Cyber-physical systems are engineered systems whose operations are monitored and controlled by a computing and communication core embedded in objects and structures in the physical environment.
Towards Cyber-Physical Systems

- Internet
- WWW
- Ubiquitous computing

- Remote sensing
- Monitoring environments
- Wireless sensor networks

- Closing the loop
- Critical infrastructures
- Humans in the loop

Outline

- Introduction
- Case study I: Goods transportation
- Case study II: Building management
- Cross-cutting scientific challenges
- Conclusions
The transportation system is a cyber-physical system.
Mainly without global control and optimization.
New technology has dramatic potentials.

Demands from Goods Road Transportation

- Goods transportation accounts for
 30% of CO2 emissions
 15% of greenhouse gas emissions
 of the global fossil fuel combustion
- Expected to increase by 50% for 2000-2020

Life cycle cost for European heavy-duty vehicles

- 24% of long haulage trucks run empty
- 57% average load capacity

Dr. H. Ludanek, CTO, Scania

Total fuel cost 80 k€/year/vehicle

Schittler, 2003
Technology Push

Sensor and communication technology

Real-time traffic information

Vehicle platooning and semi-autonomous driving

Air Drag Reduction in Truck Platooning

5-10% fuel reduction potential

\[F_{\text{air}} = \frac{1}{2} c_d A_d \rho u v^2 \]

Fuel-Optimal Goods Transportation

- Goods transported between cities over European highway network
- 2 000 000 long haulage trucks in European Union (400 000 in Germany)
- Large distributed control systems with no real-time coordination today

Goal: Maximize total amount of platooning with limited intervention in vehicle speed and route

Architecture for Future Coordinated Goods Transportation

Transport Planner ➔ Route Optimization ➔ Road Planner ➔ Road Segment Optimization ➔ Discrete Platoon Coordination ➔ Real-time Inter-Vehicle Control ➔ Advanced Vehicle Cruise Control

Larson et al., 2013

Alam et al., 2012
Receding Horizon Cruise Control for Single Vehicle

Adjust driving force to minimize fuel consumption based on road topology info:

The total fuel consumption over time T is:

$$ f = \int_0^T \delta(t) \left(\frac{1}{m} \cos \alpha \phi(t) + m g c \sin \alpha \right) dt $$

Require knowledge of road grade α, not available in today’s navigators

Implemented as velocity reference change in advance cruise controller

Alam et al., 2011

Distributed Road Grade Estimation

RMS Road Grade Error

Aggregated N=10, 100, 1000 profiles of lengths 50 to 500 km

Sahlholm, 2011
Receding Horizon Cruise Control for Platoon

- How to jointly minimize fuel consumption for a platoon of vehicles?
 - Uphill and downhill segments; heavy and light vehicles

Dynamics of vehicle i depend on distance $d_{i-1,i}$ to vehicle $i-1$:

$$\frac{dd_{i-1,i}}{dt} = v_{i-1} - v_i$$

$$m_i \frac{dv_i}{dt} = F_{\text{engine}}(\delta_i, \omega_{\text{rpm}}) - F_{\text{brakes}} - F_{\text{drag}}(v_i, d_{i-1,i})$$

$$= F_{\text{uphill}}(\delta_i, \omega_{\text{rpm}}) - F_{\text{drag}} - k^n v_i^n f_i(d_{i-1,i})$$

$$- k^n \cos \alpha_i - k^n \sin \alpha_i$$

Alam et al., 2013

When is it Fuel Efficient for a Heavy-Duty Vehicle to Catch Up with a Platoon?

Liang et al., 2013
When and where to create platoons?

