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Abstract 
 
This report presents methodologies for normalizing performance of the National Airspace 
System (NAS). The purpose of the study is to develop the capability of isolating the 
performance of NAS enhancements, such as those being made under the Free Flight 
Phase I program. It is often not possible to observe the effect of such enhancements 
directly, because of the confounding influences of weather, demand, and conditions 
elsewhere in the system. The analysis presented here shows how linear and non-linear 
regression models can be used to statistically remove a large proportion of these 
confounding effects, increasing the possibility that the effects associated with the 
enhancement will be detectable. 
 
The particular focus of this study is on arriving flights at Los Angeles International 
airport, where two FFP1 tools, Traffic Movement Advisor (TMA) and Passive Final 
Approach Spacing Tool (PFAST), are being deployed. We develop a metric that captures 
the daily variation in flight times (including departure delay and gate-to-gate time) for 
LAX arrivals. This metric, which we term the Daily Flight Time Index (DFTI), is a 
weighted average where the weights reflect the proportions of flights coming from 
different destinations over the analysis period. We then analyze the day-to-day variation 
in DFTI, relating it to weather, demand, and average delays at origin airports. Our data 
set extends over 41 months from January 1997 through May of 2000.  
 
Our approach was to develop a “baseline” model and then compare it with a variety of 
others. The baseline model contains 9 weather factors (scores from which are generated 
from applying principal component analysis to 32 underlying weather variables), 2 
demand factors, and an origin airport delay variable, in a simple linear form. It explains 
about 75% of day-to-day variation in DFTI. Origin airport congestion is the most 
important source of variation, followed by several weather factors relating to 
temperature, visibility, and wind. Demand is the least important source of variation in 
DFTI over the time period analyzed. Most of the effects observed are intuitively 
reasonable: for example, we find that the DFTI decreases with visibility. Some are more 
mysterious--for example, DFTI is found to decrease with temperature at LAX. 
 
Several other models are estimated and compared to the baseline model. A response 
surface model that includes quadratic and interaction terms as well as linear ones offers 
some improvement in fit (adjusted R2 of 0.82 as compared to 0.74) albeit with a vastly 
increased number of coefficients. A non-linear model also performs somewhat better. 
Model performance is quite insensitive to the number of weather factors used. However, 
models that capture weather by categorizing days rather than employing quantitative 
weather factors perform somewhat less well. 
 
Finally, TRACON logs from outlier observations were inspected to find reasons that the 
model predictions were inaccurate for these days. Generally, it was possible to discern 
explanations on days when the model under-predicted the DFTI. These included facility 
outages, overly stringent ground delay programs, east flow operation, and, in one case, 
the closure of half the airport due to a visit by Air Force 1. 
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1. Introduction 

Free Flight Phase 1 (FFP1) is a Federal Aviation Administration program for improving 

the performance of the National Airspace System (NAS) through the deployment of 

advanced technologies for air traffic management. Most of the FFP1 technologies, 

including the Center-Terminal Automation System (CTAS) and the Surface Movement 

Advisor (SMA), are oriented to the airport terminal area. The FFP1 program involves 

deploying these technologies at limited set of the airports featuring high traffic and large 

amounts of aggregate delay. 

In addition to the deployment activities, FFP1 includes a significant evaluation 

component. In broad terms, the purpose of the evaluation is to determine the impact of 

the program on NAS performance. Within the FAA performance evaluation framework, 

dimensions of performance include safety, delay, efficiency, predictability, flexibility, 

and system productivity. The FFP1 program office has developed a number of specific 

metrics pertaining to each of these aspects of performance. By tracking these metrics 

before and after deployment, it is hoped that the impacts of FFP1 can be adduced. 

This evaluation effort faces a significant hurdle. As FFP1 is implemented, the world does 

not stand still. Weather, a major determinant of NAS performance, is ever changing. 

Demands on the NAS, which have grown steadily over the years, are expected to 

continue to do so in the future, with significant ramifications on system performance. 

Indeed it is possible that FFP1 will itself trigger user responses that affect demand. 

Finally, in addition to weather and demand, there is a plethora of other factors—

enhancements to the NAS infrastructure not related to FFP1, facility outages, and so on—

that may also cause changes in the performance metrics. 

An additional complication derives from the fact that the operations at one airport are 

affected by conditions at another. Obviously, if a flight departure is delayed by conditions 

at the flight origin, this will cause an arrival delay at the destination airport, which may in 

turn cause a second departure delay and arrival delay at an airport further downline. 

Conversely, a ground delay program may trigger departure delays at an origin airport as a 

result of congestion at the destination. As a result of these forward and backward 
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propagation effects, performance trends at any one location in the NAS are influenced by 

changes throughout the system. 

Given these circumstances, it is not advisable, and may not be possible, to observe the 

performance impacts of FFP1 through simple before-and-after comparisons of the 

performance metrics. Rather, it is necessary to normalize such comparisons so that, to the 

greatest extent possible, the non-FFP1 influences can be controlled for. Only when this is 

done can before-and-after comparisons be translated into with/without ones. 

While the need for normalization is easy to recognize, the task of normalization may be 

quite difficult. There is wide day-to-day and hour-to-hour variation in NAS performance. 

While many of the sources of this variation are understood, there has been relatively little 

research that attempts to systematically relate performance variation to its underlying 

causes. For example, we do not know how much of the observed variation in 

performance results directly from observable differences in weather conditions and 

fluctuations in demand, and how much is the result of other, less easy to identify, causes. 

A related question, which has also been little studied, is how to represent and quantify the 

relationships between performance and the factors influencing it. For example, is it better 

to treat weather as a set of continuous variables and treat performance as a function of 

these variables, or to treat weather as a discrete variable by adopting some classification 

scheme (clear and sunny days, stormy days, etc) and model performance variation in 

terms of these weather categories? Or, are the relationships so complex and non-linear as 

to render normalization impossible by either of these methods, or any others? 

With such questions in mind, we have undertaken a series of studies in which we 

statistically analyze NAS performance variation in relation to factors related to weather, 

demand, and conditions elsewhere in the system. Each of the studies focuses on one 

airport. The airport studied here is Los Angeles International (LAX). FFP1 technologies 

that are being implemented at LAX include the two CTAS components: Traffic 

Management Advisor (TMA), which will be used by the Los Angeles ARTCC, and the 

Passive Final Approach Spacing Tool (PFAST), which is being implemented at the 

Southern California TRACON. The immediate purpose of this study, however, is not to 

assess the benefits from these deployments, but to analyze performance trends at LAX 
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during the pre-deployment period. It is expected that the methodologies developed in this 

effort may then be used at a later time as part of the FFP1 evaluation. 

The essence of our approach is to develop and statistically model a set of daily level 

performance metrics for LAX. The overarching metric is a weighted average of flight 

times into LAX, which we term the Daily Flight Time Index (DFTI). This flight time is 

measured as the interval between the scheduled departure and the actual arrival, and can 

be decomposed into several components, including the departure delay, the taxi-out time, 

the airborne time, and the taxi-in time. Our research revolves around observing and 

analyzing day-to-day variation in the DFTI metric and its components. 

The remainder of this paper is organized as follows. Section 2 overviews the 

methodology employed in this research. Section 3 discusses performance trends, in terms 

of the DFTI and its components, at LAX. Sections 4 and 5 present our methods of 

introducing demand and weather into the normalization process, while Section 6 does the 

same for conditions elsewhere in the NAS. The next several sections present estimation 

results for models relating performance to weather, demand, and conditions elsewhere in 

the NAS. In Section 7, we present a baseline linear model of the DFTI. In Section 8, we 

consider similar models for the individual DFTI components. Section 9 considers a 

variety of alternative models. Section 10 discusses “outlier” days in which predicted 

performance was considerably different from what actually occurred.  Finally, Section 11 

presents conclusions and recommendations. 

2. Methodology Overview 

This research is concerned with fitting models of the general form: 

ttttt DELAYORGDEMANDWXfMETRICP ε+= )_,,(_  (1) 

where: 

P_METRICt is the value of a performance metric for day t based on flights 

arriving at the study airport (in this case LAX); 

WXt is a vector of weather variables for day t; 
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DEMANDt is a vector of demand variables for day t; 

ORG_DELAYt is a measure of delay at origin airports;  

εt is a stochastic error term. 

While a variety of performance metrics could be analyzed using this type of model, in the 

work presented here we consider only the DFTI metric, and the components of that 

metric, as discussed above. Details on the calculation of this metric are presented in the 

next section. As a performance metric, the DFTI is quite similar to average arrival delay. 

It has two important advantages over that more conventional measure, however. First, it 

is insensitive to changes in the amount of “padding” built into the flight schedule. As is 

well known, airlines add extra time in the expectation that their flights will be delayed, 

and the amount of such padding has generally increased over time. All else equal, the 

padding increases will cause delays against schedule to go down. By using the DFTI, we 

avoid this “artificial” effect. Second, use of DFTI permits the decomposition of flight 

time, and hence delay, changes into the components mentioned above: departure delay, 

taxi-out time, flight time, and taxi-in time. Since conventional delay metrics require 

reference to some scheduled time, they can capture only the first of these. 

We employ a metric defined at the daily level, rather than some finer time scale, for 

several reasons. First, as elaborated below, this permits a larger number of flight origins 

to be included in the averaging. Second, we can treat each day as an independent 

observation, ignoring interrelationships whereby performance in one time period affects 

performance in some other period. Such interrelationships cannot be ignored in sub-day 

time scales, since flights that are unable to land in one time period become additional 

demand in a subsequent period, often resulting in delays for other flights. 

In developing models of the general form given in (1), we recognized that our primary 

goal is normalization as opposed to testing specific hypotheses or identifying particular 

causal mechanisms. The ultimate purpose of this research is to isolate the performance 

impacts of FFP1, not those of weather, demand, or origin airport delay. Our aim is to 

control for these factors, which is not the same as understanding exactly how and why 

they influence performance. In later sections, explanations and interpretations for the 
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effects we observe will be offered, but some of these are rather speculative, and their 

validity is not essential given our emphasis on statistical control. The ways in which such 

thinking shaped our research effort will become evident in the sections that follow. 

3. Computing the Daily Flight Time Index for LAX 

We used individual flight data drawn from the Airline Service Quality Performance 

(ASQP) database to develop a daily time series of average flight times for flights arriving 

at LAX. As previously explained, we refer to this daily average value as the Daily Flight 

Time Index-DFTI. The DFTI is a weighted average of individual flight times into LAX. 

For individual flights we obtain from ASQP the time interval between its scheduled 

departure from its origin gate and its actual arrival at its gate at LAX. In addition, we 

obtain the components of this interval, which include the departure delay, the taxi-out 

time, the airborne time, and the taxi-in time. 

To construct the DFTI (and its components) from the individual flight data, we take a 

weighted average where the weights reflect the proportion of flights from each origin into 

LAX over the period of analysis. Since the same weights are used for all the days in the 

sample, DFTI’s are comparable even when the mix of long-haul and short-haul flights 

changes over time.  

