In this project we formulate an optimization problem for the assignment of dispositions to flights whose preferred flight plans pass through a flow-constrained area. For each flight, the disposition can be either to depart as scheduled but via a secondary route that avoids the flow-constrained area, or to use the originally intended route but to depart with a controlled departure time and accompanying ground delay. We anticipate that the capacity through the flow-constrained area will increase at some future time once the weather activity clears. The model is a two-stage stochastic program that represents the time of this capacity windfall as a random variable, and determines expected costs given a second-stage decision, conditioning on that time. The goal is to minimize the expected cost over the entire distribution of possible capacity increase times.