Goal: Maximize total amount of platooning with limited intervention in vehicle speed and route
Platoon merge and split

Heavy-duty vehicle traffic without platooning

Merge and split platoons at highway intersections

Only vehicles that are relatively close in space and time platoon

Distributed optimization of platooning

Heavy-duty vehicle traffic without platooning

Predictive control decisions at network vertices on whether it is beneficial for a vehicle to catch up another vehicle at next intersection

With platooning
Numerical evaluations

- German road network with 300 trucks
- Random starting points and destinations
- 500 experiments

2-5% deployment enough for substantial benefit

Feasibility Study Based on Real Truck Data

- Position snapshot May 14 2013
- 2 200 Scania trucks
- 500 000 km² in Europe

- 875 long-haulage trucks over European region
- Trucks close in time and space (< r m) could adjust speed to platoon and then save 10% fuel during platooning
- Benefits:
 - r = 0.2 km: 78 trucks platooned, 0.16% savings
 - r = 1 km: 241 trucks platooned, 0.38% savings
 - r = 5 km: 778 trucks platooned, 1.2% savings

Larson et al., 2013
Stockholm-Zwolle 24/7 Testing

- Real-time fleet management
- Platooning in real traffic
- Fuel reductions and safety
- Driver acceptance
- Public acceptance

Scania Transport Lab
Internal haulage company
20 trucks, 360,000 km/year
75 trailers, 92% loaded
65 drivers, 40 h work/week

Demonstrations

Rapport on vehicle platooning developed by KTH and Scania (Oct, 2011)

PhD student Assad Alam on Discovery Channel (Jan, 2012)
Outline

• Introduction
• Case study I: Goods transportation
 • Case study II: Building management
• Cross-cutting scientific challenges
• Conclusions

Stockholm Royal Seaport

2010
• Oil depot
• Container terminal
• Ports
• Gas plant

2030
• 10,000 new homes
• 30,000 new work spaces
• 600,000 m² commercial space
• Modern port and cruise terminal
• 236 hectares sustainable urban district
• Walking distance to city centre

From a brown field area to a sustainable city district
Stockholm Royal Seaport

2010
- Oil depot
- Container terminal
- Ports
- Gas plant

2030
- 10,000 new homes
- 30,000 new work spaces
- 600,000 m² commercial space
- Modern port and cruise terminal
- 236 hectares sustainable urban district
- Walking distance to city centre

Project Goals
- CO₂ emissions <1.5 tons per person by 2020 (today 4.5)
- Fossil fuel-free by 2030

Energy Consumption and Enabling Technologies

Energy consumption in Europe
- 40% of total energy use is in buildings
- 76% of building energy is for comfort

Enabling Information and Communication Technology
- Total energy savings of up to 15% by 2020
- Buildings can save 2.4 GtCO₂e
- Enormous CPS potentials

Emerging Technologies for Energy Efficient Buildings

- Smart appliances for load shifting
- Electrical and thermal storage
- Local power and heat generation
- Optimized HVAC
- Local renewable power generation

Heating, Ventilation, and Air Conditioning

- Heat Exchanger
- Exhaust air
- Other rooms
- Fresh air
- T = 20 °C
- Air dampers
- Exhaust air outlet
- Fresh air inlet
- Radiator valve
- Radiators
- Hot water

Optimal control problem
Reduce energy use while keeping indoor temperature and air quality within comfort range
KTH HVAC Testbed

KTH Campus

KTH HVAC Testbed

People counter

Temp/CO2 sensor

Mote

Radiator valve

Chilled water valve

Heat Exchanger

Exhaust air

Other rooms

Fresh air

Hot water

A.C.

Air dampers

Exhaust air outlet

Temp/CO2 sensor

Mote

People counter

Radiator

Fresh air inlet

Exhaust air outlet
KTH HVAC Testbed

Hardware
- PLC integrated with existing HVAC SCADA system
- Wireless sensors
- People counter
- Weather station
- Occupancy schedules

Software
- Matlab and LabView interfaces
- Data logging 24/7
- Web server at hvac.ee.kth.se
- Remote monitoring and control

