determination

Winning Rule & Payment Rule

1. **Winner** = the bidder with the highest score

 \[m^* = \arg \max_{m \in \mathbb{N}_n} (p_m - C_n(r_m)) \]

2. **Winner’s bitrate** = the winner’s bid bitrate \(r_{m^*} \)
3. **Winner’s payment** ≠ the winner’s bid price \(p_{m^*} \)
 - Payment \(\hat{p}_{m^*} \) represents the score damage to other users

 \[\hat{p}_{m^*} - C_n(r_{m^*}) = \max_{m \in \mathbb{N}_n/m^*} S_m(r_m, p_m) \]

\[\hat{p}_{m^*} \] represents the winner’s revised score
\[S_m(r_m, p_m) \] represents the second highest bidding score
An Example

- A total of 3 bidders, and the score function is

\[
S(r, p) = p - C_n(r) = p - 50 \cdot r
\]

Bids (\(r_m, p_m\)):
- A: (0.2Mbps, 20)
- B: (0.4Mbps, 35)
- C: (1.3Mbps, 70)

Scores:
- \(S(r_A, p_A) = 20 - 50 \cdot 0.2 = 10\)
- \(S(r_B, p_B) = 35 - 50 \cdot 0.4 = 15\)
- \(S(r_C, p_C) = 70 - 50 \cdot 1.3 = 5\)

Hence B is the winner, and the bitrate is 0.4Mbps.

The payment of B is \(\hat{p}_B\):

\[
\hat{p}_B - C_n(r_B) = \hat{p}_B - 50 \cdot 0.4 = \max_{m \in \mathbb{N} / B} S(r_m, p_m) = 10 \Rightarrow \hat{p}_B = 30
\]
An Example

- A total of 3 bidders, and the score function is
 \[S(r, p) = p - C_n(r) = p - 50 \cdot r \]

- Bids \((r_m, p_m)\):
 A: (0.2Mbps, 20¥), B: (0.4Mbps, 35¥), C: (1.3Mbps, 70¥)
An Example

- A total of 3 bidders, and the score function is

\[S(r, p) = p - C_n(r) = p - 50 \cdot r \]

- Bids \((r_m, p_m)\):
 - A: (0.2Mbps, 20€), B: (0.4Mbps, 35€), C: (1.3Mbps, 70€)

- Scores:

\[
S(r_A, p_A) = 20 - 50 \cdot 0.2 = 10 \\
S(r_B, p_B) = 35 - 50 \cdot 0.4 = 15 \\
S(r_C, p_C) = 70 - 50 \cdot 1.3 = 5
\]

Hence B is the winner, and the bitrate is 0.4Mbps.

The payment of B is \(p_B\):

\[\hat{p}_B - C_n(r_B) = \hat{p}_B - 50 \cdot 0.4 = \max_{m \in \mathbb{N}/B} S(r_m, p_m) = 10 \Rightarrow \hat{p}_B = 30€. \]
An Example

- A total of 3 bidders, and the score function is
 \[S(r, p) = p - C_n(r) = p - 50 \cdot r \]

- Bids \((r_m, p_m)\):
 A: (0.2Mbps, 20\$), B: (0.4Mbps, 35\$), C: (1.3Mbps, 70\$)

- Scores:
 \[S(r_A, p_A) = 20 - 50 \cdot 0.2 = 10 \]
 \[S(r_B, p_B) = 35 - 50 \cdot 0.4 = 15 \]
 \[S(r_C, p_C) = 70 - 50 \cdot 1.3 = 5 \]

- Hence **B** is the winner, and the bitrate is 0.4Mbps.
An Example

- A total of 3 bidders, and the score function is
 \[S(r, p) = p - C_n(r) = p - 50 \cdot r \]

- Bids \((r_m, p_m)\):
 A: (0.2Mbps, 20¢), B: (0.4Mbps, 35¢), C: (1.3Mbps, 70¢)

- Scores:
 \[
 S(r_A, p_A) = 20 - 50 \cdot 0.2 = 10 \\
 S(r_B, p_B) = 35 - 50 \cdot 0.4 = 15 \\
 S(r_C, p_C) = 70 - 50 \cdot 1.3 = 5
 \]

- Hence B is the winner, and the bitrate is 0.4Mbps.
- The payment of B is \(\hat{p}_B\):
 \[
 \hat{p}_B - C_n(r_B) = \hat{p}_B - 50 \cdot 0.4 = \max_{m \in \mathcal{N}_n / B} S(r_m, p_m) = 10 \\
 \Rightarrow \hat{p}_B = 30¢.
 \]
Equilibrium User Bidding Behavior

