
Enhancements to SIMMOD:
A Neural Network Post-processor to Estimate

Aircraft Fuel Consumption

Phase I Final Report

NEXTOR Research Report RR-97-8

Antonio A. Trani (Principal Investigator)
Frank Wing-Ho (Graduate Research Assistant)

Department of Civil Engineering
Virginia Tech

Blacksburg, VA 24061

December 1997

ii

Preface

This report documents research undertaken by the National Center of Excellence for Aviation Opera-
tions Research, under Federal Aviation Administration Research Grant Number 96-C-001. This docu-
ment has not been reviewed by the Federal Aviation Administration (FAA). Any opinions expressed
herein do not necessarily reflect those of the FAA or the U.S. Department of Transportation.

The authors are appreciative of the support provided by the FAA Office of Operations Research
(ASD), and in particular, the guidance and leadership provided by Tony Vanchieri and Norm Fujisaki
in funding this effort.

iii

Table of Contents

Preface ii

Table of Contents iii

List of Figures vi

List of Tables viii

Executive Summary ix

CHAPTER 1 Introduction 1
Background of the Problem 1
Existing Fuel Consumption Model 2
Neural Network and Fuel Consumption Modeling 2
Research Objectives and Approach 3

CHAPTER 2 Modeling Background 5
Aircraft Performance Based Fuel Consumption Model 5
Physical Properties of Air 5
International Standard Atmosphere (ISA) 6
Speed of Sound and Mach Number 7
Aircraft Performance 7
Aircraft Fuel Consumption 9
Existing SIMMOD Fuel Consumption Model 10

Drag Computation 11
Neural Network Aided Fuel Consumption 15
Introduction to Neural Networks 15

Functionality 16
Layers 16
Neurons 16
Connections 16
Weights and Biases 17
Recall 17
Transfer Functions 17
Learning 18
Neural Network Types 18

Neural Learning Using Back-Propagation 19
Learning Rule and Lavenberg Marquardt Optimization Algorithm 20

iv

Steepest Descent Method 20
Newton’s Method 21

CHAPTER 3 Methodology 25
Selection of the Testing Aircraft 25
Fuel Consumption Data Collection 25
Training the Neural Network 26
MATLAB Neural Network Basics 27

Initff 27
trainnlm 28
simuff 29
logsig 29
tansig 29
purelin 30

Selection of Training Algorithms 30
Design of the Appropriate Neural Network Topology 30
Implementation and Generalization of the Neural Network 32
Description of the Neural Network Aided Fuel Consumption Model 32
Correlating Results 35
Statistical Analysis Testing Procedures 35
Implementation of the Outputs to an Actual Flight Trajectory 36

CHAPTER 4 Neural Network Model Development 41
Training of Weight Matrix For Different Flight Phases 41
Testing Preliminary Results Using Statistics 43
Implementation of Neural Network to Actual Flight Trajectory 44

CHAPTER 5 Discussion of Results 49
Training Results 49
Testing Results 58
Correlation of Neural Network Fuel Consumption Results 60
SIMMOD and SIMMOD 2000 Implementation Issues 65
Neural Network Fuel Burn Correction in the Presence of Winds 67

CHAPTER 6 Conclusions and Recommendations 71
Conclusions 71
Remarks and Recommendations 72
Remarks 72

Fuel Efficient Flight Path 72
Neural Network Model Extensions 73

v

Recommendations 73

Bibliography 75

APPENDIX A Neural Network Templates Source Code 77
Take-off and Climb Out Fuel Estimation 78
Climb Performance Estimation 79
Cruise Specific Air Range 82
Neural Network Testing Program 87
Testing main program 87
Statistical analysis 94
Main Program to Calculate Fuel Consumption 101
Main Program 101
Cruise Cubroutine 112
Descent Subroutine 115

APPENDIX B Neural Network Trained Matrices and Bias Vectors 121
Climb Neural Network Matrices 121
First Layer Climb Fuel Weight Matrix (8 x 4) 121
First Layer Bias Climb Fuel Vector (8 x 1) 122
Second Layer Climb Fuel Weight Matrix (8 x 8) 122
Second Layer Bias Climb Fuel Vector (8 x 1) 122
Third Layer Climb Fuel Weight Matrix (1 x 8) 122
Third Layer Bias Climb Fuel Vector (1 x 1) 122
Cruise Neural Network Matrices 123
First Layer Cruise Fuel Weight Matrix (8 x 3) 123
First Layer Bias Cruise Fuel Vector (8 x 1) 123
Second Layer Cruise Fuel Weight Matrix (8 x 8) 123
Second Layer Bias Cruise Fuel Vector (8 x 1) 124
Third Layer Cruise Fuel Weight Matrix (1 x 8) 124
Third Layer Bias Cruise Fuel Vector (1 x 1) 124
Descent Neural Network Matrices 124
First Layer Descent Fuel Weight Matrix (12 x 4) 124
First Layer Bias Descent Fuel Vector (12 x 1) 125
Second Layer Descent Fuel Weight Matrix (12 x 12) 125
Second Layer Bias Descent Fuel Vector (12 x 1) 125
Third Layer Descent Fuel Weight Matrix (1 x12) 125
Third Layer Bias Descent Fuel Vector (1 x 1) 126

vi

List of Figures

Figure 2.1 Velocity Profile Over an Aerodynamic Surface. 6

Figure 2.2 Typical Forces Acting on the Aircraft. 8

Figure 2.3 Aircraft Characteristic Drag Polar. 9

Figure 2.4 Turboprop and Turbofan Engine Characteristics. 10

Figure 2.5 General Architecture of a Neural Network. 16

Figure 2.6 A Single Neuron Diagram. 17

Figure 2.7 Basic Neural Network Transfer Functions. 18

Figure 2.8 Backpropagation Cycle. 20

Figure 3.1 Fokker F-100 Aircraft Layout and General Characteristics. 26

Figure 3.2 General Three Layer Neural Network. 33

Figure 3.3 Fuel Burn for Takeoff and Climbout. 34

Figure 3.4 Fuel Estimation Procedure for Takeoff and Climbout. 34

Figure 3.5 Fuel Estimation Procedure for Climb Segment. 34

Figure 3.6 Fuel Estimation Procedure for Cruise Segment. 35

Figure 3.7 Selected Neural Network Architecture. 39

Figure 4.1 Sample Input Vector P for Training Purposes. 42

Figure 4.2 Neural Network Training Process. 43

Figure 4.3 Neural Network Testing Procedure. 45

Figure 4.4 Flight Trajectory Implementation with Waypoints. 45

Figure 4.5 Possible Aircraft Climb Procedures. 47

Figure 4.6 Flow Chart for Neural Network Aided Fuel Consumption Model. 48

Figure 5.1 Climb Fuel Information (source: Fokker 100 Performance Manual). 51

Figure 5.2 Specific Air Range Information (source: Fokker 100 Performance Manual). 52

Figure 5.3 Descent Fuel Performance (source: Fokker 100 Performance Information). 53