HVAC Control Architecture

Goal: Minimize energy use while satisfying comfort constraints
Approach: Scenario-based Model Predictive Control
- CO₂ MPC generates constraints for temperature MPC
- Probabilistic models of occupancy and weather forecasts errors
- Learn statistics from building operation to generate scenarios
- Air flow and temperature control from scenario-based optimization

Parisio et al., 2013
CO₂ model

\[x_{CO₂}(k+1) = ax_{CO₂}(k) + bu_{CO₂}(k) + ew_{CO₂}(k) \]
\[y_{CO₂}(k) = x_{CO₂}(k) \]

\[w_{CO₂}(k) = \text{occupancy at } k, \ u_{CO₂}(k) = \dot{m}_{vent}(k)x_{CO₂}(k) \]

Temperature model

\[x_T(k+1) = A_T x_T(k) + B_T u_T(k) + E_T w_T(k) \]
\[y_T(k) = C_T x_T(k) \]

\[w_T(k) = (\text{outside temperature, solar radiation, internal heat gain}) \]
\[u_T(k) \rightarrow |Q_{venting}|, Q_{heating} \rightarrow (\dot{m}_{vent}(k), T_{sa}(k), T_{rad}(k)) \]

Parisio et al., 2013
Scenario-based CO$_2$ MPC

Chance Constraints

\[P \left[\dot{m}_{\text{vent}}^\text{CO}_2(k) \leq \dot{u}_{\text{CO}_2}(k) \leq \dot{m}_{\text{vent}}^\text{max}_\text{CO}_2(k) \right] \geq 1 - \alpha \quad (\text{flow rate}) \]

\[P \left[y_{\text{min}} \leq y_{\text{CO}_2}(k) \leq y_{\text{max}} \right] \geq 1 - \alpha \quad (\text{air quality}) \]

Inputs Constraints

\[u_{\text{min}} \leq u_{\text{CO}_2}(k) \leq u_{\text{max}} \]

Cost Function

\[\sum_{k=0}^{N-1} c'(u(k)\Delta k) \quad (\text{minimize energy use}) \]

Compute Control Inputs

\[\dot{m}_{\text{vent}}^\text{CO}_2(k) = \frac{u_{\text{CO}_2}(k)}{x_{\text{CO}_2}(k)} \]

Scenario-based Temp MPC

Chance Constraints

\[P \left[y_{\text{min}} \leq y_T(k) \leq y_{\text{max}} \right] \geq 1 - \alpha_T \quad (\text{thermal comfort}) \]

Inputs Constraints

\[u_{\text{min}} \leq u_T(k) \leq u_{\text{max}} \]

Cost Function

\[\sum_{k=0}^{N-1} c'_T(u_T(k)\Delta k) \quad (\text{minimize energy use}) \]

Compute Setpoints for the Low-level Controllers

\[\left(\dot{m}_{\text{vent}}(k), T_{sa}(k), T_{rad}(k) \right) = f \left(\dot{m}_{\text{vent}}^\text{CO}_2(k), u_T(k) \right) \]

Parisio et al., 2013
How to Handle Chance Constraints

$\omega := \text{random variable (weather, occupancy, \ldots)}$

Uncertainty Modeling

$\omega(k) = \tilde{\omega}(k) + \bar{\omega}(k)$

- $\tilde{\omega}(k)$:= forecast
- $\bar{\omega}(k)$:= forecast error

Approximating Chance Constraints [Calafiore, 2010]

- extract a limited number $S = \frac{2}{\alpha} \left(\ln \left(\frac{1}{\beta} \right) + N \cdot n_u \right)$ of i.i.d. outcomes (called **scenarios**)
- approximate $\mathbb{P}[y_{\min} \leq y(k) \leq y_{\max}] \geq 1 - \alpha$ with $y_{\min} \leq y(\tilde{\omega}^j(k)) \leq y_{\max}, \ \forall j = 1, \ldots, S$
- remove redundant constraints: $\max_j \{ y(\tilde{\omega}^j(k)) \} \leq y_{\max}$
Evaluations on HVAC Testbed

AHC actuation commands (Existing controller)

