Cyber-Physical Systems

*

Architecture

Manfred Broy

Technische Universität München
Institut für Informatik
D-80290 Munich, Germany
Cyber-physical systems: key properties and challenges

- Physicality
 - real world awareness
 - real time
 - probabilistic behavior
- Connectivity
 - systems of systems
 - connected to cloud services
- Systems of systems
 - Sub-system decomposition
 - Service decomposition
- Interoperability
- Openness
 - security
- HMI - Smartness
 - Human Centric Engineering
- Dynamic systems
 - Dynamic interfaces
 - Dynamic architectures
 - Dynamic change of behavior (adaptivity)
- Mobile systems
 - space awareness

CPSs are more than embedded systems integrated cyber-mechanical systems consisting of mechanics/hardware/software and communication connections
What is Architecture for CPS

• Functional Architecture: structuring a system into a
 ◊ family of functional features and
 ◊ describing their dependencies and feature interactions

• Logical Sub-system Architecture: structuring a CPS onto
 ◊ a set of sub-systems
 ◊ describing their connections and
 ◊ their role, cooperation and their
 ◊ interface behavior

• Technical Architecture: structuring a CPS into technical sub-systems
 ◊ software
 ◊ hardware
 ◊ mechanics and describing the way how they
 ◊ are interconnected, cooperate and work together
Key Notions and Areas of Research

Key Notions

• Modularity
 ◊ Abstraction
 ◊ Compositionality

• Interoperability
 ◊ Interfaces

• Homogeneity
 ◊ Fractal models - hierarchies

Areas of research

• Architecture Modeling
• Reference Architecture
• Architectural Patterns
• Architecture Engineering
From closed embedded systems to open systems connected to the cloud

Traditional embedded systems
• closed
• real time
• connected to the physical
• reliable
• high safety reqs
• low security reqs

Services in the cloud
• open
 ◊ open interfaces
• restricted availability
• easy extendibility
• high interoperability
• low safety reqs
• high security reqs

Smart systems - Cyber-physical systems: innovation
• adaptive
• context aware
• autonomous
• big data
• open interfaces
• dynamic
Modeling smartness of systems

- **Non-adaptive behavior**
- **Adaptive behavior**
 - Transparent
 - Non-transparent
 - Diverted
- **Monitoring**
- **Context Awareness**
- **Autonomy**
- **Robustness**
- **Dynamicity**
- **Mobility**

\[F^+ [I_{cs} \triangleright O_{sc}] \text{ faithful} \implies \text{ user cannot influence the output of the system to the context - autonomy} \]

See: Survey of Modeling and Engineering Aspects of Self-Adapting & Self-Optimizing Systems
V. Bauer, M. Broy, M. Irlbeck, C. Leuxner, M. Spichkova (TUM)
M. Dahlweid, T. Santen (Microsoft Research)
An algebraic view onto modeling cyber-electromechanical systems

<table>
<thead>
<tr>
<th>HW:</th>
<th>electronic programmable hardware including sensors, actuators, HMI devices</th>
<th>⊗ composition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>⊗: SW × SW → SW</td>
</tr>
<tr>
<td>SW:</td>
<td>software</td>
<td>⊗: HW × HW → HW</td>
</tr>
<tr>
<td>ITS:</td>
<td>hardware and software integrated (example CPU)</td>
<td>⊗: MD × MD → HW</td>
</tr>
<tr>
<td>CN:</td>
<td>communication devices – bus systems</td>
<td>⊗: HW × SW → ITS</td>
</tr>
<tr>
<td>MD:</td>
<td>mechanical systems</td>
<td>⊗: ITS × ... × ITS × CN → ITS</td>
</tr>
<tr>
<td>CPS:</td>
<td>cyber physical systems</td>
<td>⊗: ITS × MD → CPS</td>
</tr>
</tbody>
</table>

Laws:

\[
[\text{md}_1 \otimes \text{md}_2] \otimes [\text{hw}_1 \otimes \text{hw}_2] \otimes [\text{sw}_1 \otimes \text{sw}_2] = ? = [\text{md}_1 \otimes \text{hw}_1 \otimes \text{sw}_1] \otimes [\text{md}_2 \otimes \text{hw}_2 \otimes \text{sw}_2]
\]
Re-thinking the role of time

- Ed Lee’s structure of an CPS is essentially an embedded system
 - Observation: a C program sw does not say anything about timing – we need the platform to understand the timing

Observation

\[
\text{timing}[sw] \\
\neq \\
\text{timing}[hw \otimes sw]
\]