Advanced Stochastic Network Models Of The Impact Of 4D Aircraft Trajectory Precision

Kleoniki Vlachou, David J. Lovell

Background-Motivation

- Develop Queuing Models that Predict Benefit of Increased Aircraft Trajectory Precision
 - Reduced inter-arrival time
 - Reduced variation in inter-arrival time
 - Reduced service time
 - Reduced variation in service time
 - Increased number of servers
- Develop Modeling and Visualization Environment to Allow
 - Validation of Queuing Model Results Against Simulation
 - Visualization of Benefit Mechanisms
- Validate Proposed Queuing Models
- Apply Validated Models to Next Generation Air Transportation System (NGATS) Concepts

Research Objectives

Modeling the Levels of Aircraft Trajectory Uncertainty

- Low Precision Case: Stochastic Queuing Models
 - Captures present-day system
 - Arrivals and service times are time-dependent Poisson process
 - Employ previously developed DELAYS & Approximate Network Delays (AND) models
- High Precision Case: Deterministic Queuing Models
 - Given
 - Arrival schedule (aggregate or disaggregate)
 - Capacity or deterministic minimum headways
 - Construct cumulative arrival and departure curves to obtain delay and queue length by time of day
 - Average and total delay
- Intermediate Case: Diffusion Approximation
 - Dynamics of joint probability density functions are analogous to dynamics of physical flows or other density problems
 - Continuous approximations using systems of coupled partial differential equations
 - Because derivatives of probability density functions are modeled, they can be integrated to produce moment estimates

Visualization

- Develop an Interactive Tool to Facilitate Visualization of the Ways that Trajectory Uncertainty Propagates

Application and Results

- Comparison of Delay Predicted by Stochastic and Deterministic Models for Atlanta Hartsfield-Jackson International Airport (ATL) under Different Capacity Scenarios

Next Steps

- Ensure results of queuing models are fully comparable with respect to how delay profile is constructed
- Run Airspace Concept Evaluation System (ACES) with arrival capacity constraints
- Increase complexity of ACES runs
 - Departure capacity constraints
 - En route capacity constraints
 - Network effects

Simulation and Validation

- Develop a Queuing Network Representation of the National Airspace System (NAS) Network Consisting of the Busiest Airports and their Associated Traffic

Very low Load

Low Load

Moderate Load

Heavy Load

05:00 EST 17:00 EST

09:00 EST 21:00 EST

13:00 EST 01:00 EST

Delay build-ups predicted by deterministic model lag delay build-ups predicted by stochastic model

Stochastic delay model predicts higher average delays
 - 11%-25% higher
 - Differences generally greater on low capacity days
 - Greater differences in peak delays