In-Mold Assembly:
A New Approach to Assembly Automation
Sponsors: NSF and Army MURI

Motivation

- Traditional manufacturing
 - Fabricate individual parts
 - Assemble parts to create products
- Difficulties
 - Complex assembly operations need to be done manually
 - Increases defect rates
 - Significant labor costs
 - Assembling small parts is very challenging

In-Mold Assembly Concept

This design contains parts whose largest dimension is less than 2 mm

Small parts and complex geometry make it very difficult to assemble this MAV swashplate

Traditional design created by machining and manual assembly
Consists of 11 parts and 10 assembly operations

New design enabled by in-mold assembly
Consists of 5 pieces and no assembly operation

Goals

- Explore alternative ways to control deformation at the interfaces
- Develop model to estimate deformation of premolded components
- Develop an understanding of in-mold assembly shrinkages
- Develop model to estimate joint clearances
- Develop mold design templates to realize rigid body and compliant joints

Process Capabilities

Rigid Body Joints

- Prismatic joint
- Revolute joints
- Spherical joint
- Rotor structure

- We have developed mold design templates for successfully realizing revolute, prismatic, spherical, and universal joints using in-mold assembly
- We have developed methods to control shrinkage of the second stage part to provide the adequate joint clearances

Compliant Joints

- Roller
- Compliant Clip
- Compliant members

- We have developed mold design templates for realizing variety of 1 DOF and 2 DOF compliant joints using in-mold assembly
- We have characterized the influence of interface geometry on the interface strength to optimize joint performance

Embedded Electronics

- Full circuitry embedded in polyurethane
- Full circuitry embedded in ABS

- We used in-mold assembly process to successfully embed batteries and electronics in a snake robot module
- We have shown that embedded electronics exhibits superior resistance to mechanical and thermal impacts

Mesoscale Joints

- Part with 90° Rotation
- Second stage part (LDPE)
- First stage part (ABS), pin diameter: 0.8 mm
- Part with 0° Rotation

- We were the first research group to successfully realize mesoscale revolute joint using in-mold assembly
- We have developed methods to predict and control second stage part deformation due to the melt part interactions

Applications

Flapping Wing MAV

- Molded drive mechanism frame
- Flapping wing MAV
- Drive Mechanism

- MAV built at the Manufacturing Automation Lab held a sustained flight and was radio controllable
- Molded drive mechanism converts rotary motor motion to flapping action for wings
- In-mold assembly methods used to
 - Automate assembly process
 - Eliminate fasteners
 - Decrease weight

Attributes of MAV

- Overall Weight: 12.9 g
- Flapping frequency: 12.1 Hz
- Flight Duration: 5 min
- Flight velocity: 4.4 m/s

Miniature Robot

- Shape memory alloy (SMA) actuated robot developed by Manufacturing Automation Lab in collaboration with RAMS
- In-mold assembly methods used to
 - Significantly reduce part count
 - Eliminate fasteners

Fabricated robot

- Assembled robot bi-module
- SMA Wires
- Mesoscale revolute joint

Part comes out of the mold fully assembled