We limited the set of origins in the DFTI average in two ways. First, we eliminated 

airports within 200 miles of LAX. This reduced the influence of correlation between 

conditions at the origin airport and conditions at LAX. Second, for purposes of 

computing the average it was necessary that, for every day considered, there must be at 

least one completed flight from each origin. If an origin had no flights on a given day, 

one can either exclude the day from the sample or the origin from index. By excluding 

just a few days, the number of origins that can be included in the DFTI average was 

greatly increased. In the case of LAX, over the five plus years that we analyzed, we were 

able to include some 23 origins in the DFTI by eliminating just 4 of 1978 days. The set of 

origins, and their associated weights, are shown in Table 1. By way of comparison, in 

order to include 34 origins in the DFTI, it would have been necessary to eliminate 1024 

days. 



 

 6 

 
 
 
 

Table 1. Set of Origins and Their Associated Weights. 
 

Origin Airport Weight (in Percentage) 

LAS 12.1 

SFO 11.4 

PHX 11.1 

OAK 9.0 

ORD 8.4 

SEA 5.9 

DFW 5.6 

SJC 4.4 

PDX 3.8 

SMF 3.7 

SLC 3.6 

HNL 3.5 

IAH 3.0 

ATL 2.2 

TUS 2.2 

ABQ 1.8 

STL 1.8 

MIA 1.7 

ELP 1.4 

MCO 1.3 

PIT 1.3 

CVG 1.0 

 

 

 



 

 7 

Figures 1, 2, and 3 summarize trends in DFTI for LAX since 1995. Figure 1 simply plots 

the daily values. It is evident from Figure 1 that DFTI varies substantially from day to 

day. Most of the time, it is within the range of 140 to 160 minutes. But there are a 

considerable number of days in which DFTI exceeds 180 minutes, and a few where it 

goes above 200. Taking 140 minutes as a nominal value for good days with essentially no 

delayed flights, we see that on very bad days the average delay (measured against the 140 

minute standard) can exceed an hour per arrival. 

Figure 2 plots the 30-day moving average of the DFTI, with the data points coded by 

season. A seasonal pattern is evident, with higher values in the fall and winter and the 

lowest values generally in the summer.  Recent years have seen some divergence from 

this pattern. The springs of the last three years have been considerably worse than 

previous ones, as was the summer of 1999 compared to those of 1996-1998. Also, during 

the fall of 1999, the DFTI was stable throughout the quarter instead of climbing toward 

the end. The early winter of 2000 was also considerably better than average, although 

high DFTI values returned in the latter part of that quarter. Overall, Figure 2 suggests 

some trend toward increasing DFTI over the past five years, although that trend is 

dominated by seasonal variation. 

Figure 3 plots the 7-day DFTI moving average, decomposed into three flight time 

components: time at origin (departure delay plus taxi-out time), airborne time, and taxi-in 

time. While airborne time is clearly the largest component of DFTI, it is evident that 

“spikes” in the DFTI are normally accompanied by similar “spikes” in time at origin, 

suggesting that the latter is the largest source of DFTI variation. To investigate this 

question more directly, we analyzed the variance in DFTI, using the identity: 

),(2),(2),(2
)()()()(

TITABTTITTAOCOVABTTAOCOV
TITVARABTVARTAOVARDFTIVAR

⋅+⋅+⋅
+++=

 (2) 

Where: 

DFTI is the daily flight time index; 

TAO is the time at origin; 

ABT is the airborne time; 
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Figure 1. Daily DFTI Values for LAX
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Figure 2. 30-Day Moving Average of DFTi, by Season
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Figure 3. 7-day DFTI Moving Average, Three Components 
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TIT is the taxi-in time: 

)(⋅VAR  is the variance; 

)(⋅COV  is the covariance. 

Figure 4 shows the decomposition of )(DFTIVAR into these various components. As 

suggested above, )(TAOVAR is the largest source of DFTI variance. The second greatest 

source, in most years, is the ),( ABTTAOCOV term, while )(ABTVAR  is the third, and 

COV(TAO,TIT) fourth. Thus variation in time at origin contributes to variation in DFTI 

not only directly, but also through its co-variation with the other flight time components.   

The significant co-variation between time at origin and airborne time may be explained in 

several ways. First, air traffic management will cause flights to be held at their origins as 

a result of congestion either en route or in the LAX terminal area. In effect, this creates a 

link between time at origin and airborne time that is captured by the covariance. Second, 

despite the 200 mile requirement there is some inherent correlation between weather 

conditions at the various origin airports—particularly the nearer ones, which figure 

prominently in the DFTI average—and LAX. 

4. Weather Normalization Variables 

4.1 Qualitative Discussion 
 

The first part of the section will cover some qualitative explanations of weather influence 

on delays at the LAX, and second part of the section will cover development of the 

weather variables used for DFTI metric modeling. 

LAX airport has two sets of parallel runways (Figure 5). Outboard runways are used for 

arrivals. Inboard runways are used for departures, but they can be used for departures and 

arrivals simultaneously. Simultaneous use of the runways depends both on the weather 

situation and on the number of departures. If the demand for departures is high, arrivals 

will not be allowed on the inboard runways, regardless of weather. That usually happens 

around 8 am and noon. 
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Figure 4. Variance Decomposition for DFTI
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Figure 5. LAX Airport Configuration 
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The number of aircraft that can land during one hour is referred to as Airport Acceptance 

Rate (AAR), and it mostly depends on weather (and sometimes on departure demand 

too). From the Terminal Management Unit (Southern California TRACON) we learned 

that depending on the weather situation Airport Acceptance Rates for LAX are the 

following: 

• 84 for VFR (Visual Flight Rules) operations when all four runways are in use, 

• 72 for VFR operations when less than four runways are in use and no wind present, 

• 68 for IFR (Instrument Flight Rules) operations using two runways (lower visibility 

and/or high winds), sometimes with visual finals, 

• 62/60 for IFR operations when there is a low cloud ceiling present, 

• It can be even lower than that, depending on the weather situation. 

Delays occur whenever the demand is greater than the airport capacity. In the case of 

arrivals, delays happen whenever the demand is greater than the Airport Acceptance 

Rate. If the demand is greater than the capacity, aircraft have to wait somewhere until the 

airport is able to serve them. Delays can be imposed to the aircraft at the origin airport, 

en-route or in the terminal area (holding). As airlines usually schedule for fair weather 

any decrease in AAR caused by weather (and other factors) can lead to delays.  

Several weather factors influence operations in Terminal Area. In the following text we 

will focus on the following: 

• Winds, 

• Clouds, 

• Precipitation, 

• Haze. 

Winds. Due to winds over the year, arrivals at LAX use the west flow 90-95% of the 

time (Figure 6). Sometimes, AAR can decrease if the tail wind component is strong. 

When the tail wind component is strong, pilots cannot decrease their aircraft’s speed 



 

 

Figure 6. West  Flow at LAX 
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according to the approach procedure, so air traffic controllers have to separate them more 

than usual. AAR decreases with greater separation between aircraft.  

Operations change to east flow when the wind speed and angle do not allow for the west 

flow operations. During the day east flow is in effect until the winds change. During the 

night (midnight till 6.30 am) LAX is running operations in the east flow due to a noise 

abatement procedure. AAR rate goes down whenever the east flow is used. The fact that 

AAR decreases while utilizing east flow is not directly connected to the weather 

situation. Rather, the lower rates derive from the lack of familiarity of both pilots and air 

traffic controllers with the east flow procedures and the absence of high-speed runway 

exits for the east flow traffic (see Figure 5). 

Clouds. Operations at LAX are VFR if the cloud ceiling is higher than 5000 ft. VFR 

operations allow for use of inboard runways for arrivals. If the cloud ceiling goes bellow 

5000 or 4000 ft, operations are IFR, but some aircraft still can get permission for visual 

final approach. With cloud ceiling lower than 3000 or 2000 ft operations are IFR only. It 

is already described in the previous text how the VFR or IFR operations influence Airport 

Acceptance Rates. 

From Terminal Management Unit we found out that sometimes AAR decreases when the 

cloud ceiling is between 8000-12000 ft west of the airport, along the approach routes. We 

do not see direct connection between the lowering of the AARs and clouds in that area. It 

may be that it influences the AAR when the demand is high and when controllers try to 

sequence the aircraft further away from the airport. 

Precipitation. Precipitation slows down the air traffic as well. The visibility is lower 

when precipitation is present and that slows down the pilots. The runway occupancy time 

increases with precipitation. When runways are wet it takes longer for aircraft to slow 

down, so the occupancy time increases. Both visibility and runway wetness lowers the 

AAR. 

Haze. Haze is a weather phenomenon that is specific for LAX basin. The haze is elevated 

polluted air. Sometimes, even when there are no clouds, the haze layer forces controllers 

to use IFR procedures.  
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4.2 Normalization Procedure 

In this part, we develop the variables that will be used to normalize for weather at LAX. 

As revealed above weather can affect NAS performance in general, and our DFTI metric 

in particular, in a variety of ways. Performance may therefore be related to a wide range 

of meteorological parameters. In analyzing these relationships on a daily level, we must 

also consider the fact that performance effects are interrelated with the daily patterns of 

demand, as we already showed in previous text. Our task is to capture the effects of 

weather in a manner consistent with these complexities, and yet to do so in a manner that 

is economical enough to allow for meaningful statistical analysis.  

To meet these aims we used principal components analysis, a type of factor analysis, to 

develop a set of daily metrics that characterize weather conditions at LAX. The data 

underlying these metrics was obtained from the CODAS weather database, which 

provides hourly data on temperature, wind, cloud ceiling, visibility, precipitation, and 

mode of operation (VFR versus IFR). For the factor analysis, we used the CODAS data 

to develop summary information for four daily periods: early morning (0-600), morning 

(600-1200), afternoon (1200-1800), and evening (1800-2400). For each of these periods, 

we calculated eight measures. These included: 

• Average temperature 

• Average visibility 

• Average wind speed 

• Total precipitation 

• Proportion of time with VFR operation 

• Proportion of time cloud ceiling was 3000 ft or under (“Low” cloud ceiling) 

• Proportion of time cloud ceiling was over 3000 and under 8000 ft (“Medium” 

cloud ceiling) 

• Proportion of time could ceiling was over 8000 and under 10000 ft (“High” cloud 

ceiling) 

We had four daily observations for each of these eight variables, or a total of 32 variables 

per day. In the subsequent analysis, each variable is converted into a standardized 

variable (zero mean, unit variance). The factor analysis procedure was then used to 



 

 18 

collapse the 32 standardized variables to a smaller number of factors, which are also 

constructed so that they have zero mean and unit variance. Each of the factors is a linear 

combination of the original 32 variables. The factors are constructed so that the first 

accounts for the largest possible amount of the variation in the 32 variables, the second 

accounts for the largest possible amount of variation unaccounted for by the first factor, 

and so on. While 32 factors are needed to fully capture the variation in 32 variables, a 

much smaller number of factors will generally account for most of the variation. This is 

particularly true when the variables are highly intercorrelated, as they are in this case. 

Figure 7 summarizes results of the factor analysis. The first factor (Number 1) accounts 

for over than 20 percent of the variation in the original 32 variables, and over 50 percent 

of the variation is explained by four factors. Nine of the 32 factors explain more than 

1/32 of the variation. This is a useful threshold for determining how many factors to 

retain, since a “factor” constructed from just one of the 32 variables would do just this 

well if the variables were completely uncorrelated. Thus, on the basis of this criterion, we 

retained nine variables for subsequent analysis. Together, these nine variables account for 

73 percent of the variation in the weather data. Figure 8 shows the proportion of variation 

of each weather variable that is accounted for by the nine factors. The factors capture the 

majority of the variation for virtually every factor, and over 70 percent of the variation 

for most. Visibility, VFR, and low ceiling variables are particularly well captured, while 

for precipitation, winds, and medium/high ceilings the factors do somewhat less well. 

