Pedram Hovareshti and John S. Baras

Introduction and Motivation

Distributed algorithms
- Group of agents with simple/complex abilities
- Agents sense their local neighborhood
- Communicate with neighbors and process the information
- Perform a local action
- Emergence of a global behavior.

Effectiveness of these algorithms depends on:
- The speed of convergence
- Robustness to agent/connection failures
- Energy/communication efficiency

Graph theoretic abstraction of network
- Group topology affects group performance critically
- Graphs as structural abstractions of neighborhoods/connectivity
- Agents’ knowledge of connectivity effects their dynamics
- Structural properties of graphs characterized by relevant matrices

Important graph-related matrices
- Graph Laplacian: \(L = D - A \)
- Natural Random walk matrix \(P = D^{-1}A \)
- Spectrum provides important structural information

Objective

Design problem: Find graph topologies with favorable tradeoff between performance improvement (benefit) of collaborative behaviors vs. costs of collaboration

Performance measures
- The speed of convergence of many distributed algorithms is determined by Second Largest Eigenvalue (SLEM) of \(P \)
- The number of spanning trees of a graph is a measure of robustness to losses in many applications

Problem 1 Characterization of Small World networks as efficient topologies (Asymptotic)

Problem 2 Optimal performance enhancement by adding few links

Problem statement and Analysis

Problem 1 Characterization of Small World graphs

- **\(\Phi \)-model:** Adding small number of new edges into a regular lattice \(G_0 = C(n,k) \), \(n \)-number of nodes, \(2k \)-number of initial neighbors of each node

Capture performance measure of \(G \), as property of \(F(G) \)

Perturb zero elements of \(F_0 \) by \(\epsilon = Kn^{-1} \), \(\rightarrow F_0' \)

Start from base structure \(G_0, F_0 \)

Analyze \(\Delta(F_i) \) for large \(n \) as \(\alpha \) varies

Interpret the result as structural perturbation

Results for spectral gap gain

<table>
<thead>
<tr>
<th>Initial S.G.</th>
<th>SW onset</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(n^3))</td>
<td>(x = O(n^3))</td>
<td>(x = O(n^3))</td>
</tr>
<tr>
<td>(O(n^2))</td>
<td>(x = O(n^2))</td>
<td>(x = \frac{1}{\log n})</td>
</tr>
<tr>
<td>(O(n))</td>
<td>(x = \frac{1}{n})</td>
<td>(x = \frac{1}{\sqrt{n}})</td>
</tr>
</tbody>
</table>

Problem 2: Robust network design

Given a base graph topology, add \(k \) edges that result in maximum possible number of spanning trees

Matrix-tree theorem

\[
\tau(G) = \frac{1}{n} \prod_{i=1}^{n} \lambda_i(L) = \frac{1}{n} \det \left(L + \frac{1}{n} \right)
\]

Optimization problem

Let \(f_l \) denote the incidence vector for edge \(l \)

Maximize \(\tau \left(I_0 + \sum_{m=1}^{n} x_l f_l \right) \) or equivalently

\[
\log \det \left(I_0 + \frac{1}{n} J + \sum_{m=1}^{n} x_l f_l \right)
\]

Subject to:

\(1^T x = k \)

We relax the problem to find heuristics for designing optimal topologies

Result:
- The optimal graph is determined as a compromise between symmetrizing the graph and minimizing a notion of distance, effective resistance distance.
- Effective resistance distance between two nodes \(i \) and \(j \): If we consider the graph as a resistive network with unit resistance on the edges, this is the effective resistance between \(i \) and \(j \) when a unit potential difference is applied between the two nodes
- The small world effect holds for spanning trees. Asymptotically, union of uniformly generated random spanning trees leads to construction of expander graphs.

References

[1] Baras and Hovareshti, Effects of topology in networked systems: stochastic methods and small worlds, CDC08.
[2] Baras and Hovareshti, Efficient and robust communication topologies for distributed decision making in networked systems, CDC09, Submitted