Theorem (Truthful Price Choice)
Given any bitrate r, a bidder m's equilibrium bidding price $p_m(r)$ is his true utility under r:
$$p_m(r) = U_m(r).$$

Theorem (Bitrate Selection)
A bidder m's equilibrium bitrate r_m maximizes its score function, which corresponds to the social welfare if downloading for bidder m:
$$r_m = \arg \max_r (U_m(r) - C_n(r)) = \arg \max_r W_{nm}(r).$$
Equilibrium User Bidding Behavior

Theorem (Truthful Price Choice)

Given any bitrate r, a bidder m’s *equilibrium bidding price* p_m is his *true utility* under r:

$$p_m(r) = U_m(r).$$
Equilibrium User Bidding Behavior

Theorem (Truthful Price Choice)

Given any bitrate r, a bidder m’s *equilibrium bidding price* p_m is his true utility under r:

$$p_m(r) = U_m(r).$$

Theorem (Bitrate Selection)

A bidder m’s *equilibrium bitrate* r_m maximizes its score function, which corresponds to the social welfare if downloading for bidder m:

$$r_m = \arg \max_r (U_m(r) - C_n(r)) = \arg \max_r W_{nm}(r).$$
Efficiency

Theorem (Efficient Auction)

Under the following score function

\[S_m(r, p) = p - C_n(r), \]

the auction is efficient as it maximizes the social welfare.
Multi-Object Multi-Dimensional (MOMD) Auction

- One auction per segment may induce high signaling overhead
- How about allocating multiple objects (segments) per auction?
- Same design objectives: truthfulness and efficiency.
- A challenging problem in multi-dimensional auction.
MOMD Auction: Bidding

- Assume that the auctioneer allocates K segments in each auction
MOMD Auction: Bidding

- Assume that the auctioneer allocates K segments in each auction
- A bidder m submits bid in the form of (bitrate matrix, price vector)
MOMD Auction: Bidding

- Assume that the auctioneer allocates K segments in each auction
- A bidder m submits bid in the form of (bitrate matrix, price vector)
 - bitrate matrix

 $$R^m = \begin{bmatrix}
 r_1^m \\
 r_2^m \\
 \vdots \\
 r_K^m
 \end{bmatrix} = \begin{bmatrix}
 r_{11}^m & 0 & \cdots & 0 \\
 r_{21}^m & r_{22}^m & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 r_{K1}^m & r_{K2}^m & \cdots & r_{KK}^m
 \end{bmatrix}$$

 - r_{li}^m: the bitrate for the i^{th} segment if bidder m is allocated l segments.
MOMD Auction: Bidding

- Assume that the auctioneer allocates K segments in each auction
- A bidder m submits bid in the form of \((\text{bitrate matrix}, \text{price vector})\)
 - bitrate matrix
 \[
 R^m = \begin{bmatrix}
 r^m_1 \\
 r^m_2 \\
 \vdots \\
 r^m_K \\
 \end{bmatrix}
 = \begin{bmatrix}
 r^m_{11} & 0 & \cdots & 0 \\
 r^m_{21} & r^m_{22} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 r^m_{K1} & r^m_{K2} & \cdots & r^m_{KK} \\
 \end{bmatrix}
 \]
 - r^m_{li}: the bitrate for the i^{th} segment if bidder m is allocated l segments.
 - price vector
 \[
p^m = (p^m_1, p^m_2, \ldots, p^m_K)
 \]
 - p^m_l: the total price if bidder m is allocated l segments.
An Example

- An auction allocates $K = 4$ segments.
- User m’s bid: (\bm{R}^m, \bm{p}^m)
 - bitrate matrix
 \[
 \bm{R}^m = \begin{bmatrix}
 r_1^m \\
 r_2^m \\
 r_3^m \\
 r_4^m \\
 \end{bmatrix} = \begin{bmatrix}
 1.3 \text{Mbps} & 0 & 0 & 0 \\
 0.4 \text{Mbps} & 1.3 \text{Mbps} & 0 & 0 \\
 0.4 \text{Mbps} & 0.4 \text{Mbps} & 0.4 \text{Mbps} & 0 \\
 0.2 \text{Mbps} & 0.2 \text{Mbps} & 0.2 \text{Mbps} & 0.4 \text{Mbps} \\
 \end{bmatrix}
 \]
 - Different segments can have different bitrates (e.g., 2nd row)
 - As the number of segment allocation changes, the bitrates of the same segment can change (e.g., 3rd column)
- price vector
 \[
 \bm{p}^m = (70\text{¢}, 105\text{¢}, 120\text{¢}, 135\text{¢})
 \]
MOMD Auction: Score Function