Table 2 shows the correlations between the nine factors and the 32 underlying weather 

variables. The first factor is highly correlated with visibility and VFR conditions, and 

negatively correlated with a low cloud ceiling. The second factor has high negative 

correlations with temperature, and moderate positive correlations with morning winds, 

medium cloud ceiling, and high ceilings. High wind and temperature conditions 

throughout the day are associated with the third factor. Table 3 provides summary of 

qualitative interpretations of each of the nine factors. 

In considering these factors, it is important to recognize that, by construction, they are 

mutually orthogonal. That is, any factor is uncorrelated with any other factor. Thus, for 
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Figure 7. Variation Explained by LAX Weather Factors
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Figure 8. Proportion of Weather Variables Explained by Factors
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Table 2. Correlations Between the Factors and Weather Variables 

 

  FACTOR 
Variable Day Time 1 2 3 4 5 6 7 8 9 
Wind Early am 0.12 0.48 0.31 -0.27 0.22 -0.00 -0.05 0.36 -0.02 
 Late am 0.08 0.40 0.53 -0.20 0.35 0.05 0.01 0.06 -0.22 
 Afternoon 0.14 -0.02 0.50 -0.37 0.47 -0.04 0.14 -0.19 -0.28 
 Evening 0.08 0.28 0.52 -0.25 0.38 -0.10 0.07 -0.25 -0.08 
Temperature Early am -0.26 -0.61 0.65 0.21 -0.07 0.09 -0.00 -0.00 -0.06 
 Late am -0.12 -0.76 0.53 0.26 -0.05 0.08 -0.00 -0.01 -0.08 
 Afternoon 0.02 -0.83 0.43 0.22 -0.05 0.08 0.00 0.04 0.01 
 Evening -0.08 -0.78 0.49 0.24 -0.08 0.12 0.02 0.00 0.03 
Visual 
Operations Early am 0.74 -0.04 -0.27 0.28 0.234 0.06 -0.24 -0.02 -0.05 
 Late am 0.78 -0.18 -0.18 0.19 0.13 -0.09 -0.12 0.09 -0.24 
 Afternoon 0.72 -0.25 -0.04 -0.14 -0.18 0.06 0.40 0.06 -0.10 
 Evening 0.76 -0.01 -0.10 -0.08 -0.07 0.39 0.19 -0.19 0.04 
Visibility Early am 0.70 0.01 0.27 0.05 0.10 -0.23 -0.37 0.02 0.26 
 Late am 0.76 -0.01 0.27 -0.02 0.05 -0.30 -0.21 0.15 0.22 
 Afternoon 0.73 -0.08 0.32 -0.19 -0.13 -0.19 0.02 0.12 0.29 
 Evening 0.68 0.02 0.30 -0.26 -0.10 0.02 -0.02 -0.05 0.41 
Precipitation Early am -0.01 0.28 0.15 -0.11 0.02 0.30 0.27 0.51 -0.00 
 Late am -0.06 0.40 0.18 0.10 0.16 0.62 -0.11 0.00 0.18 
 Afternoon -0.08 0.40 0.16 0.36 0.27 0.46 -0.16 -0.10 0.19 
 Evening 0.01 0.35 0.10 0.55 0.12 -0.08 0.17 0.12 0.05 
Low Ceiling Early am -0.74 -0.01 0.26 -0.28 -0.17 -0.11 0.25 0.05 0.15 
 Late am -0.77 0.12 0.16 -0.19 -0.02 0.05 0.13 -0.06 0.36 
 Afternoon -0.72 0.19 0.05 0.12 0.22 -0.10 -0.40 -0.08 0.12 
 Evening -0.76 -0.04 0.07 0.07 0.13 -0.39 -0.17 0.16 -0.04 
Medium 
Ceiling Early am 0.13 0.48 0.32 -0.01 -0.33 0.05 -0.20 -0.08 -0.31 
 Late am 0.08 0.47 0.39 0.00 -0.50 -0.04 -0.21 -0.09 -0.30 
 Afternoon 0.00 0.57 0.23 0.13 -0.51 0.04 -0.07 0.03 -0.04 
 Evening 0.01 0.52 0.27 0.18 -0.39 -0.00 -0.08 0.14 0.04 
High Ceiling Early am 0.06 0.38 0.12 0.50 0.21 -0.09 0.18 0.00 -0.02 
 Late am 0.10 0.32 0.10 0.39 0.12 -0.21 0.43 0.17 -0.04 
 Afternoon 0.15 0.37 0.11 0.37 0.00 -0.30 0.40 -0.22 0.16 
 Evening 0.11 0.30 0.11 0.05 -0.12 -0.10 0.14 -0.57 0.07 
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Table 3. LAX Weather Factor Interpretations, Principal Components 

 
FACTOR Interpretation 

1 High visibility and absence of low ceiling throughout day. 
2 Cold temperatures, precipitation, and medium-to-high cloud 

ceiling throughout day. High winds except in afternoon. 
3 High winds and temperatures throughout day. 
4 High cloud ceiling until evening, afternoon precipitation, low 

winds and warm temperatures throughout day. 
5 High winds and absence of a medium cloud ceiling throughout 

day. 
6 Daytime precipitation, low visibility except in evening, VFR 

operations in evening. 
7 High ceiling during daytime. Low visibility during early part 

of day. VFR operations during afternoon. 
8 Precipitation and high winds during early part of day, lack of a 

high cloud ceiling during latter part of day. 
9 High visibility, particularly in the evening. IFR operations and 

low cloud ceiling in late morning. Low winds during daytime 
hours. 
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example, a day with a high score for Factor 1 may also have a high score on Factor 6. 

Since, during the daytime, these factors are, respectively, positively and negatively 

correlated with visibility, a day with such a set of factor scores would (subject to its 

scores on the other factors) be expected to have average visibility. 

To facilitate interpretation of the weather factors, we rotated them. The objective of 

factor rotation is to create factors that are highly correlated (either positively or 

negatively) with some variables while having low correlation with others. Various 

rotation procedures have been developed; for the weather data we chose the promax 

procedure. This is an oblique rotation method. Unlike the original factors, those 

generated by oblique rotations may be correlated with each other. The correlation will be 

limited since the rotated factors must span the same variable space as the original ones. 

Table 4 shows the correlations between the rotated factors and the original 32 weather 

variables. As intended, the new factors tend to have very high correlations with certain 

variables and low correlations with others. For example, Factor 1 corresponds essentially 

to high temperature. Table 5 provides qualitative interpretations of all nine factors. The 

relative brevity of the descriptions is an indicator of the value of factor rotation. 

5. Demand Normalization Variables 

As in previous studies, (Hansen and Wei, Multivariate Analysis of the Impacts of NAS 

Investments: A Case Study of A Major Capacity Expansion at Dallas-Fort Worth Airport) 

we use the concept of hypothetical deterministic delay (HDD) to capture the intensity of 

demand at LAX. The HDD concept is illustrated using a representative daily schedule 

into LAX, as depicted in the queuing diagram in Figure 9. The scheduled curve in this 

figure represents cumulative scheduled arrivals. It is derived from the CODAS daily 

schedule data, which records scheduled arrivals, based on the Official Airline Guide, for 

15-minute intervals. One can see that on the day depicted, 1175 arrivals were scheduled 

into LAX, with peak demand levels (shown as steep portions of the cumulative curve) in 

the late morning, mid-afternoon, and late evening. The curve as drawn continues into the 

next day, but only arrivals scheduled for the first day are considered, thus the curve 

becomes flat after midnight of the first day. 
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Table 4. Correlations Between the Rotated Factors and Original Weather Variables 
(Promax method) 

 
  FACTOR 
VARIABLE  1 2 3 4 5 6 7 8 9 
Wind Early am -0.32 -0.06 -0.02 0.31 0.34 0.51 0.18 0.22 0.48 
 Late am -0.12 -0.06 -0.03 0.20 0.34 0.76 0.21 0.26 0.26 
 Afternoon 0.14 0.00 0.11 0.17 -0.04 0.83 -0.04 -0.04 0.01 
 Evening -0.06 -0.12 -0.01 0.25 0.19 0.77 0.16 0.17 -0.08 
Temperature Early am 0.92 -0.21 -0.18 -0.06 -0.09 0.10 -0.14 -0.13 0.01 
 Late am 0.98 -0.03 -0.06 -0.02 -0.23 0.01 -0.19 -0.23 -0.04 
 Afternoon 0.95 0.08 0.07 0.08 -0.33 -0.08 -0.24 -0.29 -0.02 
 Evening 0.96 -0.03 0.00 0.02 -0.27 -0.06 -0.21 -0.22 -0.04 
Visual 
Operations Early am -0.13 0.87 0.40 0.41 -0.15 -0.08 0.08 0.09 -0.12 
 Late am 0.01 0.87 0.48 0.41 -0.12 -0.01 0.06 -0.22 -0.01 
 Afternoon 0.08 0.43 0.84 0.38 -0.10 0.02 -0.00 -0.36 0.06 
 Evening -0.12 0.49 0.85 0.40 -0.01 0.05 -0.03 0.14 -0.14 
Visibility Early am 0.02 0.55 0.26 0.85 0.11 0.20 0.08 0.02 -0.09 
 Late am 0.01 0.53 0.37 0.88 0.11 0.21 0.12 -0.14 0.04 
 Afternoon 0.07 0.32 0.56 0.86 0.11 0.20 0.04 -0.20 0.05 
 Evening -0.02 0.22 0.58 0.82 0.13 0.22 -0.03 0.05 -0.07 
Precipitation Early am -0.15 -0.18 0.14 0.00 0.20 0.15 0.20 0.20 0.62 
 Late am -0.18 -0.12 -0.01 -0.02 0.24 0.16 0.10 0.78 0.14 
 Afternoon -0.14 -0.01 -0.16 -0.03 0.19 0.12 0.28 0.80 -0.03 
 Evening -0.11 0.06 -0.12 0.02 0.20 0.00 0.67 0.27 0.08 
Low Ceiling Early am 0.15 -0.87 -0.42 -0.36 0.05 0.06 -0.07 -0.11 0.13 
 Late am 0.02 -0.86 -0.50 -0.36 -0.01 0.01 -0.04 0.21 0.01 
 Afternoon -0.04 -0.42 -0.85 -0.36 0.03 0.00 -0.02 0.32 -0.07 
 Evening 0.14 -0.47 -0.84 -0.42 -0.07 -0.04 0.01 -0.16 0.12 
Medium 
Ceiling Early am -0.20 0.02 0.05 0.15 0.74 0.28 0.14 0.20 0.01 
 Late am -0.14 -0.08 0.02 0.16 0.86 0.22 0.14 0.12 -0.02 
 Afternoon -0.27 -0.19 0.01 0.11 0.78 -0.00 0.31 0.27 0.06 
 Evening -0.22 -0.15 -0.05 0.18 0.69 0.02 0.36 0.27 0.14 
High Ceiling Early am -0.15 0.11 -0.08 0.03 0.19 0.13 0.66 0.28 -0.01 
 Late am -0.14 0.03 0.06 0.05 0.16 0.11 0.71 0.03 0.15 
 Afternoon -0.20 -0.03 0.12 0.18 0.20 0.09 0.71 0.08 -0.26 
 Evening -0.20 -0.09 0.16 0.12 0.26 0.17 0.24 0.16 -0.53 
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Table 5. LAX Weather Factor Interpretations, Rotated Factors 
 