Parisio et al., 2013

Evaluations on HVAC Testbed

AHC actuation commands

$E_{SMPC} = 1.27 \text{ kWh}$, $E_{AHC} = 1.39 \text{ kWh}$ (savings: 8.4%)
Outline

• Introduction
• Case study I: Goods transportation
• Case study II: Building management
• Cross-cutting scientific challenges
• Conclusions

Cyber-Physical Systems Challenges

Societal Scale
• Global and dense instrumentation of physical phenomena
• Interacting with a computational environment: closing the loop
• Security, privacy, usability

Distributed Services
• Self-configuring, self-optimization
• Reliable performance despite uncertain components, resilient aggregation

Programming the Ensemble
• Local rules with guaranteed global behavior
• Distributing control with limited information

Network Architectures
• Heterogeneous systems: local sensor/actuator networks and wide-area networks
• Self-organizing multi-hop, resilient, energy-efficient routing
• Limited storage, noisy channels

Real-Time Operating Systems
• Extensive resource-constrained concurrency
• Modularity and data-driven physics-based modeling

1000 Radios per Person
• Low-power processors, radio communication, encryption
• Coordinated resource management, spectrum efficiency

Sastry & J, 2010
How to analyze, design, and implement networked control with
- Guaranteed **global objective** from local interactions
- **Physical dynamics** coupled with information interactions
- Tradeoff **computation-communication-control** complexities
- **Robustness to** external disturbances other **uncertainties**

- Decentralized control extensively studied:
 - Witsenhausen; Ho & Chu; Sandell & Athans; Anderson & Moore; Siljak; Davison & Chang; Rotkowitz & Lall; etc
- Typically assumes full model information (knowledge of all \(P_j\))
- What if at the design of \(C_1\) only surrounding \(P_j\)’s are known?
The role of plant model information

Inter-vehicle distances \(d_{12} \) and \(d_{23} \) are locally controlled through vehicle torques \(u_i \).

\[
\begin{bmatrix}
 v_1(t) \\
 d_{12}(t) \\
 v_2(t) \\
 d_{23}(t) \\
 v_3(t)
\end{bmatrix} =
\begin{bmatrix}
 -g_1/m_1 & 0 & 0 & 0 & 0 \\
 1 & 0 & -1 & 0 & 0 \\
 0 & 0 & -g_2/m_2 & 0 & 0 \\
 0 & 0 & 1 & 0 & -1 \\
 0 & 0 & 0 & 0 & -g_3/m_3
\end{bmatrix}
\begin{bmatrix}
 v_1(t) \\
 d_{12}(t) \\
 v_2(t) \\
 d_{23}(t) \\
 v_3(t)
\end{bmatrix}
= \begin{bmatrix}
 v_1(t) \\
 w_1(t) \\
 v_2(t) \\
 w_2(t) \\
 v_3(t) \\
 w_3(t) \\
 v_4(t) \\
 w_4(t)
\end{bmatrix}
\]

How does knowledge of the vehicle mass \(m_i \) influence performance?

Example

\[
x_1(k+1) = a_{11}x_1(k) + a_{12}x_2(k) + u_1(k)
\]
\[
x_2(k+1) = a_{21}x_1(k) + a_{22}x_2(k) + u_2(k)
\]

\[
J = \sum_{k=1}^{\infty} \|x(k)\|^2 + \|u(k)\|^2
\]

Keep \(J \) small, when

Controller 1 knows only \(a_{11} \) and \(a_{12} \)
Controller 2 knows only \(a_{21} \) and \(a_{22} \)

\[
u_1(k) = -a_{11}x_1(k) - a_{12}x_2(k)
\]
\[
u_2(k) = -a_{21}x_1(k) - a_{22}x_2(k)
\]

achieves \(J \leq 2J^* \)

No limited plant model information strategy can do better.

Langbort & Delvenne, 2011
Why Limited Plant Model Information?