Figure 5.4 Two-Dimensional View of Climb Fuel Database. 54

Figure 5.5 Three Dimensional View of Training Climb Fuel Database. 54

Figure 5.6 Two-Dimensional View of Climb Distance Database. 55

Figure 5.7 Three-Dimensional View of Climb Distance Database. 55

Figure 5.8 Two Dimensional View of Cruise Segment Specific Range Database. 56

Figure 5.9 Three Dimensional View of Cruise Segment Specific Range Database. 56

 :

vii

Figure 5.10 Two Dimensional View of Descent Fuel Database. 57

Figure 5.11 Three Dimensional View of Descent Fuel Database. 57

Figure 5.12 Estimated and Actual Climb Fuel Results. 61

Figure 5.13 Climb Fuel Error Histogram. 61

Figure 5.14 Climb Distance Correlation of Results. 62

Figure 5.15 Climb Distance Estimation Errors. 62

Figure 5.16 Specific Range Generalization Results. 63

Figure 5.17 Specific Range Error Histogram. 63

Figure 5.18 Descent Fuel Predicted vs. Actual. 64

Figure 5.19 Descent Fuel Error Histogram. 64

Figure 5.20 Frequency Distributions for Actual and Computed Descent Fuel. 65

Figure 5.21 Sample Flight Plan Profile. 66

Figure 5.22 Current SIMMOD Fuel Burn Post-processor Input/Output File Structure. 68

Figure 5.23 New SIMMOD Fuel Burn Post-processor Input/Output File Structure. 69

Figure 5.24 SAR Parameter Corrected for Enroute Winds. 69

Figure B.1 Climb Fuel Consumption Neural Network. 121

Figure B.2 Cruise Fuel Consumption Neural Network. 123

Figure B.3 Descent Fuel Consumption Neural Network. 124

viii

List of Tables

Table 3.1. Comparison of Optimization Algorithms 30

Table 3.2. Results of the Topology Sensitivity Study 31

Table 3.3. Summary of Neural Network Training and Testing 36

Table 4.1. Summary of Neural Network Input and Output Parameters. 44

Table 5.1. Training Data Sets. 50

Table 5.2. Neural Network Testing Data Sets. 59

Table 5.3. Summary of Errors for All Phases of Flight. 59

Table 5.4. Flight Plans Used in the Correlation of the Neural Network Model (ISA+10). 67

Table 5.5. SIMMOD Fuel Burn Postprocessor Routines. 70

ix

Executive Summary

This report documents research undertaken by the National Center of Excellence for Aviation Opera-
tions Research to enhance SIMMOD - the FAA airspace and airfield simulation model. The existing
SIMMOD fuel consumption model based on aircraft performance parameters was studied. Advan-
tages and disadvantages of this model were reviewed. A representative neural network aided fuel con-
sumption model was developed using data given in the aircraft performance manual. The data used in
this study was applicable to the Fokker 100 aircraft powered by Rolls-Royce Tay 650 engines. Never-
theless, the methodology can be extended to any type of aircraft including piston and turboprop type
vehicles with confidence.

The neural network was trained to estimate fuel consumption of an example aircraft. Results were
compared to the actual performance provided in the aircraft performance manual and found to be ac-
curate for possible implementation in SIMMOD and other fast-time simulation programs.

The following conclusions are derived from this analysis:

1. The disadvantage of the existing SIMMOD advanced fuel consumption model is that
the information required to create the data base for this particular algorithm is very dif-
ficult to obtain. This fact has been without doubt a constraint in the expansion of the
fuel burn database in SIMMOD.

2. Results obtained from the neural network aided fuel consumption model show that a
neural network with proper training is an accurate and efficient mean to calculate fuel
consumption of fixed wing aircraft. The added benefit of this approach is that only the
flight performance manual of the aircraft is needed to characterize the complete fuel
burn behavior of the vehicle throughout its flight envelope.

3. A neural network is found to be a viable alternative in fuel consumption estimating
application. The computational results obtained in this paper indicate that the neural
network approach can be implemented in fast-time simulation models such as SIM-
MOD, RAMS, TAAM and future products where flight trajectories are described in
terms of waypoints. Moreover, neural networks can approximate with good accuracy
the complete performance of the vehicle (including climb, cruise, maneuvering, and
decent) and simplify the implementation of realistic aircraft models without compro-
mising aircraft sensititive data that is seldom made public.

1

CHAPTER 1 Introduction

1.1 Background of the Problem

Addressing internal organization needs to execute airport and airspace capacity studies the Federal
Aviation Administration (FAA) developed SIMMOD - the airspace and airfield simulation model. This
model has been widely used by internal groups within the FAA and over 200 users worldwide. SIM-
MOD is regarded by many as one of the few airspace and airfield simulation models that have been
calibrated against actual scenarios and is regarded as a good tool for airfield and airspace simulation
analysis.

Over the years SIMMOD has been both acclaimed and criticized. In the past seven years the FAA has
performed sixteen airport/airspace capacity enhancement studies where SIMMOD played a major role
(i.e., was the modeling tool of choice) in the analysis (FAA, 1996). In this study all SIMMOD projects
combined yield an expected delay savings of 4,703 million dollars in the horizon year (2003-2005). If
one factors the life cycle cost savings of all major projects one can easily arrive to figures an order of
magnitude higher.While it is not possible to know how much of the benefits claimed by each study are
due to the modeling tool itself one could easily argue that SIMMOD brought to these studies a level of
airspace and airfield simulation detail that could have been difficult to achieve with other simulation
tools.

It is important to note that SIMMOD has been used in numerous airport and airspace studies sponsored
by airport authorities as well. These studies have been carried out over the years by engineering con-
sulting firms and claim several hundred million dollars in savings to users and operators of the system.
In retrospect, SIMMOD has served and continues to serve an important role in airport/airspace plan-
ning studies. The FAA and industry do not have access to other gate-to-gate model like this without
paying a high premium. While the technology of this model is effectively showing its age it is impor-

 CHAPTER 1: Introduction

2

tant to realize that many improvements and future developments to this model can be made with mod-
est resources. This study tries to accomplish a small improvement to the model. An improvement that
could perhaps be more relevant in the future when natural resource consumption become as prominent
variable in airport and airspace planning activities.

There are several functions in SIMMOD that perhaps receive little attention from various users mainly
because the data to support such post-processor functions is scarce. One of such functions is fuel burn.
SIMMOD utilizes a fuel consumption post processor that computes the fuel consumption of an aircraft
given a flight profile (Collins, 1982). The advanced fuel burn model-MOD 830725 developed by Bela
P. Collins at the MITRE Corporation in the early 1980’s is the primary algorithm behind the fuel burn
computations. The theme for this research paper is to look for possible ways to enhance the fuel con-
sumption estimation process by reducing the complexity of the existing fuel-burn model, make the
methodology easier to implement using current aircraft data, making the technology more transport-
able to other models and increasing its accuracy. Moreover, this research attempts to establish a meth-
odology that can be readily applied to any flight vehicle contained in the SIMMOD data base.

