Modeling and Simulation of Pursuit Control Laws in Bat Prey Capture
Ermin Wei, Eric W. Justh, P. S. Krishnaprasad

Introduction

- Pursuit is a subject of interest in various contexts. What are different pursuit strategies?
- What control law enables bats to successfully capture prey?
- What in the course of evolution caused bats to behave in the way they do now?

Planar Model Set-up

Three Pursuit Manifolds and Controls

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost Function</th>
<th>Control Laws</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical pursuit</td>
<td>(\Lambda = \frac{1}{2} \dot{r}_p \cdot r_p)</td>
<td>(u_{pcp} = -\mu (\dot{y}_p \cdot y_p - \left| \frac{y_p}{|y_p|} \right| \cdot \frac{y_p}{|y_p|}))</td>
</tr>
<tr>
<td>CATD (^1)</td>
<td>(\Gamma = \frac{2}{|x_p|} r = \frac{x}{|x|})</td>
<td>(u_{pcatd} = -\mu (\frac{r_p}{|r_p|} \cdot \frac{r_p}{|r_p|}))</td>
</tr>
<tr>
<td>Constant Bearing</td>
<td>(\Phi = r_p \cdot R(\theta) x_p)</td>
<td>(u_{pcvb} = -\mu (y_p \cdot (\frac{R(\theta) x_p}{|R(\theta) x_p|}) - \frac{1}{|r_p|} \cdot \frac{r_p}{|r_p|}))</td>
</tr>
</tbody>
</table>

Three pursuit manifolds are defined using cost functions, from which control laws are derived.

Classical pursuit: Pursuer's velocity is pointing directly toward the evader.
CATD (Constant Absolute Target Direction): Pursuer keeps the absolute target direction constant, i.e. baselines are parallel.
Constant Bearing: Pursuer keeps the bearing angle (angle between base line and pursuer velocity vector) constant.

Subscript \(p \) for pursuer
Subscript \(e \) for evader
\(r \) is position vector
\(x \) is unit vector normal to \(x \)
\(y \) is unit vector normal to \(y \)
\(h \) is unit vector indicating head direction
\(g \) is unit vector normal to \(h \)

Evolutionary Game \(^2\)

- Population was broken into three subpopulation groups, which use CP, CATD, CB respectively.
- The three subgroups are given as three proportions, \(p_i \), with
 \[\sum_{i=1}^{3} p_i = 1 \quad 0 \leq p_i \leq 1, \forall i \]
- The population distribution is evolved as
 \[p_i' = \frac{p_i W_i}{W} \quad \text{where} \quad W = \sum W_i \]
 \(p_i' \) represents the proportion of successive generation to \(p_i \) and \(W_i \) is payoff for that population
- For simulation 1, 3, 5, the payoffs are defined as (1), for simulation 2, 4, 6 the payoffs are defined as (2)
 \[W_i = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sum_{i=1}^{3} \tau_i} \quad (1) \]
 \[W_i = \frac{1}{\sum_{i=1}^{3} \tau_i} \quad (2) \]

Conclusion

- The simulated evolutionary game shows that CATD under various circumstances yields a better payoff when measured by time. This can help explain why bats today use CATD pursuit strategy in prey capture.
- Derived control laws can also be used to analyze head motion of the bat head.