Complexity
Controllers are easier to implement and maintain if they mainly depend on local model information.

Availability
The model of other subsystems is not available at the time of design.

Privacy
Competitive advantages not to share private model information.

Networked Control System
Networked Control System

Plant Graph

Control Graph
Networked Control System

Plant Graph

\[x_i(k+1) = A_i x_i(k) + \sum_{j \in \mathcal{N}_i} A_{ij} x_j(k) + B_i u_i(k) \]

Plant: \(P = (A, B, x_0) \in \mathcal{M} \times \mathbb{R} \times \mathbb{R}^n \)

\(x_i \in \mathbb{R}^{n_i} \) and \(u_i \in \mathbb{R}^{m_i} \)
Plant Graph

\[x_t(k+1) = A_t x_t(k) + \sum_{j \neq t} A_{ij} x_j(k) + B_t u_t(k) \]

Plant: \(P = (A,B,x_0) \in \mathcal{P} \times \mathcal{S} \times \mathbb{R}^n \)
\(x_t \in \mathbb{R}^{n_t} \) and \(u_t \in \mathbb{R}^{n_u} \)

\[\mathcal{A} = \{ A \in \mathbb{R}^{n \times n} | A_{ij} = 0 \in \mathbb{R}^{n \times n_j} \text{ for all } 1 \leq i, j \leq q \text{ such that } (S_p)_{ij} = 0 \} \]

\[S_p = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \quad A = \begin{bmatrix} A_{11} & A_{12} & 0_{n_1 \times n_3} \\ 0_{n_2 \times n_1} & A_{22} & A_{23} \\ 0_{n_3 \times n_1} & A_{32} & A_{33} \end{bmatrix} \]

Plant Graph

\[x_t(k+1) = A_t x_t(k) + \sum_{j \neq t} A_{ij} x_j(k) + B_t u_t(k) \]

Plant: \(P = (A,B,x_0) \in \mathcal{P} \times \mathcal{S} \times \mathbb{R}^n \)
\(x_t \in \mathbb{R}^{n_t} \) and \(u_t \in \mathbb{R}^{n_u} \)

\[\mathcal{A} = \{ A \in \mathbb{R}^{n \times n} | A_{ij} = 0 \in \mathbb{R}^{n \times n_j} \text{ for all } 1 \leq i, j \leq q \text{ such that } (S_p)_{ij} = 0 \} \]

\[S_p = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \quad A = \begin{bmatrix} A_{11} & A_{12} & 0_{n_1 \times n_3} \\ 0_{n_2 \times n_1} & A_{22} & A_{23} \\ 0_{n_3 \times n_1} & A_{32} & A_{33} \end{bmatrix} \]

\[B = \begin{bmatrix} B_{11} & 0_{n_1 \times n_3} & 0_{n_1 \times n_3} \\ 0_{n_2 \times n_1} & B_{22} & 0_{n_2 \times n_3} \\ 0_{n_3 \times n_1} & 0_{n_3 \times n_2} & B_{33} \end{bmatrix} \]
Control Graph

\[u(k) = Kx(k) \]

\(\kappa = \{ K \in \mathbb{R}^{n \times n} | K_{ij} = 0 \in \mathbb{R}^{n_i \times n_j} \text{ for all } 1 \leq i, j \leq q \text{ such that } (s_K)_{ij} = 0 \} \)

\[S_K = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \quad K = \begin{bmatrix} K_{11} & 0_{n_1 \times n_2} & 0_{n_1 \times n_3} \\ K_{21} & K_{22} & 0_{n_2 \times n_3} \\ 0_{n_3 \times n_1} & K_{32} & K_{33} \end{bmatrix} \]

Design Graph

\[K = \Gamma(P) = \Gamma(A, B) \]

The map \([\Gamma_{i1} \quad \cdots \quad \Gamma_{iq}]\) is only a function of \(\{[A_{j1} \quad \cdots \quad A_{jq}], B_{ij} | (s_C)_{ij} \neq 0\}\).