FACTOR Interpretation 
1 Warm temperatures throughout day. 
2  VFR operations and absence of low cloud ceiling in the 

morning. 
3 VFR operations and absence of low cloud ceiling in the 

afternoon. 
4 High visibility throughout day. 
5 Medium cloud ceiling throughout day. 
6 High winds throughout day. 
7 High  cloud ceiling throughout day; evening precipitation. 
8 Precipitation in late morning and afternoon. 
9 Precipitation in early morning. 
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Figure 9. Hypothetical Queuing Diagram for LAX
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The other curves in Figure 9 are hypothetical cumulative curves for completed arrivals 

assuming capacity levels of 40, 60, and 80 arrivals per hour. The curves are constructed 

so that their slope never exceeds the associated capacity level, and so their value never 

exceeds the curve for scheduled arrivals. When a given completed arrival curve overlaps 

the scheduled curve, the airport is able to handle demand without delaying planes, and 

throughput is demand-limited. When a completed arrival curve deviates from the 

scheduled curve, it is because the capacity does not allow the airport to keep up with 

demand. Thus, in these situations, the throughput rate is capacity limited. One can see 

that if capacity is 80, the airport can almost always keep up with demand, with demand 

exceeding capacity slightly only for a brief time around 10 am. In the other cases, the 

demand exceeds capacity for most of the day. For a capacity of 60, there is a queue 

beginning around 10 am that does not clear until midnight, and when capacity is 40, the 

queue grows steadily throughout the day, and does not clear until well into the next day. 

The area between the scheduled curve and a given completed curve represents the total 

time difference between when arrivals are scheduled to occur and when they can occur, 

given the capacity assumed in the completed curve. In short, this area measures 

cumulative delay from serving a given demand with a given capacity. When divided by 

the number of arrivals, this becomes an average delay. We refer to this average as the 

hypothetical deterministic delay (HDD), and employ it as a parameter characterizing the 

“stress” that a given scheduled arrival curve places on the airport. By using different 

assumed capacities, a family of such parameters can be constructed. Together, this family 

of parameters provides a thorough characterization of the demand placed on the airport 

by the arrival schedule. When capacities well below demand levels are used, the HDD 

increases linearly with the number of flights. HDD’s for higher capacities capture the 

incidence, intensity, and duration of rush periods and are only weakly correlated with 

overall demand levels. 

Figure 10 plots trends in values of three HDD parameters as well as total scheduled 

arrivals since January of 1997. The values plotted are seven day moving averages, 

normalized so that the average for the first week of January 1997 is 1.0. Total scheduled 

arrivals have changed relatively little—it is almost always within 10 percent of the 
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Figure 10. Trends in Values of HDD Parameters and Scheduled Arrivals since 1997.
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baseline value. The HDD parameters vary more dramatically, with the magnitude of the 

fluctuations correlated with the assumed HDD capacity. For example, in the summer of 

1997, the HDD50, HDD70, and HDD90 values were respectively 4, 1.7, and 1.2 times 

their January values. Since the summer of 1997, the HDD’s have generally declined, with 

HDD70 and HDD90 less than half their baseline values for most of the period since the 

beginning of 1999. This implies that while the total scheduled operations at LAX have 

remained quite steady, the degree of peaking in the schedule has declined. 

To help visualize the variation in scheduled demand implied by these trends, cumulative 

scheduled arrivals for three days - June 24, 1997, January 17, 1999, and June 29, 1999 -

are plotted in Figure 11. The first date was a high demand day with HDD values and total 

scheduled flights well above baseline. The second was a low demand day with regard to 

both HDD and total flights. The third day had a fairly large number of flights, but a 

relatively smoothed out schedule so that HDD values at higher capacities are quite low. 

(Table 6 compares the various HDD values for the three days.) Comparing the first and 

second plot it is clear that the onset of significant flight activity occurs about 30 minutes 

earlier on the high demand day, and the late morning rush, late afternoon, and late 

evening rush periods on this day are far more intense. The cumulative difference in 

flights is about 20 percent, but because of the differences in rush hour intensities, HDD 

differences at higher capacity levels are much more pronounced. Comparing the June 

days in 1997 and 1999, we see that total flights are nearly identical until the late evening, 

when there is a considerably stronger arrival rush for the 1997 day. But even during the 

earlier parts of the day, there is considerably stronger peaking in 1997, particularly in the 

late morning, which again drives up the HDD values. 
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Figure 11. Cumulative Scheduled Arrivals
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Table 6. Comparison of HDD Values for Three Representative Days 

 
DAY HDD50 HDD60 HDD70 HDD80 HDD90 HDD100 HDD110 HDD120 
6/24/97 124.55 44.62 6.86 2.64 1.07 0.40 0.16 0.09 
1/17/99 52.88 6.96 0.87 0.06 0.00 0.00 0.00 0.00 
6/29/99 111.90 28.71 3.11 0.85 0.29 0.11 0.04 0.00 
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Because the capacity assumed in computing the HDD parameter can take on any value, it 

is natural to ask how many HDD parameters are required to satisfactorily capture daily 

variation in demand at LAX. As with weather, we used factor analysis to answer this 

question. In particular, we computed the HDD for capacity values ranging from 10 to 

120, and then applied factor analysis to these 12 variables. The results are summarized in 

Table 7. Just two factors capture 93 percent of the variation in the 12 variables. Without 

rotation, one of the factors is positively correlated with all 12 variables. This can be 

interpreted as a measure of overall demand. The second factor is positively correlated 

with high capacity HDD’s and negatively correlated with low capacity HDD’s. This is 

known as a “contrast factor” and captures situations when high capacity HDD’s are large 

relative to low capacity HDD’s. When the factors are rotated (in this case, using the 

varimax procedure, which preserves orthogonality), the first factor is highly correlated 

with low capacity HDD’s, and the second factor with high capacity HDD’s. 
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Table 7. Initial and Rotated Demand Factors Based on HDD 
 

 Initial Factors Rotated Factors 
 FACTOR1 FACTOR2 FACTOR1 FACTOR2 
HDD10 0.86 -0.46 0.95 0.22 
HDD20 0.89 -0.42 0.95 0.27 
HDD30 0.88 -0.46 0.96 0.24 
HDD40 0.87 -0.46 0.96 0.23 
HDD50 0.91 -0.37 0.93 0.32 
HDD60 0.92 -0.20 0.83 0.45 
HDD70 0.92 0.10 0.62 0.68 
HDD80 0.89 0.34 0.45 0.84 
HDD90 0.86 0.46 0.34 0.91 
HDD100 0.82 0.53 0.27 0.94 
HDD110 0.78 0.57 0.21 0.94 
HDD120 0.70 0.59 0.14 0.91 
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6. Origin Airport Delay Normalization 

The third and final normalization variable is delay at the origins of flights bound for 

LAX. Obviously, if an origin airport has severe congestion that is delaying outbound 

flights, arrivals from that origin into LAX are likely to be effected, even when conditions 

at LAX are ideal. We seek a daily-level variable that accounts for this effect. 

At first glance, the answer may seem obvious: since we compose our DFTI from flight 

level data that include the departure delay, why not simply subtract out the departure 

delay before computing the index? The reason this does not suffice is that some departure 

delays are the result of conditions at the destination rather than at the origin. This is 

obviously the case when a ground-hold program is put into effect. But there are a number 

of other mechanisms through which this linkage can occur as well. For example, the 

Southern California TRACON may issue a call for release (CFR) for an origin airport 

under which departure clearances for LAX-bound flights are issued only after 

consultation with the TRACON. It is also not unusual for dispatchers of individual 

airlines to hold flights based on their own assessments of conditions at the destination. In 

light of all this, it is clearly inappropriate to assume that LAX is “blameless” for 

departure delays at up-line points. 

Short of a case-by-case review, there is no foolproof way to apportion the responsibility 

for any given departure delay so that the LAX contribution can be removed. However, for 

normalization purposes, we propose an origin departure delay index analogous to the 

DFTI. For every airport included in the DFTI average (see Table 1) we compute, on a 

daily basis, the average departure delay for all flights not bound for the LAX area 

(including LAX itself and all airports within 200 miles of it). Then, we compute a 

weighted average across all the DFTI airports, using the same weights used in the DFTI 

itself. In effect, this average measures what the departure delay of an average flight to 

LAX would be if that flight was actually bound for another destination.  

Figure 12 plots the daily origin delay metric for LAX since beginning in January 1995. 

Under the best conditions, the metric is less than 5 minutes, and for the most part it 

remains under 15 minutes. On the worst days, it can spike as high as 30 or 40 minutes. 

These days are generally in the winter months, particularly January. As shown in Figure
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Figure 12. Origin Airport Delay Time Series for LAX
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13, which is a 30-day moving average of the same data, there is some evidence of an 

upward trend in metric beginning in January 1998. After this period, the average never 

dips below 7.5 minutes, a value undercut fairly often in the earlier period. 

7. Regression Modeling of DFTI at LAX 

As explained earlier, we used the weather and demand factors as explanatory variables to 

model the variation of the DFTI, and its components, for LAX. Equation (1) above is the 

general form of the model, but before estimation can proceed it is necessary to specify the 

model further. Our approach to specification is to begin with the linear form: 

 

tt
j

jtj
i

itit ODELDMDWXDFTI εθωα +⋅+⋅∂+⋅+= ∑∑   (3) 

where: 

WXit is the value of weather factor i on day t 

DMDjt is the value of demand factor j on day t 

ODELt is the measure of average departure delay for LAX origin airports 

εt is a stochastic error term 

The weather and demand factors are the rotated ones described earlier, and the average 

departure delay is the variable discussed in the previous section. 

We adopt equation (3) as our baseline form because it is relatively simple and easy to 

estimate, and because estimation results are easy to interpret. As the baseline, it serves as 

the “hub” for other models that differ from it in various ways. We also use this 

specification to model the DFTI components time-at-origin (TOA), airborne time (ABT), 

and taxi-in time (TIT). Use of the linear form means that the coefficients in (3) will be 

sums of the corresponding coefficients in the components models. We subsequently try a 

number of alternative model specifications. These include a quadratic response surface 

model, a non-linear model, models in which weather is represented by more or fewer 

factors, and finally a non-parametric model 
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Figure 13. Origin Airport Delay 30-Day Moving Average for LAX
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To complete specification of (3) it is necessary to make assumptions about the error term, 

εt. Early estimation results for LAX, as well as experience with similar models for other 

airports, reveal that the errors are heteroscedastic, with greater errors generally occurring 

on days when predicted DFTI values are high. The phenomenon is illustrated in Figure 

14, where the predicted values for DFTI are those obtained from an ordinary least squares 

(OLS) regression of (3). OLS estimation on heteroscedastic data yields estimates that are 

unbiased, but inefficient. Moreover, the standard errors on the coefficients are biased, 

making it difficult to judge their statistical significance. To remedy this problem, we ran a 

feasible generalized least squares (FGLS) procedure. Under FGLS, we employ a 

prediction of squared residual as a weight on each observation. We obtained the 

prediction by regressing the absolute value of the OLS residuals against the explanatory 

variables included in (3). This estimation procedure yields results that are unbiased and 

asymptotically efficient. 