1.2 Existing Fuel Consumption Model

SIMMOD’s existing fuel consumption model utilizes the energy balance relation to estimate the fuel
consumption of an aircraft. This relation is based on aerodynamics and engine characteristics of an air-
craft [Collins 1980]. Since the model is basically a combination of different performance fitted curves,
the major task in using this model is to determine all the coefficients involved in describing the non-
linear behavior of the aircraft’s performance curves. However, the information required to determine
these coefficients are usually considered proprietary by most aircraft production companies and cannot
be obtained from them. Instead, flight testing and wind tunnel testing are used as sources of informa-
tion. Unfortunately, the cost of this kind of testing is extremely high. The motivation of this thesis is to
use information given directly from the aircraft manufacturer to predict fuel consumption accurately
and efficiently. This information is contained in a handbook known as the “pilot’s flight manual”.

1.3 Neural Network and Fuel Consumption Modeling

The neural network approach to aviation fuel consumption application is quite simple in principle. The
aircraft fuel consumption data from the flight performance manual of individual aircraft are presented
to the network. The network, by an iterative process, self-organizes and generalizes its own perfor-
mance data (i.e., strenghts of connections between various elements of the network denoted as weights
and biases are determined). This process is referred to as “network learning”. When sufficient amount
of data are presented to the network, the network will becomes a ”trained network” capable of estimat-
ing the performance of aircraft in fuel consumption. Neural network training techniques utilized are
presented in Chapters 3 and 4. Actual implementation results are presented in Chapter 5.

1.4 Research Objectives and Approach

3

1.4 Research Objectives and Approach

The objectives of this research project are:

1. To investigate possible alternatives to fuel consumption modeling in SIMMOD and
other fast-time simulation programs,

2. To use the information provided in the aircraft performance flight manual, along with
neural network methodology to develop an accurate fuel consumption model, and

3. To determine whether neural network should be considered as a viable alternative in
fuel consumption estimating applications

To attain these objectives, the existing SIMMOD fuel burn model based on energy balance principles
is studied and reviewed. The advantages and disadvantages of this particular model are reviewed. A
representative neural network model is then selected by comparing results obtained from different neu-
ral network model topologies (see Chapter 5).

 CHAPTER 1: Introduction

4

5

CHAPTER 2 Modeling Background

2.1 Aircraft Performance Based Fuel Consumption Model

The aircraft performance based fuel consumption model, also known as the Advanced Fuel Burn Mod-
el - MOD 830725 (AFBM), was developed by B. P. Collins of the MITRE Corporation. This is a fuel
consumption evaluation model based on an energy balance concept. The energy balance relation is de-
fined as the aircraft travels along a path its energy gains and losses over a distance will be maintained.
This concept has been used to develop a core equation that models the energy performance of aircraft.
The equation is adapted to a specific aircraft by using constants that represent the relationship of lift to
drag and thrust to fuel flow. In order to gain an insight of this model, some important aerodynamic fea-
tures will be presented before describing this model explicitly.

2.1.1 Physical Properties of Air

The physical properties of air included are:

• temperature (T)

• pressure (P)

• density ()

• viscosity ()

Temperature is a measure of the average kinetic energy of the particle of gas. If KE is the mean molec-
ular kinetic energy, then temperature is given by , where k is the Boltzmann constant. Com-
mon units of temperature are Kelvin (K), degree Celsius (), degree Rankine (), and degree
Fahrenheit (). Pressure is the normal force per unit area exerted on a surface due to the time rate of
change of momentum of the gas molecules impacting the surface. Common units of pressure are Pascal

ρ
υ

KE
3
2
---kT=

°C °R
°F

 CHAPTER 2: Modeling Background

6

(Pa) and pounds per square inch (psi). The density of a substance is the mass of that substance per unit
volume. Common units of density are kilogram per cubic meter (kg/m3) and slug per cubic foot (slug/
ft3). Viscosity of a fluid is defined as the ratio of viscous stress to the velocity gradient. If is the vis-
cous stress then

 (2.1)

where is the viscous coefficient of a fluid. Figure 2.1 shows a velocity profile of a fluid moving over
a surface. Common units of viscosity are kilogram per meter per second (kg/m/sec) and slug per feet
per second (slug/ft/sec).

Figure 2.1 Velocity Profile Over an Aerodynamic Surface.

A perfect gas is one where intermolecular forces can be neglected. For a perfect gas, the equation
which relates pressure, density and temperature is

(2.2)

where R is the specific gas constant.

2.1.2 International Standard Atmosphere (ISA)

The earth’s atmosphere is a dynamically changing system, constantly in a state of flux. The pressure,
density, and temperature of the atmosphere in this planet depend on altitude, longitude and latitude,
time of the day, and many other factors. To take all the above factors into account during evaluation of
flight performance is impractical. Therefore, the international standard atmosphere (ISA) is defined in
order to relate flight test, wind tunnel results, and general aircraft design and performance to a common
reference.

A standard atmosphere in common use is the 1959 ARDC Model atmosphere. ARDC standards for the
U.S, Air-force’s previous Air Research and Development Command, which is now the Air Force Sys-
tems Command (McCormick 1995).

τ

τ υ d velocity()
d y()

 =

υ

y

Velocity

Velocity
profile

Surface

p ρRT=

2.1 Aircraft Performance Based Fuel Consumption Model

7

2.1.3 Speed of Sound and Mach Number

Speed of sound plays a fundamental role in any aircraft performance evaluation. Calculation of the
speed of sound is based on the continuity equation and momentum equations. For the steady incom-
pressible flow of frictionless fluid, the relationship of density and velocity V in a stream tube of vary-
ing area A can be written as:

(2.3)

The momentum equation is an expression to relate the rate of change momentum to the force based on
Newton’s second law of motion, force is equal to the mass times the velocity change with respect to
time. For a fluid element, after some algebraic manipulations, the differential change in pressure can
be written as:

(2.4)

The above equation is designated the momentum equation. Based on the above two equations and the
assumption that the flow through a sound wave is isentropic (no heat addition), the speed of sound a
can be derived, and given by,

 (2.5)

where is the specific heat ratio and R is the specific gas constant.

The speed of sound leads to another, vital definition for high speed gas flows, namely, the Mach num-
ber. By definition the Mach number M is the velocity of the flow divided by the speed of sound:

 (2.6)

M is one of the most useful quantities used in aerodynamic theory.

2.1.4 Aircraft Performance

This section presents some basic elements of airplane performance.

Figure 2.2 shows an aircraft in climbing flight. The direction of motion of the aircraft is inclined at an
angle with respect to the horizontal. The flight path direction and the relative wind are along the same
line. The angle formed between the mean chord line and the flight path line is the angle of attack
with respect to the flight path direction. There are four physical forces acting any flight vehicle:

1. Lift L, which is perpendicular to flight path direction.

2. Drag D, which is parallel to the flight path direction.

3. Weight W, which acts vertically toward the centre of the earth.

4. Thrust T, which in general is inclined at angle with respect to the flight path direction.

ρ

ρ1A1V 1 ρ2A2V 2=

dp ρVdV–=

a
dp
dρ

isentropic

γRT= =

γ

M
V
a
----=

θ
α

α

 CHAPTER 2: Modeling Background

8

By summing horizontal and vertical forces with respect to the flight path using Newton’s second law
of motion, the following can be obtained (Anderson, 1989):

(2.7)

(2.8)

where g is the gravitation constant of the earth and RC is the radius of the curvature of the flight path.
The above expressions are known as equations of motion for an airplane in two-dimensional transla-
tional flight. Along with these equations, consider level unaccelerated flight. Level flight means that
the flight path is along the horizontal, that is, =0. Unaccelerated flight implies that the right hand side
of the above equations are equal to zero. Therefore the equations of motion can be reduced to:

(2.9)

(2.10)

Furthermore, for most conventional airplanes, is small enough that and . Thus:

(2.11)

(2.12)

Figure 2.2 Typical Forces Acting on the Aircraft.