\[S_C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \]
Design Graph

\[K = \Gamma(P) = \Gamma(A, B) \]

The map \([\Gamma_{i1}, \ldots, \Gamma_{iq}]\) is only a function of \([\{A_{j1}, \ldots, A_{jq}\}, B_{jj}, (s_c)_{ij} \neq 0\}].

\[S_c = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \]

\([\Gamma_{i1}, \Gamma_{i2}, \Gamma_{i3}]\) is a function of \([\{A_{21}, A_{22}, A_{23}\}, B_{22}, {A_{31}, A_{32}, A_{33}}\}].

HVAC Control Example

Plant Graph:

Design Graph:
Performance Metric

The **competitive ratio** of a control design method Γ is defined as

$$r_p(\Gamma) = \sup_{P \in \mathcal{P}} \frac{J_p(\Gamma(A,B))}{J_p(\Gamma^*(P))}$$

A control design method Γ' is said to **dominate** another control design method Γ if

$$J_p(\Gamma'(A,B)) \leq J_p(\Gamma(A,B)),$$

for all $P = (A,B,x_0) \in \mathcal{P}$

with strict inequality holding for at least one plant.

When no such Γ' exists, we say that Γ is **undominated**.
Performance Metric

The competitive ratio of a control design method Γ is defined as

$$r_p(\Gamma) = \sup_{P \in \mathcal{P}} \frac{J_p(\Gamma(A,B))}{J_p(K^*(P))}$$

A control design method Γ' is said to dominate another control design method Γ if

$$J_p(\Gamma'(A,B)) \leq J_p(\Gamma(A,B)) \quad \text{for all} \; P = (A,B,x_0) \in \mathcal{P}$$

with strict inequality holding for at least one plant.

When no such Γ' exists, we say that Γ is undominated.

$$J_p(K) = \sum_{k=1}^{\infty} x(k)^TQx(k) + \sum_{k=0}^{\infty} u(k)^TRu(k)$$

Q and R are block-diagonal positive definite matrices.

Remark: When G_k is a complete graph

$$K^*(P) = -(R + B^T XB)^{-1}B^TXA$$

$$A^TXA - A^TXB(R + B^T XB)^{-1}B^TXA - X + Q = 0$$
Problem Formulation

Find the best control design strategy with limited model information:

\[\min_{\Gamma \in \mathcal{R}} r_p (\Gamma) \]

Characterize the influence from
- Plant structure \((G_p)\)
- Controller communication \((G_K)\)
- Model limitation \((G_C)\)

Assumptions

- All subsystems are fully actuated:
 \[B \in \mathbb{R}^{n \times n} \text{ and } \sigma(B) \geq \epsilon > 0. \]
- \(G_P\) contains no isolated node.
- \(G_C\) contains all self-loops.
- To simplify the presentation, fix \(\epsilon = 1\) and \(Q = R = I\).
Deadbeat Control Design

\[\Gamma^A (A, B) = -B^{-1}A \]

Subcontroller \(i \) depends only on subsystem \(i \)'s model:

\[
\begin{bmatrix}
\Gamma^A_{i1}(A, B) & \ldots & \Gamma^A_{iq}(A, B)
\end{bmatrix} = -B_i^{-1}\begin{bmatrix} A_{i1} & \ldots & A_{iq} \end{bmatrix}
\]

\[
x(k + 1) = Ax(k) + Bu(k) ; x(0) = x_0,
\]

Lemma: \(G_K \supseteq G_P \) \(\implies \) \(r_p(\Gamma^A) = 2 \)

Farokhi et al., 2013
Deadbeat Control Design

Lemma: \(G_K \supseteq G_P \implies r_p(\Gamma^A) = 2 \)

* \(G_K \supseteq G_P \) means \(E_K \supseteq E_P \), so more controller communications than plant interactions

Farokhi et al., 2013
Deadbeat Control Design

Lemma: \(G_K \supseteq G_P \Rightarrow r_P(\Gamma^A) = 2 \)