- **Score function** if bidder m is allocated l segments:

$$\phi(r^m_l, p^m_l) = p^m_l - C_n(r^m_l), \forall l \in \{1, \ldots, K\}$$

 - r^m_l is lth row of bidder m's bidding matrix.
Score function if bidder m is allocated l segments:

$$\phi(r_l^m, p_l^m) = p_l^m - C_n(r_l^m), \forall l \in \{1, \ldots, K\}$$

- r_l^m is lth row of bidder m’s bidding matrix.

Compute the marginal scores:

$$S^m = \{S_1^m, S_2^m, \ldots S_K^m\},$$

where

$$S_k^m = \left\{ \begin{array}{ll}
\phi(r_1^m, p_1^m), & l = 1 \\
\phi(r_l^m, p_l^m) - \phi(r_{l-1}^m, p_{l-1}^m), & l \geq 2
\end{array} \right.$$
MOMD Auction: Winner & Payment

- Winners: the bidders that submit the highest marginal scores
 - Can have multiple different winners

- Payment: the marginal score damage that caused by the winner
An Example

- A total of 3 bidders, and an auction allocates $K = 4$ segments.
- The marginal score S^m for three bidders:

\[S^1 : \{8, 7, 5, 2\}; \]
\[S^2 : \{9, 6, 3, 2\}; \]
\[S^3 : \{4, 4, 3, 1\}. \]
An Example

- A total of 3 bidders, and an auction allocates $K = 4$ segments.
- The marginal score S^m for three bidders:

 \[S^1 = \{8, 7, 5, 2\}; \]

 \[S^2 = \{9, 6, 3, 2\}; \]

 \[S^3 = \{4, 4, 3, 1\}. \]

- **Winners** based on the highest 4 marginal scores $S^\dagger = \{9, 8, 7, 6\}$
 - User 1 wins two segments, and user 2 wins two segments
An Example

- A total of 3 bidders, and an auction allocates $K = 4$ segments.
- The marginal score S^m for three bidders:

 $$S^1: \{8, 7, 5, 2\};$$
 $$S^2: \{9, 6, 3, 2\};$$
 $$S^3: \{4, 4, 3, 1\}.$$

- Winners based on the highest 4 marginal scores $S^\dagger = \{9, 8, 7, 6\}$
 - User 1 wins two segments, and user 2 wins two segments
- Payment of user 1 based on marginal score damage
 - Without user 1, the highest 4 marginal scores are $\hat{S}^{-1} = \{9, 6, 4, 4\}$
 - Due to user 1, user 3 loses two segments with marginal scores $\{4, 4\}$
 - User 1’s payment \tilde{p}_1 needs to compensate his marginal core damage

$$\tilde{p}_1 - C_n(r^1_2) = 4 + 4$$

(score function score damage)
Theorem (Truthfulness and Efficiency)

Under a mild technical condition, we can prove the truthfulness of the users' bidding at the equilibrium, and show that the auction is efficient.
Simulation

- 50 video users
- Link capacities derived from real traces
- 3 schemes for single-object multi-dimensional auction
 - Non: Non-cooperative benchmark
 - Partial: Partially cooperative benchmark (in pairs)
 - Full-E: Fully cooperative with efficient score function
Social welfare decreases with the disconnected use percentage.

When 80% of users do not have Internet connection, full cooperation is 5 times better than non-cooperation.
Downloader’s payoff increases with disconnected user percentage

When 80% of users are disconnected, full cooperation is 5 times better than partial cooperation.
Mobile devices: Raspberry Pis, with monitors, LTE USB modems, and Wi-Fi adapters.

Devices can dynamically join and leave the cooperative group in a decentralized fashion.
Future Work

- Mobility management
- Impact of social relationship
- Trust and security
The Big Picture

- New paradigm of network sharing
 - Blurring the boundaries among networks
 - New perspectives on network competition and cooperation
 - New pricing plans and economic mechanisms

- The rise of collaborative economy in communication networks
 - Business-to-Business (B2B) collaborations
 - Business-to-Consumer (B2C) collaborations
 - Peer-to-Peer (P2P) collaborations

- The need of data-driven network economics
 - Data analytics lead to new opportunities for technology improvement and economic mechanism design
Thank you