The results above show that during a level unaccelerated flight, the aerodynamic drag is balanced by
the weight of the airplane: this result while almost trivial, is extremely useful in the estimation of fuel

T α()cos D– W θ()sin–
W
g
----- dV

dt
-------⋅=

L T α()sin W θ()cos–+ m
V

2

RC
--------=

θ

T α()cos D=

L T α()sin+ W=

α α()cos 1≈ α()sin 0≈

T D=

L W=

Theta

Alpha

Weight

Drag

Horizontal

Thrust

2.1 Aircraft Performance Based Fuel Consumption Model

9

consumption.

2.1.5 Aircraft Fuel Consumption

Fuel consumption of an aircraft is a function of the following variables:

• aerodynamics characteristics

• engine type

• mission profile

Aerodynamic characteristics depend on individual aircraft design variables. The two major character-
istic concerning fuel consumption estimation are lift and drag produced during flight. Generally, lift of
an aircraft is a function of the wing-geometric and drag is a function of the entire aircraft. Relationship
between these two characteristics are usually presented in a drag polar. Figure 2.3 is a graphical pre-
sentation of the drag polar.

Figure 2.3 Aircraft Characteristic Drag Polar.

The powerplant is the only part of the flight vehicle that is responsible for the physical process of fuel
consumption. There are two types of engines utilized by civilian aircraft: turbo-fan and turbo-propeller.
Figure 2.4 shows the fundamental performance differences between these two types of engines (Toren-
beck, 1982). The specific fuel consumption for a turbo-fan engine is expressed as a thrust specific fuel
consumption (TSFC). Typical units of TSFC are pounds of fuel per hour per pound of thrust.

Drag

Lift

M < 0.4

M = 0.7

M = 0.8

 CHAPTER 2: Modeling Background

10

Figure 2.4 Turboprop and Turbofan Engine Characteristics.

2.1.6 Existing SIMMOD Fuel Consumption Model

An existing fuel burn model that evaluates fuel consumption is the Advanced Fuel Burn Model - MOD
830725 (AFBM), developed by Bela P. Collins of the MITRE Corporation (Collins, 1982).

This particular aircraft fuel burn evaluation model is based on an energy balance concept. This concept
has been used to develop a core equation that models the energy performance of aircraft. The equation
is adapted to a specific aircraft by using constants that represent the relationship of lift to drag and
thrust to fuel flow. Multi-variate curve fitting techniques are used in conjunction with performance data
to derive the aircraft specific constants. Aircraft performance limits are represented by empirical rela-
tionships that also utilize aircraft specific constants.

Assumptions and Definitions

As mentioned earlier, the fuel consumption algorithm was designed to incorporate pre-determined co-
efficients associated with aircraft performance, and dynamic inputs of the flight profile of the aircraft.
In order to simplify the computational procedures the following assumptions were made:

• Weight changes over increments will not affect fuel burn calculations.

• Flight path angles are small:

(2.13)

• Velocity and altitude changes within an increment are linear.

• Energy Balance Approach (Collins, 1984).

• The fuel burn equation has been derived from basic principles of conservation of energy.
Energy balance requires:

• (energy change) = (energy in) - (energy loss)

or, when expressed in terms of aircraft flight:

(change in potential energy + change in kinetic energy) = work done by the thrust - work done by the
drag

where,

Turboprop

Speed

Turboprop speed limit

Sketch of comparative net thrust at sea level

Turbo-
fan Turboprop

Speed

Turboprop speed limit

Turbo- fan

Sketch of comparative TSFC at sea level

φ() 1≈cos

2.1 Aircraft Performance Based Fuel Consumption Model

11

work done by the thrust = thrust force x distance along the vector

work done by the thrust = drag force x distance along the vector

Therefore, the energy balance can be written as:

(change in potential energy + change in kinetic energy) = thrust force x distance along the
vector - drag force x distance along the vector

(2.14)

Solving this expression for thrust Fn

 (2.15)

where,

 and (2.16)

The distance along the velocity vector can be expressed as

 (2.17)

where,

 (2.18)

Drag Computation

Since the aircraft is assumed to operate at a small flight path angle, according to basic aircraft perfor-
mance the lift required is equal to the weight for level flight. In addition, drag and lift are usually ex-
pressed as non-dimensional coefficients CD and CL, and can be written as:

 (2.19)

Solving for CL,

 (2.20)

Similarly, the drag can be written as,

 (2.21)

∆PE ∆KE+ Fn d×() D d×()–=

Fn
∆KE

d
------------ ∆PE

d
----------- D+ +=

∆KE
W V 2

2
V 1

2
–()

2g
-----------------------------------= ∆PE W h2 h1–()=

d Vt=

V
V 1 V 2+()

2
------------------------=

Lift Weight
1
2
---ρV

2
SwCL= =

CL
W

1
2
---ρV

2
Sw

--------------------=

D
1
2
---ρV

2
SwCD=

 CHAPTER 2: Modeling Background

12

where,

(2.22)

Here, is Oswald’s efficiency factor and is the aspect ratio of the wing. Expanding the above equa-
tion, the total drag coefficient can be expressed as:

 (2.23)

where,

 (2.24)

is the summation of the minimum profile drag of the individual aircraft components, for turbulent at-
tached flow. In the previous expressions the following nomenclature has been used.

 = Drag required to trim the aircraft about its centre of gravity.

 = Drag due to interference between components.

 = Drag due to surface distributed roughness, steps, gaps, and significant protuberance.

 = Wing vortex induced drag at a given wing lift coefficient corresponding to the span-
wise distribution of lift, and is the net effect of elliptic and non-elliptic contribu-
tions.

 = Net aircraft lift-dependent profile drag, including major contributions from the
wing and fuselage, and other components.

 = Compressibility drag, which includes subcritical drag creep, wave drag, and shock-
induced separation drag.

Note that the first four terms are not lift dependent, while the remaining two terms are both lift and
Mach dependent. In addition, the last term accounts for compressibility drag rise. Along with this in-
formation, the following functions are utilized to present the nondimensional drag coefficient (CD) that
consists of a nonlinear drag polar with sensitivity to Mach number:

 (2.25)

where Ma, Mb,and Mc are functions of Mach number. Hence, Ma represents the first four terms in
Equation 2.2.3, represents the fifth and sixth terms in Equation 2.23 and represents the last
term. These three Mi functions are defined as follows,

(2.26)

(2.27)

CD CD o, f CL e AR, ,()+=

e AR

CD CDPmin

CDt
CDr

CDi
CDPCL

CDC
+ + + + +∑=

CDPmin
∑

CDt

CDint

CDr

CDi

CDPCL

CDC

CD Ma MbCL
2

MbCL
4

+ +=

MbCL
2

MbCL
4

Ma C1 C2Γ2
C3Γ4

+ +=

Ma C4 C5Γ C6Γ2
C+ 7Γ3

C8Γ4
++ +=

2.1 Aircraft Performance Based Fuel Consumption Model

13

(2.28)

where,

 (2.29)

and are drag constants

According to basic aerodynamics, drag will increases dramatically, once the critical Mach number is
reached. Therefore, in order to account for this kind of behavior higher order terms are employed.