- \(G_K \supseteq G_P \) means \(E_K \supseteq E_P \)
- \(J_P(\Gamma^A(A,B)) \leq 2J_P(K^*(P)) \)

If enough controller communication, then a simple (deadbeat) controller is quiet good

Design Strategies with Local Model Info

Theorem: \(G_P \) has no sink \(G_K \supseteq G_P \) \(G_P \) is fully disconnected \(\Rightarrow r_P(\Gamma) \geq r_P(\Gamma^A) = 2 \ \forall \Gamma \in \mathcal{E} \)

When \(G_P \) has no sink, there is no control design strategy \(\Gamma \) with a better competitive ratio \(r_P(\Gamma) = \sup_{\Gamma(A,B)} J_P(\Gamma(A,B))/J_P(K^*(P)) \) than deadbeat \(\Gamma^A \)

Farokhi et al., 2013
Example

\[\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u_1(k) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u_2(k) \]

- \(K^*(P) = -(I + X)^{-1}XA \)
- \(A^TXA - A^TX(I + X)^{-1}XA + I = X \)
- \(\Gamma^A(A, B) = -\begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} \)
- \(J_F(\Gamma^A(A, B)) \leq 2J_F(K^*(P)) \)
- \(\Gamma^A(A, B) = -\begin{bmatrix} w_{01} & w_{02} \\ 0 & w_{22} \end{bmatrix} \)
- \(J_F(\Gamma^A(A, B)) \leq J_F(\Gamma^A(A, B)) \leq 2J_F(K^*(P)) \)

and undominated

Motivating Example Revisited

- Regulating inter-vehicle distances \(d_{12} \) and \(d_{23} \)

\[\begin{bmatrix} v_1(t) \\ v_2(t) \\ v_3(t) \end{bmatrix} = \begin{bmatrix} -\alpha_1/m_1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -\alpha_3/m_3 \end{bmatrix} \begin{bmatrix} v_1(t) \\ v_2(t) \\ v_3(t) \end{bmatrix} + \begin{bmatrix} \alpha_1/m_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \alpha_3/m_3 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \\ u_3(t) \end{bmatrix} \]

\[z(t) = \begin{bmatrix} d_{12}(t) \\ d_{23}(t) \\ u_1(t) \\ u_2(t) \\ u_3(t) \end{bmatrix} \]

- Find a saddle point of \(J(\Gamma, \alpha) = \|T_{sw}(s; \Gamma, \alpha)\|_\infty \) when \(\alpha = [m_1 m_2 m_3]^T \in [0.5, 1.0]^3 \) and \(\Gamma \) belongs to the set of polynomials of \(\alpha_i, i = 1, 2, 3 \), up to the second order.

\[\inf_{\Gamma \in \mathcal{A}} \sup_{\alpha \in \mathcal{A}} J(\Gamma, \alpha) = \inf_{\Gamma \in \mathcal{A}} \sup_{\alpha \in \mathcal{A}} \|T_{sw}(s; \Gamma, \alpha)\|_\infty \]
Motivating Example Revisited

Control Design with Local Model Information
\[\max_{\alpha \in \mathcal{A}} \| T_z w (s; \Gamma^{local}, \alpha) \|_\infty = 4.7905 \]

Farokhi & J., 2013

Motivating Example Revisited

Control Design with Limited Model Information
\[\max_{\alpha \in \mathcal{A}} \| T_z w (s; \Gamma^{limited}, \alpha) \|_\infty = 3.5533 \]

25.8%

Farokhi & J., 2013
Motivating Example Revisited

Outline

• Introduction
• Case study I: Goods transportation
• Case study II: Building management
• Cross-cutting scientific challenges
• Conclusions
Conclusions

- CPS architectures for large-scale control and optimization
- Applications to transportation and building management
- Influence of local plant models on global performance
- Testbed developments

http://www.ee.kth.se/~kallej