The estimation data set includes daily observations from the beginning of 1997 - when 

CODAS became available - through May 2000. Table 8 contains the estimation results 

from the FGLS procedure. All but one coefficient estimate are significant at the 0.05 

level, and all but two at the 0.001 level. The adjusted R2 of 0.74 implies that the model 

explains about three quarters of the DFTI variation occurring in the data set. As just 

explained, the accuracy of the model predictions varies, but overall the standard error of a 

prediction is under 5 minutes. 

We now consider the performance effects of weather, demand, and origin airport delay as 

they are revealed in this model. From the coefficient on ODEL we learn that an additional 

minute in the expected origin departure delay adds about 1.1 minutes to the expected 

DFTI at LAX. This coefficient is certainly of reasonable magnitude—if the expected 

origin delay increases by a certain amount, one would expect the DFTI to follow suit. It is 

of some interest that that estimate is slightly, but statistically significantly, above 1. This 

suggests either that there is some correlation between the conditions that generate high 

average departure delays and other factors that cause DFTI to increase, or that the origin 

delays themselves cause increased delays of other kinds. For example, it may be that
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Figure 14. Observed and Predicted Values for DFTI
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Table 8. Estimation Results From the FGLS Procedure, DFTI Values 
 
Variable Description Estimate T - statistic P - value 
INTERCEPT Intercept 138.055 567.065 0.0001 
ODEL Origin airport departure delay 1.128 44.351 0.0001 
WX1 Warm daily temperatures -1.357 -12.101 0.0001 
WX2 VFR ops, no low cloud ceiling in the morning -0.988 -7.116 0.0001 
WX3 VFR ops, no low cloud ceiling in the afternoon -1.123 -7.583 0.0001 
WX4 High visibility throughout day -0.449 -3.575 0.0004 
WX5 Medium cloud ceiling throughout day 1.440 10.555 0.0001 
WX6 High winds throughout the day 0.512 4.531 0.0001 
WX7 High cloud ceiling throughout day 0.911 4.172 0.0001 
WX8 Precipitation in late morning and afternoon 1.871 8.324 0.0001 
WX9 Precipitation in early morning -0.379 -2.614 0.0091 
DMD1 Peak demand 0.075 0.725 0.4685 
DMD2 Base demand 0.440 4.574 0.0001 
ADJUSTED R2 0.743 
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departure delays disrupt normal demand patterns in the LAX terminal area and thus force 

additional metering and delays to LAX-bound flights. 

All of the weather factors are statistically significant at the 0.01 level or better. Four of 

them, Factors 5, 6, 7, and 8, are positively related to DFTI.  Since the factors are 

standardized (mean=0, standard deviation=1) variables, the coefficient on Factor 8 

implies that a 1 standard deviation increase in this variable causes DFTI to increase about 

1.9 minutes. Factor 8, midday precipitation, has the strongest effect. In addition to 

causing wet runways and lower deceleration rates, precipitation is probably an indicator 

of adverse wind and visibility conditions that are not fully captured by the other weather 

factors. Factor 5, medium cloud ceiling, also has a strong positive effect on DFTI, with a 

coefficient of 1.4. The influence of this factor probably derives from its impact on the 

ability to use the in-board runways for arrivals. Factors 7 and 6, high cloud ceiling and 

high winds, have weaker effects, with coefficients of 0.9 and 0.5 respectively. The latter 

result is certainly to be expected. High winds may force the airport to operate in east flow 

or cause controllers to keep larger separations in order to assure that minimums are not 

violated. It is less obvious why high cloud ceiling would have an impact. Generally, we 

may presume that the presence of such a ceiling is associated with some visibility 

condition, such as haze, that is not reflected in the other weather variables. 

The other five weather factors are negatively associated with DFTI. Of these, the 

strongest impact belongs to Factor 1, temperature, for which an increase of 1 standard 

deviation causes a 1.4-minute DFTI reduction. The strength of this effect is somewhat 

puzzling. One possibility is that the high temperature is negatively correlated with fog. 

Another is that it is an indicator of clear weather conditions with the earth’s surface in 

full sunlight. Finally, the impacts may derive from effects of temperature on aerodynamic 

performance. For example, cruise speeds are positive related to temperature because of its 

effect on Mach number. The other factors with negative coefficients include Factor 3, 

VFR operations and absence of low cloud ceiling in afternoon, Factor 2, VFR operations 

and absence of cloud ceiling in morning, Factor 4, high visibility throughout day, and 

Factor 9, precipitation in early morning. Explanations for the first three of these are 

obvious. As to the last, it is hard to imagine how early morning precipitation could have 

any direct, negative effect on flight times. The most likely explanation is that this effect 
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occurs in the context of Factor 8, high daytime precipitation. If Factor 8 is high, then 

there is likely to be high precipitation in the period from 6 am to noon. If Factor 9 is also 

high, then this precipitation is more likely occurring during the early part of this period, 

when it has less impact on operations. 

Estimates for the demand factors are both positive, but only the base demand factor 

(correlated with low capacity HDDs) is statistically significant. This implies that the 

DFTI is affected by the volume of operations throughout the day, not just during periods 

of peak demand. This is not surprising in light of the rather even temporal pattern of 

demand at LAX. The impacts of the demand factors will be further elucidated when 

estimation results for the DFTI component models are discussed, in the next section. 

The above results reveal the sensitivity of the DFTI to the various explanatory variables. 

It is also interesting to compare the contributions of the explanators to DFTI variation. 

These contributions depend not just on sensitivity, but also on the degree of variation in 

the explanatory variable. To assess them we compute standardized regression 

coefficients, which relate the change in the dependent variable to the change in 

independent variables when both are measured in terms of standard deviations. That is, a 

standardized coefficient of 0.5 implies that a 1 standard deviation change in the 

independent variable leads to a 0.5 standard deviation change in the dependent variable. 

The standardized coefficients for the FGLS model are plotted in Figure 15. The 

standardized coefficient for origin airport delay is by far the largest, with a value over 

0.6. The magnitudes of the weather factor coefficients vary between 0.04 and 0.2. The 

demand variables have been the least important sources of DFTI variation over the 

analysis period. 

8. Regression Modeling of DFTI Components 

As discussed earlier, the DFTI can be decomposed into four components: departure 

delay, taxi-out time, airborne time, and taxi-in time. It is therefore possible to similarly 

decompose the regression results obtained above. In other words, a regression coefficient 

in the DFTI model is the sum of regression coefficients for identically specified models
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Figure 15. Standardized Coefficients for the FGLS Model
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of the DFTI components. By estimating the component models, we obtain additional 

insight concerning how the various explanatory variables influence performance.  

Table 9 summarizes the regression results for the DFTI components. The three 

components considered are time at origin (departure delay plus taxi-out time), airborne 

time, and taxi-in time. The models were estimated using the weights used in the total 

DFTI model. This may not provide the most efficient estimates, since the different 

components may have different patterns of heteroscedasticity, but it preserves the identity 

between the DFTI regression coefficients and the sums of the coefficients for the DFTI 

components. 

Not surprisingly, the time at origin component is most strongly influenced by average 

origin departure delay. In addition, seven of the nine weather factors are significant at the 

5 percent level - five of these at the 1 percent level. Factors 8 and 5, precipitation and 

medium cloud cover, are the most important positive correlates with time at origin. 

Factors 2 and 3, morning and afternoon VFR conditions and absence of low cloud cover, 

are the factors that decrease time at origin. It should be emphasized that these weather 

conditions pertain to LAX, not the origin airport. Presumably, air traffic management 

procedures create the linkage between LAX weather and time at origin, through ground 

holds, ground stops, and other actions. This is also the case for the demand variables, of 

which only the base demand is statistically significant.  

All nine weather factors have statistically significant impacts on airborne time. Factors 8 

and 5 again have the largest positive coefficients, with Factors 6 and 7, high cloud ceiling 

and high winds, close behind. High temperature has by far the largest negative 

coefficient. Since this factor does not affect time-at-origin, it appears that the mechanism 

involved is not one that is governed by air traffic management actions. One possibility is 

that surface temperatures at LAX correlate with the upper air temperatures, which in turn 

affect the speed of sound, and hence the airspeed equivalent of a given Mach number. 

Further research is required to determine whether this or some other mechanism is at 

work. The morning and afternoon visibility factors (2 and 3) and (again somewhat 

mysteriously) early morning precipitation are also associated with lower airborne times. 

Of the two demand factors, only the one associated with peak demand levels is  
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Table 9. Estimation Results From the FGLS Procedure, Values for DFTI Components 
 

 Time-at-origin Airborne time Taxi-in time 
Variable Estimate P - value Estimate P - value Estimate P - value 
INTERCEPT 14.588 0.0001 115.594 0.0001 7.874 0.0001 
ODEL 1.099 0.0001 -0.012 0.4621 0.041 0.0001 
WX1 -0.065 0.4011 -1.474 0.0001 0.182 0.0001 
WX2 -0.722 0.0001 -0.233 0.0100 -0.033 0.2290 
WX3 -0.669 0.0001 -0.348 0.0003 -0.105 0.0003 
WX4 -0.201 0.0198 -0.186 0.0232 -0.062 0.0125 
WX5 0.599 0.0001 0.846 0.0001 -0.005 0.8567 
WX6 0.154 0.0480 0.428 0.0001 -0.069 0.0021 
WX7 0.372 0.0132 0.503 0.0004 0.036 0.3995 
WX8 0.897 0.0001 0.796 0.0001 0.179 0.0001 
WX9 -0.060 0.5485 -0.316 0.0008 -0.003 0.9158 
DMD1 0.034 0.6366 0.234 0.0005 -0.193 0.0001 
DMD2 0.260 0.0001 0.060 0.3367 0.120 0.0001 
ADJUSTED R2 0.804 0.427 0.213 
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 significant. This contrasts with the result for DFTI as a whole. As will be explained 

below, this is because the positive (and intuitively reasonable) effect of the peak demand 

on airborne time is offset by its negative impact on taxi-in time. Finally, and as expected, 

average origin departure delay is found to have essentially no effect on airborne time. 

The third component, taxi-in time, does not vary much with the weather factors, although 

some effects are statistically significant. The temperature and precipitation factors (1 and 

8) are both positively related to taxi-in time.  While the latter effect is understandable, the 

former is more curious. One possible interpretation is that high temperatures are 

associated with high landing speeds (since aircraft stall speeds depend on air density), 

which in turn increase runway occupancy times.  The good visibility factors (2 and 3) 

also are negatively related to taxi-in times, as is the high winds factor (6). A possible 

explanation of the latter is that with high winds, aircraft must land at lower ground speeds 

and thus exit the runways sooner. Among the demand factors, peak demand is negatively 

associated with taxi-in times while for base demand the association is positive. A 

plausible explanation for the former is that, when peak demands are high, there is more 

use of the in-board runways for arrivals. In-board arrivals have shorter taxi times because 

the distances to the terminal are shorter and no runway crossings are required. Finally, 

delay at the origin airport has a small but statistically significant effect on taxi-in time. 

While there is no obvious way to account for this result, it may be related to the reasons, 

discussed above, why the coefficient on origin delay in the overall DFTI model is slightly 

greater than 1. Whatever the uncertainties in explaining the results of the taxi-in time 

model are, the magnitudes of the coefficients are all rather small, so the phenomena at 

work exert little influence on overall flight times and arrival delays. 

9. Alternative Model Specifications 

The model presented above is the simplest and most straightforward version that 

incorporates the effects of the nine weather factors, two demand factors, and origin 

airport delay. By the same token, the baseline model is highly restrictive and embodies 

strong assumptions about the underlying performance relationships. Moreover, the choice 

of nine weather factors in the baseline model is somewhat arbitrary, suggesting that 
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alternatives should be tried. In this section we investigate other model specifications that 

either have different mathematical forms, or include different numbers of weather factors  

9.1 A Response Surface Model 

This model extends the previous model by estimating a quadratic “response surface” for 

DFTI. The form of the model is: 

 

t
i ij

jiij
i

iti
i

itit XXXXDFTI ελγβα ++++= ∑∑∑∑
>

2  (4) 

where the X variables include all the independent variables in equation (3). One can see 

that the previous model is a restricted version of this one, with the iγ  and ijλ  forced to 

zero. By removing these restrictions, we can investigate non-linear effects on the 

individual explanatory variables as well as interaction effects between variables. The 

“price” of these capabilities is a drastically increased set of parameters, from 13 to 91. 

The estimation procedure again involved FGLS in order to account for heteroscedasticity 

in the error term. Estimation results from the procedure appear in Table 10. Estimates for 

the first order terms are somewhat different than those from the baseline model, although 

the signs are maintained except for the peak demand factor, which is now negative and 

significant. Five of the 12 quadratic terms (whose estimates appear on the diagonal of 

Table 10) are significant at the 0.05 level (bold numbers). These include the weather 

factors for medium cloud ceiling, high winds, all-day precipitation, and early morning 

precipitation (Factors 5,6,8, and 9 respectively) and the peak demand factor. When 

interpreting the signs of these terms, it is important to remember that all variables are 

measured as deviations from their means so the effect of a quadratic term is the same 

whether the variable is a certain amount above or below average. For example, in the 

case of Factor 5, the positive linear coefficient combined with the negative quadratic 

coefficient implies that DFTI increases with this factor when it is at its mean value, but 

that the rate of increase diminishes as Factor 5 increases from below average to above 

average. 
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Of the 66 interaction terms, whose estimates appear on the diagonal in Table 10, 15 are 

significant at the 0.05 level. Two of the stronger interactions are those for Factor 8 (all-

day precipitation) combined with Factor 5 (medium cloud ceiling leading to evening 

precipitation) and Factor 6 (high winds). Both of these interactions are positive, meaning 

that (for example) all-day precipitation combined with high winds has a greater impact on 

DFTI than either of these conditions separately. Presumably, these interactions capture 

the difference between a steady rain, or a clear blustery day, and a major storm. 

The interactions involving the base demand variable are also of interest. They reveal that 

when there is high demand DFTI is more sensitive to visibility (as captured by Factors 2 

and 3) and to a high cloud ceiling leading to evening precipitation (Factor 7). Since each 

of these weather conditions likely to affect airport capacity, it is not surprising that their 

impacts are strongest when demand is greatest. 

Given the large number of insignificant quadratic and interaction terms, it is natural to 

ask whether the added predictive power of the response surface model can justify its 

greater complexity. To quantify the statistical improvement, one can compare the 

coefficient of determination (R2) for the linear model, to one with both linear and 

quadratic terms, and to the full model that also includes the interaction terms. Adding the 

12 quadratic terms causes the R2 to increase by about 0.01 from 0.76 to 0.77, while the 66 

interaction terms increase the R2 to about 0.82. This may seem like a modest return. 

Statistically, however, it is significant. F-tests of the hypotheses that all the quadratic 

terms are zero and that all of the interaction terms are zero reveal that both must be 

rejected even at a 0.0001 level. Intuitively, it should not be surprising that the restrictions 

of the simple linear model are not born out by empirical observation. 
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Table 10. Estimation Results for the Response Surface Model 
 

                                                            Second Order 
   FACTOR    

First Order ODEL WX1 WX2 WX3 WX4 WX5 WX6 WX7 WX8 WX9 DMD1 DMD2 

ODEL 1.161 -0.006 -0.001 0.021 0.013 0.020 0.104 0.017 -0.032 0.243 -0.003 -0.078 0.003 
WX1 -1.639  -0.186 0.442 0.309 0.439 0.016 -0.278 0.287 -0.241 0.103 -0.285 0.210 
WX2 -1.250   -0.199 0.078 0.244 -0.055 -0.106 -0.570 -0.103 -0.488 0.044 -0.468 
WX3 -1.005    0.140 -0.056 0.255 -0.264 -0.296 -0.172 -0.128 0.278 -0.340 
WX4 -0.061     0.031 -0.036 0.402 0.187 -0.517 0.049 -0.176 -0.085 
WX5 2.464      -0.432 -0.125 0.016 0.717 0.212 0.321 0.221 
WX6 0.594       -0.160 -0.040 1.050 0.140 -0.060 -0.066 
WX7 0.886        0.057 -0.161 0.524 -0.455 0.591 
WX8 1.011         -0.346 -0.027 -0.062 -0.052 
WX9 -0.987          -0.131 0.221 -0.185 
DMD1 -0.762           0.293 -0.077 
DMD2 0.782            -0.022 
ADJUSTED R2 0.820 

 
 
 

Bold numbers are significant at 0.05 percent level. 
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9.2 A Non-linear Model 

Both the baseline and the response surface models are linear in parameters. Although (as 

the latter model illustrates) such models can be used to investigate non-linear effects, it is 

also useful to try functional forms that require non-linear estimation. An example of such 

a form is: 

t
i

ititt XODELDFTI εγλβα ++⋅+= ∑ )exp(  (5) 

In this equation tODEL⋅+ βα  is the minimum value for DFTI given the conditions at the 

origin airport. The exponential term is additional flight time resulting from delays. Here, 

we assume that this extra time is an exponential function of the various independent 

variables (including ODEL) specified in equation (3). This expression is non-linear in the 

s'γ , and therefore cannot be estimated using linear regression. Rather, non-linear least 

squares must be used. 

Initial estimation results revealed that this model, like the previous ones, is subject to 

heteroscedasticity in the error terms. The approach taken for overcoming this problem is 

similar to that for the previous models. We estimated the model first using non-linear 

least squares, then regressed the absolute values of the residuals against the independent 

variables, and finally estimated a transformed version of the original model in which both 

sides are divided by the expected error. 

Estimation results appear in Table 11. The minimum DFTI in the absence of delay at the 

origin airport and ideal conditions at LAX is about 128 minutes. The estimated value of β 

is approximately 1. All of the weather factors as well as the base demand factor are 

statistically significant, and their signs are consistent with those obtained from the 

baseline model. Their relative importance, however, is somewhat different. Factor 1, 

temperature, has the largest negative coefficient, while Factor 5, medium cloud ceiling, 

has the largest positive one. 

Again, a natural question is whether the non-linear model performs better than the 

baseline linear model. Comparing the non-linear model with a linear one having the same 

explanatory variables, we find that the former has slightly greater explanatory power,
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Table 11. Estimation Results for Non-Linear Model 

 

 
Parameter Description Estimate 

Asymptotic Standard 
Error 

α Intercept 128.086 1.824 Linear 
variables β Origin delay (ODEL) 

coefficient 0.958 0.006 

λ Exponential coefficient 9.323 1.944 
γ1 Weather factor 1 coefficient -0.146 0.034 
γ2 Weather factor 2 coefficient -0.099 0.023 
γ3 Weather factor 3 coefficient -0.094 0.020 
γ4 Weather factor 4 coefficient -0.048 0.014 
γ5 Weather factor 5 coefficient 0.118 0.024 
γ6 Weather factor 6 coefficient 0.056 0.015 
γ7 Weather factor 7 coefficient 0.054 0.014 
γ8 Weather factor 8 coefficient 0.062 0.008 
γ9 Weather factor 9 coefficient -0.020 0.009 

γ10 
Base demand factor 
coefficient 0.058 0.016 

Exponential 
variables 

γ11 ODEL coefficient 0.016 0.093 
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even when we take into account the fact that it has two more coefficients. The 

specification of the non-linear model is also somewhat more intuitive, since it features a 

base flight time component combined with a delay component that is always positive. 

These advantages must be weighed against the greater challenges of non-linear 

estimation, and the less desirable statistical properties of non-linear estimators.  

9.3 Models With Different Numbers of Weather Factors 

The baseline model contains nine weather factors, as explained above. This choice for the 

number of factors was based on the principal that each factor should explain as much 

variation in the 32 weather variables as a single one of these variables would if the 

variables were mutually orthogonal. While this is a widely used criterion, it has no real 

theoretical justification. It is therefore interesting to investigate how changing the number 

of factors affects the performance and estimation results of the baseline model. 

To explore this, we repeated the factor extraction, factor rotation, and model estimation 

procedures employed for the baseline model, except that we specified a priori the number 

of factors that would be extracted. Models with 3, 6 and 12 weather factors were 

estimated. As shown in Figure 5, they respectively account for 46, 62, and 81 percent of 

the variation in the original 32-variable data set. Interpretations for the factors, after an 

oblique promax rotation, are shown in Table 12. 

Regression results for the 3, 6, and 12-factor DFTI models appear in Table 13. There are 

two main findings, which at first seem contradictory. First, the performance of the models 

is roughly the same. While increasing the number of weather factors (beyond three) 

certainly provides a more complete depiction of the weather at LAX on a particular day, 

this increased fidelity does not contribute to our ability to explain day-to-day variation in 

DFTI. Second, the factors are almost all highly significant, even in the case of the 12-

factor model. In other words, when we use a highly detailed depiction of weather each 

“detail” (with one exception in the 12-factor model) has a significant effect on DFTI. 

How can these findings be reconciled? The key point is that the factors in the 3-factor 

model are, to a good approximation, aggregates of the factors of the other models. Insofar 

as these factors being aggregated have about the same effect on DFTI, there is no loss in  
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Table 12. Interpretation of the Factors, After an Oblique Promax Rotation 

 
FACTOR  Three Factor Model Six Factor Model Twelve Factor Model 

1 High visibility and 
absence of low cloud 
ceiling. 

High visibility and 
absence of low cloud 
ceiling. 

High temperature. 

2 High winds, precipitation, 
and medium/high cloud 
ceiling. 

High temperature. Morning visibility. 

3 High temperature. Medium cloud ceiling. All-day visibility. 
4  High winds and 

visibility. 
High winds. 

5  High cloud ceiling in 
day with evening 
precipitation. 

Low cloud ceiling and 
visibility. 

6  Daytime precipitation. High cloud ceiling in 
day with evening 
precipitation. 

7   Absence of low cloud 
cover and evening 
visibility. 

8   High morning winds 
and medium cloud 
ceiling in afternoon 
and evening. 

9   Medium morning 
cloud ceiling. 

10   Daytime precipitation. 
11   Early morning 

precipitation and high 
winds. 

12   High cloud ceiling 
late in day. 
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model fit from the aggregation. Inspection of the estimation results for the 6- and 12-

factor models in Table 13 reveals coefficient estimates for many of the factors are indeed 

approximately equal. 