Now the drag function shown in Equation 2.21 can be re-written as,

(2.30)

where the M functions have been previously defined.

The energy balance equation (see Eq. 2.15) now becomes,

 (2.31)

by substituting for Eq. 2.20,

(2.32)

Here, the energy balance equation consists of some specific constants and aircraft variables, such as
acoustic speed, altitude and weight. Aircraft configuration changes, such as flaps and landing gear de-
ployment can affect the drag polar. To account for these changes the following functions should be uti-
lized:

(2.33)

(2.34)

(2.35)

The final drag equation becomes:

 (2.36)

Mc C9 C10Γ C11Γ2
K12Γ3

+ + +=

Γ 1 M+
1 M–
--------------=

Ci

D
1
2
---ρV

2
Sw Ma MbCL

2
McCL

4
+ +()=

Fn
∆KE

d
------------ ∆PE

d

1
2
---ρV

2
Sw Ma MbCL

2
McCL

4
+ +()+ +=

Fn
∆KE

d

∆PE
d

1
2
---ρV

2
SwMa Mb

W
1
2
---ρV

2
Sw

 2

Mc
W

1
2
---ρV

2
Sw

 4

+ ++ +=

R1 1 CF() CC 1() CC 2() GF() CC 3() FA() GF() CC 4() FA() CC
5

 FA()2 CC 6() FA()3+ + + + + +=

R2 1 CF() CC 7() CC 8() GF() CC 9() FA() GF() CC 10() FA() CC 11() FA()2 CC 12() FA()3+ + + + + +=

R3 1 CF() CC 13() CC 14() GF() CC 15() FA() GF() CC 16() FA() CC 17() FA()2 CC 18() FA()3+ + + + + +=

Fn
∆KE

d

∆PE
d

1
2
---ρV

2
SwMaR1 R2Mb

W
1
2
---ρV

2
Sw

 2

R3M
c

W
1
2
---ρV

2
Sw

 4

+ ++ +=

 CHAPTER 2: Modeling Background

14

Since it is desired to compute fuel flow and finally fuel burn over an increment of time, the thrust must
be translated into fuel flow.

The fuel burn of an aircraft basically depends on airframe drag, engine specific fuel consumption, dis-
tance of the route to be flown, vertical flight path and aircraft weight. The central factor in engine de-
velopment is to minimize thrust specific fuel consumption (TSFC), or simply called, the specific fuel
consumption (SFC). SFC is a measure of engine efficiency, defined as fuel flow rate in pounds per hour
divided by engine thrust in pounds of force (lb/hr/lb). The fuel consumption of an aircraft depends on
the individual power plant. For turbojet and turbofan engine the fuel flow is a function of two factors,
altitude and velocity.

An empirical relationship that has been found to describe the turbojet engine is shown below:

 (2.37)

where the functions are,

(2.38)

(2.39)

(2.40)

According to Collins (1984), The above relationships do not have a direct physical tie to the systems
that exist within an engine. The functions were chosen because their behavior is similar to reality. Now
the energy balance equation shown in Eq. 2.36 can be substituted into Eq. 2.37. The advanced fuel burn
model MOD830725 core equation is written as follows:

(2.41)

The core equation combines all aerodynamic properties and engine data in a very compact form. The
advantage of using this model is that it can be attached to any flight trajectory generation program for

µ̂ η1 η2Fn η3ηF
n
2

+ +=

η

η1 k1 k2M k3h k4Mh k5h
2

k6Mh
2

+ + + + +=

η2 k7 k8M k9h k10Mh k11h
2

k12Mh
2

+ + + + +[] N 10
4×()

1–
=

η3 k13 k14M k15h k16Mh k17h
2

k18Mh
2

+ + + + +[] N 10
4×()

2–
=

µ̂ η1 qSwMaR1

R2η2MbW
2

qSw

R3η2McW
4

qSw()
3

η2 V2 V1–()W

gt

h2 h1–()W

tV

η3W V2 V1–()

gt

h2 h1–()W
2

tV

2 V2 V1–()W

gt

h2 h1–()W

tV
----------------------------- η3MaqSwR1

R2η3MbW
2

qSw

R3η3McW
4

qSw()
3

-------------------------------- η3Ma
2

qSw()
2

R1 2R1η3MaMbW
2

R2

2R1η3MaMcW
4

R3

qSw()
2

--

R2η3MbW
2

qSw

R3η3McW
4

qSw()
3

-------------------------------- η3Ma
2

qSw()
2

R1 2R1η3MaMbW
2

R2

2R1η3MaMcW
4

R3

qSw()
2

--

η3Mb
2

W
4

R2
2

qSw()
2

2R2η3MbMcW

6
R3

qSw()
4

--
η3Mc

2
W

8
R3

2

qSw()
6

+ + + + + + +

+ + + + +

+ + + +

+ + + + +

+ +

=

2.2 Neural Network Aided Fuel Consumption

15

a particular aircraft. Unfortunately, the coefficients in this model must be obtained through several
source (including wind tunnel data and/or flight testing) that in many instances are proprietary in nature
thus making their inclusion in models like SIMMOD difficult. A further complication of this model is
the complexity of the task of modeling low and high speed aircraft performance with the same core
equation. Aircraft aerodynamics and engine properties at low Mach number and high Mach number
are substantially different. Attempts to describe the behavior of aircraft properties and engine behaviors
at high Mach numbers is a complicated task. To determine and justify the above required coefficients,
flight testing and wind tunnel testing must be conducted for each aircraft in the market under different
flight conditions. Therefore, this model is somewhat impractical.

2.2 Neural Network Aided Fuel Consumption

Using neural networks to calculate fuel consumption rates of aircraft was have been demonstrated be-
fore (Schilling, 1996). In his work Schilling used Collin’s model to calculate the fuel burn, and then
used these results to train the neural network assisted model. Schilling proved the potential of using a
neural network to estimate fuel consumption of aircraft. The idea of this research project is to expand
Schilling’s idea to the level that the calculation of fuel consumption need not involve any flight testing
or experiments, i.e. a model independent from Collin’s model was developed.

All existing aircraft in the civil aviation industry are tested by the aircraft manufacturer during the flight
certification process (i.e. FAR Parts 23, 25 or 27). Unfortunately, many test results of these aircraft are
confidential. The flight manual is a common source of information for individual aircraft. Fuel con-
sumption information contained in the flight manual is the most reliable source of data. The main goal
of this research is to make use of this common information contained in the flight manual to predict
fuel consumption of an aircraft. To make use of the flight manual, a table look-up function must be
constructed. Since data given are non-linear and discontinuous, one way to create this function is by
using the neural network. The following sections contain some background and fundamental informa-
tion of neural network in considerable detail. Chapters 3 and 4 contain descriptions on how the neural
network is implemented in fuel consumption estimation.

