Clark School Home UMD
Return to Research Awards

NIST: Silicon Physical Unclonable Functions (PUFs) as an Entropy Source

Faculty 

Funding Agency 

National Institute of Standards and Technology

Description 

The U.S. Department of Commerce and the National Institute of Standards and Technology (NIST) have partnered to grant Professor Gang Qu (ECE/ISR/MC2) approximately $100,000 to study the use of Silicon Physical Unclonable Functions (PUFs) as an entropy source.

Cryptographic keys play a vital role in modern cryptography and almost all security applications. A short key is easy to break, but a longer key does not guarantee better security. For a key to be strong, it must be random and unpredictable, which can be measured by entropy. In this project, Dr. Qu will investigate whether the randomness in silicon fabrication variation can be captured and used as a source to generate entropy and to enhance the quality of other entropy sources.