Examining the estimation results for the 3-factor model, we find that the estimates on 

origin airport delay, peak demand, and base demand are much the same as in the other 

models. Of the weather factors, the coefficients on the high visibility and high 

temperature factors are negative, while that on the winds/precipitation factor is strongly 

positive. All three estimates have low standard errors and are highly significant. 

9.4 Models With Non-Parametric Weather Effects 

All of the models treated so far have assumed that weather effects can be decomposed 

into the effects of a few continuous variables derived from various meteorological 

parameters. An alternative approach is to posit that there are a few discrete categories of 

days, and that DFTI relationships should be developed separately for each day category. 

Formally, this implies that the DFTI should be modeled as )()( ttdt XfDFTI
!

= where d(t) 

is a discrete-valued function indicating the category to which day t belongs. Furthermore, 

we assume that )()( tXgtd
!

= , i.e. that the day category is a function of the X variables. 

Given the last assumption, the models presented here, explain performance in terms of 

the same weather, demand, and origin airport delay variables employed in the earlier 

models. Econometrically, however, the forms presented here are more flexible because 

they permit variation in DFTI to be studied without imposing an analytic function on the 

data. To achieve this flexibility, however, one must lump days with similar, but 

nonetheless somewhat different, conditions and treat them as though they come from a 

single homogeneous category. 

The first order of business in order to develop these types of models is to identify day 

categories. We employed cluster analysis for this purpose. Cluster analysis treats a set of 

variables as a set of coordinates in an n-dimensional space, and then finds sets of 

observations that are nearby each other in this space. Numerous clustering algorithms 

have been developed. We chose Ward’s minimum variance method. In this method, 

every observation is initially in its own cluster.  In each iteration, a pair of clusters is 
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Table 13. Regression Results for 3,6, and 12-factor DFTI Models 
 

 12-Factor Model 6-Factor Model 3-Factor Model 
Variable Estimate P - value Estimate P - value Estimate P - value 
INTERCEPT 137.999 0.0001 138.045 0.0001 138.167 0.0001 
ODEL 1.131 0.0001 1.127 0.0001 1.108 0.0001 
DMD1 0.159 0.0762 0.117 0.2023 0.139 0.0854 
DMD2 0.446 0.0001 0.429 0.0001 0.429 0.0001 
WX1 -1.390 0.0001 -1.909 0.0001 -1.960 0.0001 
WX2 -0.967 0.0001 -1.310 0.0001 2.843 0.0001 
WX3 -0.543 0.0001 1.853 0.0001 -1.363 0.0001 
WX4 0.621 0.0001 0.678 0.0001   
WX5 1.202 0.0001 1.408 0.0001   
WX6 0.860 0.0001 1.527 0.0001   
WX7 -0.004 0.9756     
WX8 1.350 0.0001     
WX9 0.841 0.0001     
WX10 1.344 0.0001     
WX11 -0.355 0.0469     
WX12 0.279 0.0249     
ADJUSTED R2 0.749 0.742 0.753 
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merged into one. The pair chosen is the one that would result in the least increase in 

within-cluster variance. The iteration continues until all observations have been joined 

into one cluster. By inspecting the changes the within cluster variance after each iteration, 

it is often possible to identify natural clusters for which within-cluster variance is small 

but will increase significantly if additional clustering is carried out. 

As coordinates, we used the weather factors based on both the 9-factor representation that 

is employed in the baseline model and the 3-factor representation that was discussed in 

the previous section. In addition to capturing most of the variation in the original weather 

data, these factors are standardized and thus form a coordinate system that is independent 

of the units in which the original data were measured. Demand and origin airport delay 

variables are not considered in the clustering process, but rather retained continuous 

variables. 

Figure 16 illustrates the clusters obtained from the 3-factor weather representation. Nine 

clusters were identified; each is plotted in Figure 16 with a different symbol. For 

example, the squares in Figure 16 are days with below-average temperatures and 

visibility, and somewhat below-average storm activity. The pyramids are days with 

average temperatures, visibility somewhat above average, and somewhat above-average 

storm activity. Table 14 summarizes the mean factor scores of each cluster.  

Two models were estimated using the clusters. In the first, and simpler, model, has the 

form: 

i
i

ititdt XDFTI εβαα +++= ∑)(0  

Where d(t) is the cluster to which day t belongs. In this model, the effect of the cluster is 

on the intercept term only. In the second model, the slope coefficients are also allowed to 

vary according to the cluster. That is: 

i
i

ittiditdt XDFTI εββαα ++++= ∑ )( )()(0  
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Figure 16. Illustration of Cluster Analysis for LAX 
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Table 14. Mean Factor Scores of Clusters for 3-factor Weather Representation 
 

FACTOR 1 FACTOR 2 FACTOR 3 CLUSTER NUMBER 
OF DAYS Visibility Storm Temperature 

1 176 0.762 -0.245 -0.963 
2 235 0.374 -0.467 0.027 
3 182 0.697 -0.521 1.189 
4 174 -0.874 -0.642 -0.980 
5 171 0.416 1.417 -0.540 
6 62 0.604 1.080 1.170 
7 158 -0.961 -0.148 0.956 
8 52 -2.486 -0.426 0.475 
9 31 -0.789 3.086 -1.250 
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Estimation again employed a FGLS procedure involving an initial estimation using OLS, 

a second step in which the OLS residual absolute values are regressed, and a final step in 

which observations are weighted according to the predicted residual. 

Estimation results for the 3-factor model appear in Table 15. Most of the cluster terms are 

highly significant. Days in Cluster 9 have, by far, the largest DFTI values, some 23 

minutes greater than Cluster 1, which serves as the reference in this analysis. From Table 

14 we see that cluster 9 features high storm activity and low visibility. The only cluster 

with DFTI’s significantly lower than Cluster 1 is Cluster 3, days with generally higher 

temperatures than those in Cluster 1. The non-cluster variables, base demand and origin 

airport delay, are highly significant as in the previous models. The R2 of 0.70 is less than 

what was obtained in the models presented in previous sections. 

When the second version of the model is used, significant interactions between the cluster 

and the origin airport delay and demand variables are found. For example, the effect of 

origin airport delay appears to be less for days in Cluster 7 (high temperature, low 

visibility). In contrast, DFTI appears to be more sensitive to demand in Cluster 8 days, 

which are characterized by very low visibility. Clusters 7 and 9, which also feature 

below-average visibility, exhibit a similar tendency. While clearly significant, the 

presence of these interactions does not greatly improve the fit of the model, the R2 of 0.71 

is only slightly higher than that obtained for the model without interactions. 

The same procedure was employed using the 9-factor characterization of weather. In this 

case, the cluster analysis identified 12 groupings, mean factor values of which are 

summarized in Table 16.  FGLS estimation results for using the simple fixed effect 

cluster model appear in Table 17. All the cluster fixed effects, which are again estimated 

using Cluster 1 as a baseline, are highly significant. The clusters with the highest fixed 

effects are 9, 10, 11, and 12. What these clusters have in common is a negative factor 

score on Factor 1, which corresponds to below-average temperatures. The only cluster 

effect that is negative is that for cluster 3, which is characterized by above average 

temperatures. This model has an adjusted R2 of 0.72, somewhat higher than the previous 

cluster models but still below what was obtained in the earlier models. 
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Table 15. Estimation Results for the 3-factor Model 
 

 MODEL 1 MODEL 2 
VARIABLE Estimate P-value Estimate P-value 
INTERCEPT 136.375 0.0001 136.516 0.0001 
CLUSTER 2 -0.234 0.5702 -0.416 0.6315 
CLUSTER 3 -2.954 0.0001 -3.199 0.0002 
CLUSTER 4 3.286 0.0001 4.186 0.0001 
CLUSTER 5 5.066 0.0001 2.745 0.0261 
CLUSTER 6 1.595 0.0051 0.803 0.5086 
CLUSTER 7 -0.012 0.9800 2.210 0.0449 
CLUSTER 8 4.455 0.0001 3.366 0.1434 
CLUSTER 9 22.923 0.0001 14.099 0.0159 
ODEL 1.151 0.0001 1.144 0.0001 
ODELCLUSTER 2   0.014 0.8541 
ODELCLUSTER 3   0.026 0.7405 
ODELCLUSTER 4   -0.086 0.3169 
ODELCLUSTER 5   0.214 0.0315 
ODELCLUSTER 6   0.080 0.4886 
ODELCLUSTER 7   -0.266 0.0079 
ODELCLUSTER 8   0.047 0.8234 
ODELCLUSTER 9   0.717 0.1125 
DMD2 0.453 0.0004 -0.0571 0.0493 
DMD2CLUSTER 2   1.155 0.0048 
DMD2CLUSTER 3   0.853 0.0370 
DMD2CLUSTER 4   1.331 0.0070 
DMD2CLUSTER 5   1.620 0.0041 
DMD2CLUSTER 6   0.883 0.0413 
DMD2CLUSTER 7   2.428 0.0001 
DMD2CLUSTER 8   4.320 0.0002 
DMD2CLUSTER 9   2.429 0.2888 
ADJUSTED R2 0.700 0.708 
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Table 16. Mean Factor Scores of Clusters for 9-factor Weather Representation 

 

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 

CLUSTER NUMBER OF 
DAYS Warm daily 

temperatures 

VFR ops, no 
low cloud 

ceiling in the 
morning 

VFR ops, no 
low cloud 

ceiling in the 
afternoon 

High visibility 
throughout day 

1 183 -0.635 0.787 0.379 0.551 
2 106 -0.704 0.655 0.423 0.902 
3 249 1.028 0.609 0.492 0.354 
4 137 -0.244 0.304 -0.015 -1.138 
5 195 0.560 -1.222 -0.215 -0.445 
6 153 -0.277 -0.039 0.038 0.288 
7 100 0.080 -1.411 -2.394 -1.391 
8 63 -0.650 -0.136 0.776 0.786 
9 26 -1.188 -0.042 -0.977 -0.094 

10 14 -1.184 -0.786 1.235 0.345 
11 11 -1.120 0.544 0.202 0.270 
12 4 -1.442 -1.646 -0.497 -0.481 

 FACTOR 5 FACTOR 6 FACTOR 7 FACTOR 8 FACTOR 9 

 

Medium cloud 
ceiling 

throughout day 

High winds 
throughout the 

day 

High cloud 
ceiling 

throughout day 

Precipitation in 
late morning 
and afternoon 

Precipitation in 
early morning 

 -0.531 -0.837 -0.232 -0.125 0.117 
 -0.298 1.544 -0.066 -0.076 0.260 
 -0.550 -0.085 -0.301 -0.136 -0.114 
 -0.477 -0.637 -0.241 -0.172 -0.011 
 -0.095 0.062 -0.101 -0.346 0.191 
 1.646 0.242 -0.105 -0.014 0.030 
 -0.429 -0.307 -0.230 -0.019 -0.042 
 0.787 0.484 1.120 0.085 -2.077 
 1.842 0.760 1.495 3.994 0.141 
 1.798 1.582 1.784 0.255 4.787 
 0.981 -0.014 7.082 0.277 -0.413 
 1.819 1.853 0.956 11.028 2.011 
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Table 17.  Estimation Results for the 9-factor Model 
 