2.2.1 Introduction to Neural Networks

Artificial neural networks (or neural networks for short) are computational models broadly inspired by
the organization of the human brain. The most important features of a neural network are its abilities
to learn, to associate, and to be error tolerant. Unlike conventional problem solving algorithms, neural
networks can be trained to perform a particular task. This is done by presenting the system with a rep-
resentative set of examples describing the problem, namely pairs of input and output samples; the neu-
ral network will then extrapolate the mapping between input and output data. After training, the neural
network can be used to recognize data that is similar to any of the examples shown during the training
phase. The neural network can even recognize incomplete or noisy data, an important feature that is
often used for prediction, diagnosis or control purposes. Furthermore, neural networks have the ability
to self-organize, therefore enabling segmentation or coarse coding of data.

 CHAPTER 2: Modeling Background

16

Functionality

At the most abstract level, a neural network can be thought of as a black box, where data is fed in on
one side, processed by the neural network which then produces an output according to the supplied
input (Candill 1992). Although a neural network can usually process any kind of data, e.g. qualitative
or quantitative information, the data fed into the neural network should be preprocessed (e.g. filtered,
transformed) to enable faster training and better performance. In fact, the selection, preprocessing, and
coding of information is one of the main issues to deal with when working with neural networks.

Layers

A closer look at the black box reveals that its interface to the outside world consists of an input layer
and an output layer of neurons. The neurons are the processing units within the neural network and are
usually arranged in layers (Alexander, 1989). The information is propagated through the neural net-
work layer by layer, always in the same direction. Besides the input and output layer there can be other
intermediate layers of neurons, which are usually called hidden layers. Figure 2.5 illustrates the sim-
plified architecture of a neural network.

Figure 2.5 General Architecture of a Neural Network.

Neurons

A neuron collects information from all preceding neurons relative to the flow of the information and
propagates its output to the neurons in the following layer. The output of each preceding neuron (ai-1)
is modulated by a correspondent weight (wi) and bias (b i) before affecting the activity of the neuron.
This process is realized by the formula , where ni represents the activity of the neuron.
This activity is then modified by transfer function f() and becomes the final output

 of the neuron (Dayhoff, 1990). This signal is then propagated to the neu-
rons of the next layer. Figure 2.7 depicts this process.

Connections

Connections are the paths between neurons where all the information flows within a neural network.
Very often the neurons of two succeeding layers are fully interconnected, but there might exist addi-
tional connections going to further layers or even missing connections between certain neurons.

Layer 1

Layer 2

Layer 3

ni wiai 1– bi+=

ai f ni() f wiai 1– b+()= =

2.2 Neural Network Aided Fuel Consumption

17

Weights and Biases

One of the most important aspects of neural networks is the storage of information (Khanna, 1996).
Each connection is equipped with an individual weight and bias that modifies the signal flow on the
respective connection. The weight works as a factor by which the output of the preceding neuron is
multiplied. The bias works as a fine adjustment by which the product of weight and output from the
preceding layer is added. This means that information is stored and distributed within a neural network
and even minor destruction of some of the weights and biases will have large effect on the recall of
learned information.

Recall

The phase when a neural network applies the information acquired during the learning phase is called
the recall phase. The recall always starts by applying an input pattern to the input layer of the neural
network (Khanna, 1996). Each of the input neurons holds a specific component of the input pattern and
normally does not process it, but simply sends it directly to all the connected neurons. However, before
their output can reach the succeeding neurons, it is modified by the weight and bias on the connection.
All the neurons of the second layer then receive modified (i.e. weighted and biased) input values and
process them. Afterwards these neurons send their output to succeeding neurons of the next layer. This
procedure is repeated until the neurons of the output layer finally produce an output which is the neural
network's answer to the presented input pattern.

Figure 2.6 A Single Neuron Diagram.

Transfer Functions

Transfer functions are the processing units of a neuron. These functions can be linear or non-linear.
Three of the most common transfer function are depicted in Figure 2.7:

 The mathematical formulation of the above functions is given as follows:

 Pure-linear: (2.42)

ai 1–
1

ai 1–
2

ai 1–
3

ai 1–
4

ai 1–
5

n w jai 1–
j() b

j
+

j

∑= ai f n()= n

w1

w2

w3

w4

w5

a n=

 CHAPTER 2: Modeling Background

18

 Log Sigmoid: (2.43)

Tangent Sigmoid (2.44)

Figure 2.7 Basic Neural Network Transfer Functions.

Learning

The phase when sample patterns of a certain problem are presented to a neural network is called the
training phase. During training, the weights and biases of the neural network are adjusted. Depending
on the type of the neural network and on the problem it is going to solve, either a supervised or an un-
supervised method can be used for adapting the weights (Beal, 1992). In both cases however, every
training starts with a recall where the input is propagated through the neural network and all its neurons
change their activity accordingly. A supervised training is typically chosen when the neural network to
map input to output patterns is desirable. This requires that the output to a given input is known. After
the recall phase, the output of the neural network is compared to what the resulting output pattern
should be. The observed difference is used to adapt the weights and biases. The adaptation of the
weights starts at the output neurons and continues downward toward the input layer. The weight and
bias adaptation for one pattern often does not correct the neural network's faulty response completely,
but improves it. Then the next input pattern is chosen and the whole process is repeated until the overall
response of the neural network is satisfying. It is important to define the point where the training is
terminated, because sometimes it is possible to over-train a neural network. Namely, at some point the
neural network starts to memorize exactly the training examples with their inherent noise and later on
it will not be able to generalize from the trained examples to new patterns presented during recall. An
unsupervised training is chosen when the neural network has to classify data on its own. In this fashion
the neural network distinguishes certain classes by using the interdependency it detects within the data.
Some of these neural networks are even able to reorganize themselves, e.g. by recruiting new neurons
to represent unknown patterns or new classes.

Neural Network Types

There are hundreds of different neural network types that can be classified in various ways, e.g. in the

a 1

1 e
n–

+
-----------------=

a
e

n
e

n–
–

e
n

e
n–

+
-------------------=

b

-b/w

a

n

a = purelin(n)

-b/w

1

a

n

a = Log-Sigmoid(n)

a

n

1

-1
-b/w

a= Tan-Sigmoid(n)

2.2 Neural Network Aided Fuel Consumption

19

way they are trained (supervised, unsupervised, or reinforced), how the information flow in the net-
work is organized (feedback, feedforward), how the topology is built (static or self-organizing). An-
other way to classify neural networks is by distinguishing between the training algorithms that are used
to adjust the weights. In this case, the number of different training algorithms is even larger than the
number of neural network types (Khanna, 1996).

