Brain and Behavior Seminar: Andrew Schwartz, Recent progress in high-performance neural prosthetics

Wednesday, December 2, 2015
10:45 a.m.
2111 Tydings Hall
Emerald Sharnice Brooks
ebrooks@umd.edu

Recent progress toward high-performance neural prosthetics

Andrew Schwartz
Professor of Neurobiology
University of Pittsburgh

Host
Luiz Pessoa

Abstract
A better understanding neural population function would be an important advance in systems neuroscience. The change in emphasis from the single neuron to the neural ensemble has made it possible to extract high-fidelity information about movements that will occur in the near future. Neurons encode many parameters simultaneously. Although the correlation between firing rate and any single parameter may be weak, extraction methods based on multiple neurons are capable of generating a faithful representation, or decoding of intended movement. The realization that useful information is embedded in the population has spawned the current success of brain-controlled interfaces.

We have been gradually increasing the degrees of freedom (DOF) that a subject can control through the interface. Our early work showed that 3-dimensions could be controlled in a virtual reality task. We then demonstrated control of an anthropomorphic physical device with 4 DOF in a self-feeding task. Currently, monkeys in our laboratory are using this interface to control a very realistic, prosthetic arm with a wrist and hand to grasp objects in different locations and orientations.

This technology has now been extended has been extended to a paralyzed patient who cannot move any part of her body below her neck. Based on our laboratory work and using a high-performance “modular prosthetic limb” she has been able to control 10 degrees-of-freedom simultaneously. The control of this artificial limb is intuitive and the movements are coordinated and graceful, closely resembling natural arm and hand movement. This subject has been able to perform tasks of daily living -- reaching to, grasping, and manipulating objects as well as performing spontaneous acts such as self-feeding.

Current work in a second subject who was implanted with additional stimulating electrodes in the finger region of his sensory cortex is progressing. With this addition, we expect to provide tactile feedback to the subject from the prosthetic fingers as he grasps objects and develops dexterity with the device.

Audience: Graduate  Undergraduate  Faculty  Post-Docs  Alumni 

remind we with google calendar

 

March 2024

SU MO TU WE TH FR SA
25 26 27 28 29 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
Submit an Event