 MODEL 1 MODEL 2 
VARIABLE Estimate P-value Estimate P-value 
INTERCEPT 135.331 0.0001 136.095 0.0001 
CLUSTER 2 1.582 0.0009 1.844 0.0793 
CLUSTER 3 -1.199 0.0008 -2.509 0.0004 
CLUSTER 4 1.608 0.0005 2.381 0.0086 
CLUSTER 5 1.825 0.0001 1.428 0.1811 
CLUSTER 6 5.620 0.0001 2.299 0.0454 
CLUSTER 7 6.154 0.0001 4.667 0.0025 
CLUSTER 8 5.031 0.0001 1.172 0.4070 
CLUSTER 9 21.095 0.0001 3.713 0.5637 
CLUSTER 10 10.058 0.0002 7.056 0.2785 
CLUSTER 11 11.789 0.0001 2.817 0.7760 
CLUSTER 12 28.012 0.0001 22.166 0.0583 
ODEL 1.153 0.0001 1.075 0.0001 
ODEL CLUSTER 2   -0.016 0.8555 
ODEL CLUSTER 3   0.140 0.0310 
ODEL CLUSTER 4   -0.088 0.2895 
ODEL CLUSTER 5   0.028 0.7692 
ODEL CLUSTER 6   0.324 0.0007 
ODEL CLUSTER 7   0.126 0.3368 
ODEL CLUSTER 8   0.360 0.0022 
ODEL CLUSTER 9   1.523 0.0036 
ODEL CLUSTER 10   0.358 0.4665 
ODEL CLUSTER 11   0.756 0.3734 
ODEL CLUSTER 12   0.589 0.6014 
DMD2 0.230 0.0586 -0.215 0.3783 
DMD2CLUSTER 2   0.389 0.3199 
DMD2CLUSTER 3   0.404 0.2327 
DMD2CLUSTER 4   0.508 0.1926 
DMD2CLUSTER 5   1.328 0.0086 
DMD2CLUSTER 6   0.500 0.4161 
DMD2CLUSTER 7   2.449 0.0039 
DMD2CLUSTER 8   0.657 0.2800 
DMD2CLUSTER 9   -1.180 0.6256 
DMD2CLUSTER 10   4.949 0.1369 
DMD2CLUSTER 11   9.887 0.0129 
DMD2CLUSTER 12   -6.535 0.2597 
ADJUSTED R2 0.721 0.732 
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When the cluster model is expanded to include interactions between the cluster effects, 

origin airport delay, and demand, most of the interaction effects are statistically 

insignificant. The three major exceptions on the origin delay side are clusters 6, 8, and 9.  

DFTI’s for days in these clusters are all more sensitive to origin airport delay than is the 

case for cluster 1. The major commonality of these factors is a score for Factor 2, 

afternoon visibility, which is fairly close to the mean, and well below the Factor 2 score 

for cluster 1, days in which have unusually good afternoon visibility. Significant 

interactions occur for clusters 5, 7, and 11. The latter cluster, in particular, appears to 

feature an unusually strong impact of demand on DFTI. Its major distinguishing 

characteristic is a very high incidence of early morning precipitation (Factor 9). As with 

the other non-parametric models, however, the fit of this one is somewhat less than what 

was obtained from the earlier models. These results suggest that loss in information from 

lumping days together in discrete categories outweighs the greater flexibility of non-

parametric models, at least for the categorization method employed here.  

10. Outliers 

The results presented above suggest that 70-80% of the day-to-day variation in DFTI at 

LAX can be explained using relatively simple multivariate models that take into account 

the effects of weather, demand, and delay at origin airports. What about the remaining 

20-30%? To identify some of the factors contained in this residual variation, we 

identified a set of “outlier” days for which model predictions (using the baseline linear 

model) substantially overestimated or underestimated the DFTI. For these days, we 

reviewed Traffic Management Unit (TMU) logs provided to us by the Southern 

California TRACON. These logs identify key events affecting traffic conditions in the 

TRACON, and actions taken by TMU, often in conjunction with other ATC facilities, in 

response. They also provide hourly counts of scheduled and actual arrivals at LAX. In 

addition to reviewing the written records, we visited the TRACON and spoke with 

controllers, traffic managers, and supervisors about the factors that affect delays at LAX.  

At the LAX airport, main arriving traffic flow direction is to the west. East flow is 

employed from midnight to 6:30 am local time, due to a noise abatement procedure. The 

Airport Acceptance Rate depends on the weather situation (IFR or VFR rules) as well as 
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on the fleet mix. If the share of heavy aircraft and B-757s is greater than 30%, that can 

reduce the Airport Acceptance Rate. 

Table 18 summarizes the results of our investigation for days where there was a 

considerable difference between predicted and observed DFTI values, as well as the 

reasons for these discrepancies. The days considered "good" are with higher predicted 

than observed values for DFTI. One common feature of these days is that, hour-by-hour, 

the demand was consistently less than the Airport Acceptance Rate (AAR). While 

demand, as well as factors that influence the Airport Acceptance Rate, are considered in  

our models, we are not able in our methodology to precisely distinguish days that feature 

such a favorably hourly pattern. 

To illustrate, one of the "good" days was 2/17/98. The airport ran visuals throughout that 

day, with no delays reported. Inboard runways were used for arrivals too. Neither the 

demand nor the actual number of arrivals at LAX exceeded the given Airport Acceptance 

Rate at any time during the day. Thus operations ran smoothly throughout the day even 

with one of the runways closed for 20 minutes due to runway checks. 

When we investigated “bad” days, for which the predicted values were less than 

observed, we found a broader set of explanatory factors. Some of the reasons for higher 

observed values are east traffic at the airport, or changes from east to west traffic and 

vice-versa. In a few cases one of the runways was closed for some time, which can also 

lead to a higher delays. Also in 6 out of 8 cases delay programs were in effect, so maybe 

that contributed to the delays as well. In one of the cases air traffic control had problems 

with equipment, which also may have led to a higher values of delay. 

One of these "bad" days was 12/05/97 with a DFTI 23 minutes greater than predicted. 

ATCSCC directed an all airport ground delay program including props for the entire day, 

which resulted in peaks and valleys of traffic throughout the day. The program did not 

deliver enough aircraft to meet AAR and delayed many flights unnecessarily. During one 

period of time (1600-1800) the traffic was extremely light as a result of the program. 

Flight schedules were backed up that much, that by late afternoon aircraft were missing 

their Estimated Departure Controlled Times (EDCT) from LAX. At first, the TRACON 

was releasing these aircraft as soon as possible, but over time the number of aircraft 
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Table 18. Summary for Outliers 

 
Month Day Year Observed Predicted Residual Reason 

2 17 1998 154.284 169.487 -15.203 
VFR whole day, demand less than 

AAR 

1 4 1998 161.753 174.163 -12.410 No apparent reason 

9 25 1997 145.880 157.538 -11.658 
No apparent reason, demand was 

less than AAR 

9 4 1998 149.236 160.328 -11.092 West traffic before 6:30 

6 16 1998 148.768 159.806 -11.038 
IFR whole day, actual arrivals less 

than AAR 

2 7 1998 158.560 169.253 -10.693 
Limited visuals, demand less than 

AAR 

4 28 1998 136.470 146.628 -10.158 
VFR whole day, demand less than 

AAR 

1 21 2000 164.383 151.037 13.346 
IFR whole day, EDCT, RWY 25L 

closed for 3.5 h 

9 26 1999 170.834 156.237 14.597 IFR whole day, EDCT invoked 

12 22 1999 174.703 156.880 17.823 
Few E/W changes, RWY 25R 

closed for 2 h 

4 17 2000 198.286 176.626 21.660 East Traffic, erratic winds, EDCT 

11 19 1999 185.485 163.310 22.175 
IFR whole day, EDCT, RWY 25R 

closed 1 h 

2 6 1998 194.986 172.332 22.654 
West to East change during rush, 

program invoked, WX 

12 5 1997 194.491 171.082 23.409 
East traffic, EDCT program, backed 

out 

11 26 1997 196.798 172.325 24.473 
Storm during the day, east then west 

traffic, equipment problems 
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missing their EDCT times grew to a point where the TRACON had to invoke internal call 

for release (CFR) program to avoid sector saturation. The TMU feels that the CFR 

program successfully minimized holding and balanced the delivery of aircraft and 

produced the better actual arrival rate. On top of ground hold program, LAX was running 

east flow throughout the day. 

During 1/21/00, the operations were IFR throughout the day shift, returning to visual 

operations in the evening.  Airforce 1 arrived at the LAX at start of the late morning rush 

period. There was also a ground delay program for BOS, EWR, CFR LAX, and PHX. For 

about 20 minutes during the day shift an internal ground stop for LAX was invoked. 

From these facts, it seems that the reason for higher values in the observed DFTI is the 

ground delay program. 

For the 12/22/99, there were no ground delay programs invoked. However there were 

multiple runway changes during the day due to wind shifts, which made very complex 

dayshift. Every time that LAX changes to the east traffic the Airport Acceptance Rate 

goes down. On top of the runway changes, LAX had very high surface traffic congestion, 

causing additional arrival and departure delays. 

The final “bad” day considered was 4/17/00. This featured IFR east traffic, unusually low 

AARs of between 54 and 58, and a ground hold program imposed on flights originating 

from the western states (a so called 10-W program). There is evidence that the program 

delivered too few aircraft in one period of time and too many in another, which led to an 

internal ground stop. After that time, visuals began to work and excess inventory was 

exhausted fairly rapidly. 

11. Conclusions 

The need to assess and isolate the impacts of FFP1 on NAS performance has motivated 

this analysis of day-to-day variation in average flight times (as measured by the DFTI) 

into LAX. We find that the majority of the variation can be statistically accounted for in 

terms of average delays at the origin airport, weather at LAX, and demand at LAX as 

measured by the peaking characteristics of the flight schedule. While all of these factors 

are statistically significant, there is a clear hierarchy, with origin airport delay the most 
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important, and demand the least. This reinforces the point that any individual airport is 

part of a larger system and that delays are strongly influenced by non-local factors. 

We estimated a variety of models explaining day-to-day variation in DFTI. As we move 

from a simple and restrictive model that is strictly linear in the explanatory variables to 

more sophisticated models with quadratic interactions and non-linear forms, we realize a 

modest gain in statistical performance. Conversely, there is some degradation when non-

parametric models based on days categorized by weather conditions are used. While 

these differences are of some interest, it appears that the content of the model - what 

explanatory variables it includes - is more important than the form. 

Similarly, but perhaps more surprisingly, we find that model fits are quite insensitive to 

the level of detail at which local weather is included in the model. Linear models with 

three, six, nine, and twelve weather factors all yield roughly the same level of 

performance. In light of this, the “principal of parsimony” suggests the three-factor model 

as a candidate for further study and refinement in future research. 

The old saw that “correlation is not causation” must be born in mind when interpreting 

the results of this research. Many of the statistical results can be understood in terms of 

well-known mechanisms in which cause and effect are clear. For example, it is obvious 

that departure delays at origin airports will cause arrival delays at LAX. Other results are 

more mysterious. For example, why is it that the surface temperature at LAX is correlated 

with the DFTI? Does this derive from a visibility effect, a wind effect, or is the effect 

actually due to temperature? Likewise, how can we account for the inverse relation 

between peak demand and taxi-in time? Is it really from increased landing on the in-

board runways, or is there some other reason?  

While these are puzzling questions, their answers are not of central importance given the 

objective of normalization. It is precisely because we don’t understand all the 

mechanisms at work that statistical normalization is a valuable tool in gauging the impact 

of FFP1 technologies. 
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