Clark School Home UMD

ISR News Story

Babadi Wins NSF CAREER Award

Assistant Professor Behtash Babadi (ECE/ISR) is the recipient of a 2016 National Science Foundation (NSF) Faculty Early Career Development (CAREER) Award for “Deciphering Brain Function Through Dynamic Sparse Signal Processing.” The project’s main objective is to develop a mathematically principled methodology that captures the dynamicity and sparsity of neural data in a scalable fashion with high accuracy and to employ it in studying the brain function with a focus on the auditory system. The five-year award is worth $489,813. The NSF CAREER program fosters the career development of outstanding junior faculty, combining the support of research and education of the highest quality and in the broadest sense.

About the award
The ability to adapt to changes in the environment and to optimize performance against undesirable stimuli is among the hallmarks of the brain function. Capturing the adaptivity and robustness of brain function in real-time is crucial not only for deciphering its underlying mechanisms, but also for designing neural prostheses and brain-computer interface devices with adaptive and robust performance.  Thanks to the advances in neural data acquisition technology, the process of data collection has been substantially facilitated, resulting in abundant pools of high-dimensional, dynamic, and complex data under various modalities and conditions from the nervous systems of animals and humans. The current modeling paradigm and estimation algorithms, however, face challenges in processing these data due to their ever-growing dimensions. This research addresses these challenges by providing a unified framework to efficiently utilize the abundant pools of data in order to deliver game-changing applications in systems neuroscience.

Converging lines of evidence in theoretical and experimental neuroscience suggest that brain activity is a distributed high-dimensional spatiotemporal process emerging from sparse dynamic structures. From a computational perspective sparsity is a key ingredient in rejecting interfering signals and achieving robustness in neural computation and information representation in the brain.  The researchers will focusing on the auditory system as a quintessential instance of sophisticated brain function, and  investigate several fundamental questions in systems neuroscience such as plasticity, attention, and stimulus decoding. The research is integrated with education and outreach activities including high school level hands-on workshops, undergraduate capstone projects, and interdisciplinary course development.

Babadi joined the Department of Electrical and Computer Engineering in January 2014 after finishing his post-doctoral fellowship at MIT and Massachusetts General Hospital in systems neuroscience. He received his Ph.D. in Engineering Science from Harvard in 2011. His research interests are in statistical and adaptive signal processing, neural signal processing, and systems neuroscience. 

Related Articles:
Pal Receives NSF CAREER Award
Three ISR faculty receive UMD Brain and Behavior Initiative seed grants
Maryland researchers develop computational approach to understanding brain dynamics
Maryland researchers awarded $1M DARPA Lagrange program cooperative agreement
Vishnubhotla, Espy-Wilson granted patent for improving speech extraction
Improving speech intelligibility testing with new EEG methods
UMD researchers find listening to sound changes how neurons interact within the brain
Researchers part of two NSF Neural & Cognitive Systems grants worth more than $1.2 million
BBI FY17 Seed Grant Winners Announced
Fritz, Shamma are collaborators on new DARPA Targeted Neuroplasticity Training Program

January 13, 2016


Prev   Next

 

 

Current Headlines

Alumnus Ravi Tandon Receives 2018 Keysight Early Career Professor Award 

Alum Mingyan Liu is PI for Multiscale Network Games of Collusion and Competition MURI

Haptic Safety for Unmanned Vehicles

Three ISR faculty receive UMD Brain and Behavior Initiative seed grants

Aneesh Raghavan wins Ann G. Wylie Dissertation Fellowship

Book edited by Ghodssi, Lin in top 25 percent of most downloaded Springer eBooks

Why a robot can't yet outjump a flea

Bill Regli wins Washington Academy of Sciences Excellence in Research in Computer Science Award

Aneesh Raghavan and Usman Fiaz named outstanding graduate assistants

Khaligh, McCluskey to lead new $2.37M DOE solar power converter project

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar