Efficient Analytical and Numerical Techniques for the Analysis and Design of Wireless Networks
John S. Baras, Vahid Tabatabaee, George Papageorgiou

Objective and Approach:
- A methodology for Design and Analysis of Wireless Networks.
 - Analysis:
 - Performance Models for PHY, MAC and Routing.
 - Loss models to abstract cross-layer interaction.
 - Fixed Point methods to derive inter and intra layer solutions.
 - Design:
 - Design for robust or optimal solutions based on sensitivity of the performance models.
 - Analytical and numerical methods for sensitivity analysis:
 - Automatic Differentiation for implicit deterministic models.
 - Analytical methods for explicit deterministic models.
 - Perturbation Analysis for stochastic models.

The Model
- Inputs:
 - Network topology, traffic demand, neighborhood relations.
- MAC model:
 - Extension of the Bianchi and Tobagi models for multi-hop, multi-path networks based on 802.11.
- PHY model:
 - Fixed error rate or based on computed SINR
- Routing:
 - Probabilistic multiple path routing
- Design:
 - Optimal routing to maximize throughput
 - Gradient projection method
 - Automatic Differentiation for gradient derivation

Enhancement of MAC layer Modeling
Enhancements and generalizations:
- Hidden nodes
- Multiple paths with common nodes
- Node scheduling algorithms

Computations at each node:
- Every path scheduling rate
- Transmission failure probabilities
- Average service time:
 - successful transmission + successful transmissions of neighbors + failed transmissions + Average back-off time

\begin{itemize}
 \item S-D pairs
 \item C code
 \item OPNET
\end{itemize}

\begin{tabular}{cccccc}
 \textbf{S-D pairs} & 1 & 3 & 5 & 7 & 9 \\
 \textbf{C code} & 0.51 & 2.86 & 4.37 & 5.90 & 10.38 \\
 \textbf{OPNET} & 190 & 309 & 352 & 466 & 476 \\
\end{tabular}

Speed comparison with OPNET

Analysis with loss and fixed point models