The typical steps for creating a neural network application are:

1. Analysis of the problem and collection of all available data

2. Analysis of the collected data

3. Choice of the neural network type that is capable of solving your problem

4. Selection of the important features that will be used

5. Coding of the information, using the result of the data analysis

6. Separation of data basis into training and test set

7. Design of the appropriate neural network topology, choice of the neurons'

8. Functions, and basic decision about the amount of neurons to be used in each layer

9. Training of the neural network and monitoring its performance on the test set

10. Optimization of the neural network by changing the topology, the amount of neurons,
the neurons' functions

2.2.2 Neural Learning Using Back-Propagation

One of the most powerful uses of a neural network is function approximation. Neural networks known
as neural nets are computing systems which can be trained to learn a complex relationship between
input variables and target data sets. Neural nets employ Parallel Distributed Processing (PDP) com-
posed of interconnecting simple processing nodes. Neural net techniques have been successfully ap-
plied in various fields such as linear and/or non-linear function approximation, control systems and
image processing. As discussed in the previous section, the learning process is the most important part
of the entire process. The objective of the learning process is to train the network so that the application
of a set of inputs produces the desired or at least a consistent set of outputs. During training the network
weights gradually converge to values such that each input vector produces the desired output vector
(Freeman, 1992).

A learning cycle starts with applying an input vector to the network, which is propagated in a forward
propagation mode which ends with an output vector. Next, the network evaluates the errors between
the desired output vector and the actual output vector. It uses these errors to shift the connection
weights and biases according to a learning rule that tends to minimize the error. This process is gener-
ally referred to as “error back-propagation” or back-propagation for short. The adjusted weights and
biases are then used to start a new cycle. A back-propagation cycle, also known as an epoch, in a neural
network is illustrated in Figure 2.8. For a finite number of epochs the weights and biases are shifted

 CHAPTER 2: Modeling Background

20

until the deviations form the outputs are minimized.

2.2.3 Learning Rule and Lavenberg Marquardt Optimization Algorithm

As stated in the previous section, the neural network learning process is actually an iterative process
which minimizes the error between the outputs and the targets by shifting weights and biases toward
the optimum (Hagan, 1996). This process can be achieved by applying the Levenberg-Marquardt al-
gorithm. The Levenberg-Marquardt algorithm is based on two optimization techniques, the steepest
descent algorithm and Newton’s method. The difference between these two algorithms is that the
steepest descent algorithm is based on the first order Taylor series expansion, and the Newton’s method
is based on the second order Taylor series.

Suppose a performance index Z() is to be minimized. The search of the optimum begins at () and
then updates the guess in stages according to following rule:

 (2.45)

where is the search direction and is the step size. Note that Newton’s method and steepest descent
are distinguished by the choice of the search direction, .

Figure 2.8 Backpropagation Cycle.

Steepest Descent Method

This method is derived from a first order Taylor series expansion of Z() about the old guess :

 (2.46)

x x0

xk 1+ xk αk pk+=

pk
αk

pk

INPUT-OUTPUT
PAIR

INPUT VECTOR

FORWARD
PROPAGATION

EVALUATION
OF ERROR

BACK
PROPAGATION

REVIEW
LEARNING

RULE

UPDATE
WEIGHTS
& BIASES

OUTPUT
VECTOR
(TARGET)

x xk

Z xk 1+() Z xk ∆xk+() Z xk() gk
T ∆xk+= =

2.2 Neural Network Aided Fuel Consumption

21

where is the gradient evaluated at the previous guess :

(2.47)

For to be less than , such that the function decrease at each iteration, the second term on
the right hand side must be negative:

(2.48)

If is a small but positive value, then,

(2.49)

The above vector will be most negative if:

(2.50)

Using the above conclusion, an iteration until function Z is optimum produces the method of steepest
descent:

 (2.51)

The learning rate, can be determined by:

1. Minimizing Z with respect to , which is basically the same as minimizing along the
line .

2. Fixed learning rate.

Newton’s Method

If and , then the second order Taylor series of can be ex-
pressed as:

(2.52)

By taking the gradient of the above equation with respect to , and setting it equal to zero, can
be written as:

(2.53)

Newton’s method is then defined as:

(2.54)

Since error function in neural network is expressed in sum of squares function, for the purpose of this

gk xk

gk ∇Z x()
x xk=

≡

Z xk 1+() Z x()

gk
T ∆xk αkgk

T
pk 0<=

αk

gk
T

pk 0<

pk g– k=

xk 1+ xk αk– gk=

αk

αk

xk αk– gk

Bk ∇2
Z x()

x xk=
≡ gk ∇Z x()

x xk=
≡ Z xk 1+()

Z xk 1+() Z xk() gk
T ∆xk

1
2
---∆xk

T
Bk∆xk+ +=

∆xk ∆xk

∆xk Bk
1–
gk–=

xk 1+ xk Bk
1–
gk–=

 CHAPTER 2: Modeling Background

22

research project, assume that Z is the sum of squares function, such that:

 (2.55)

and the jth element of the gradient can be written as

(2.56)

The gradient can (2.57)

where J is the Jacobian matrix as shown below:

(2.58)

The next step is finding the Hessian matrix. The k,j element of the Hessian matrix would be:

(2.59)

The Hessian matrix can then be expressed in matrix form:

 (2.60)

where

(2.61)

If is small then the Hessian matrix can be approximated as:

 (2.62)

Substituting Equations 2.55 and 2.60 into Equation 2.54, the following can be obtained:

Z x() ζi
2

x()
i 1=

N

∑ ξT
x()ζ x()= =

∇Z x()[] j x j∂
∂ Z x() 2 ζi x()

x∂
∂ ζi x()

i 1=

N

∑= =

∇Z x() 2J
T

x()ζ x()˙=

J x()

x1∂
∂ ζ1 x()

x2∂
∂ ζ1 x() …

xn∂
∂ ζ1 x()

x1∂
∂ ζ2 x()

x2∂
∂ ζ2 x() …

xn∂
∂ ζn x()

x1∂
∂ ζN x()

x2∂
∂ ζN x() …

xn∂
∂ ζN x()

=

∇2
Z x()[]k j, xk x j∂

2

∂
∂ Z x() 2

xk∂
∂ ζi x()

x j∂
∂ ζi x() ζi x()

xk x j∂

2

∂
∂ ζi x()+

i 1=

N

∑= =

∇2
Z x() 2J

T
x()J x() 2S x()+=

S x() ζi x()∇2ζi x()
i 1=

N

∑=

S x()

∇2
Z x() 2J

T
x()J x()≡

2.2 Neural Network Aided Fuel Consumption

23

(2.63)

 (2.64)

Equation 2.64 is known as the Gauss-Newton algorithm. The main advantage of using this method over
Newton’s method is that it does not require calculation of second derivatives. However, there is a weak-
ness with the Gauss-Newton method, arising at instances when matrix is not invertible. This
can be overcome by using the following modification to approximate the Hessian matrix: .

To see how this matrix is invertible, suppose that the eigenvalues and eigenvectors of H are
 and . Then:

. (2.65)

Therefore the eigenvectors of G are the same as the eigenvectors of H, and the eigenvalues of G are
. G can be made positive definite by increasing until for all i, and therefore the

matrix will be invertible.

This leads to an important result, known as Levenberg-Marquardt algorithm:

(2.66)

or

 (2.67)

The main characteristic of this equation is that when is increased it approaches the steepest descent
algorithm with a small learning rate:

(2.68)

while as is decreased to zero the algorithm becomes Gauss-Newton.

Typically, the algorithm begins with set to some small value. If a step does not yield a smaller value
for , then the step is repeated with multiplied by some factor for . Eventually,
should decrease, since a small step would be taken in the direction of steepest descent. If a step does
produce a smaller value for , then is divided by for the next step, so that the algorithm will
approach Gauss-Newton, which should provide faster convergence. The algorithm provides a good
compromise between the efficiency of Newton’s method and the guaranteed convergence of steepest
descent method.

xk 1+ xk 2J
T

xk()J xk()[]
1–
2J

T
xk()ζ xk()–=

xk 1+ xk J
T

xk()J xk()[]
1–
J

T
xk()ζ xk()–=

H J
T

J=
G H µI+=

λ1 λ2 … λn, , ,{ } ξ1 ξ2 … ξn, , ,{ }

Gξi H µI+[]ξ i Hξi µξ i+ λiξi µξ i+ λi µ+()ξ i= = = =

λi µ+() µ λi µ 0>+

xk 1+ xk J
T

xk()J xk() µkI+[]
1–
J

T
xk()ζ xk()–=

∆xk J
T

xk()J xk() µkI+[]
1–
J

T
xk()ζ xk()–=

µk

xk 1+ xk
1
µk
-----J

T
xk()ζ xk()–≅ xk

1
2µk
---------∇Z x()–=

µk

µk
Z x() µk κ κ 1> Z x()

Z x() µk κ

 CHAPTER 2: Modeling Background

24

Implementing the Levenberg algorithm method to the neural network training is done by replacing the
 function discussed by the performance index function . The performance index function for mul-

tilayer network is the mean squared error.

Suppose is an input vector, the corresponding target output is . The algorithm should adjust the net-
work parameters in order to minimize the mean squared error:

(2.69)

Here a is the output of the tested value and x is the vector of network weights and biases.If the network
has multiple outputs this generalizes to

 (2.70)

If each target occurs with equal probability, the mean squared error is proportional to the sum of
squared errors over Q targets in the training set:

 (2.71)

(2.72)

Equation 2.71 is equivalent to the performance index shown in Equation 2.55, for which Levenberg-
Marquardt was designed. Therefore it should be a straight forward matter to adapt the algorithm for
network training.

Z F

p t

F x() Φ e
2[] Φ t a–()2[]= =

F x() Φ e
T

e[] Φ t a–()T
t a–()[]= =

F x() tq aq–()
T

tq aq–()
q 1=

Q

∑=

F x() eq
T

eq
q 1=

Q

∑= ζi()2

i 1=

N

∑=

25

CHAPTER 3 Methodology

The general approach to demonstrate the use of neural networks in fuel consumption estimation fol-
lows six steps:

1. Selection of testing aircraft

2. Data collection from a flight manual

3. Training neural networks for the corresponding data base

4. Implementation and generalization of the neural network

5. Correlation of results

6. Implementation of the neural network to an actual flight trajectory

3.1 Selection of the Testing Aircraft

The purpose of this section is to show that neural networks have the potential to approximate various
aircraft fuel consumption data sets in a reliable and efficient manner. This chapter illustrates this using
data sets taken from the Fokker F-100 - a short range turbofan-powered aircraft. The specifications of
this particular aircraft are shown in Figure 3.1

3.2 Fuel Consumption Data Collection

A scanner connected to a personal computer was used to digitize all flight performance chart contained
in the flight manual. The flight manual consists of different charts relating fuel consumption to flight

 CHAPTER 3: Methodology

26

performance parameters such as Mach number, altitude, weight and international atmospheric condi-
tions (i.e., ISA, ISA + 10, etc.). Using a data retrieval program all digitized maps were converted into
usable table data depicting aircraft performance for various flight regimes. The typical segmentation
of flight phases stated in the flight manual was maintained to preserve the accuracy of the tables as
much as possible. Typical performance charts included takeoff and climbout, climb, cruise, descent
and taxi profiles.

Figure 3.1 Fokker F-100 Aircraft Layout and General Characteristics.

3.3 Training the Neural Network

In order to simplify our analysis for training a neural network we used the MATLAB Neural Network
Toolbox. MATLAB is a general mathematical package produced by the Mathworks Company. This
tool is very efficient to handle matrices and was used throughout this research project to handle data
manipulation tasks and neural network computations. Moreover, MATLAB has excellent graphics and
visualization routines that made this effort more manageable.

The reader must It must understand that once a neural network is trained and properly calibrated its
implementation becomes independent of the mathematical package used. Consequently although our
approach was substantially simplified with the use of MATLAB the actual implementation of the neu-
ral network applied to aircraft fuel consumption is relatively easy to implement in any higher level pro-

Wingspan

Length

Overall height

Aircraft Characteristic

Cruising speed

Service ceiling

Approach speed

Powerplant

Landing field length

Takeoff field length

Range

28.08 m

35.33 m

8.5 m

Mach 0.75

64.3 m/s

12,000 m

1,520 m

1,830 m

3,100 km

2 x RR Tay 650

Value

3.3 Training the Neural Network

27

gramming language (including simulation languages like SIMSCRIPT II.5) that handles arrays.

Throughout this research project several programs or templates were developed in MATLAB to per-
form the following neural net computations:

1. Network training/learning.

2. Testing and evaluation of a trained network.

3. Implementation to estimate aircraft fuel consumption in any trajectory.

For any given aircraft, the data was split into learning and testing sets. Learning sets are used to train
the neural network to recognize patterns. Testing sets are random values of the input parameters to the
neural network used to validate the outputs of the trained network. Each template requires certain the
following inputs:

1. Number of inputs.

2. Value for the learning coefficient.

3. Number of processing elements (neurons) in the hidden layer and output layers.

4. Maximum number of cycles (epochs) for each run.

5. Required accuracy in the training procedure (i.e., sum of the squared errors for each
run).

In general, all programs developed as part of this research effort can be viewed as computational tem-
plates that are fully reusable for any number of aircraft. In this research we tested two dissimilar air-
craft to validate that the topology of the neural network employed could in fact characterize various
performance envelopes for turbofan and turboprop powered aircraft. The Saab 2000 was employed as
testing aircraft for the later assessment.

3.3.1 MATLAB Neural Network Basics

MATLAB is a powerful and advanced computational software developed by MathWorks Inc. MAT-
LAB features a well developed and tested neural network toolbox that has multiple built-in functions
to ease the training and generalization of neural networks. Some of the relevant commands for neural
network basics are included in this chapter for completeness and better understanding of the source
code in Appendix A.

Initff

Purpose:

Initializes a feed-forward network.

Synopsis:

[w1,b1,w2,b2,w3,b3] = initff(P,S1,F1,S2,F2,S3,T)

 CHAPTER 3: Methodology

28

Description

initff(P,S,T) - takes a matrix of input vectors P, the number of neurons S, and the number of rows in
target vector T, and returns the weights and biases for a single layer with S neurons.

trainnlm

Purpose:

Trains a feed-forward network with Levenberg-Marquardt Algorithm.

Synopsis:

[w1,b1,w2,b2,w3,b3] = trainnlm(w1,b1,’F1’,w2,b2,’F2’,w3,b3,’F3’,P,T,tp)

where

w is the weight vector

b is the bias vector

F is the transfer function

P is the input vector

T is the Target vector

tp is the optional training parameter

tp(1) - Epochs between updating display

tp(2) - Maximum number of epochs to train

tp(3) - Sum-squared error goal

tp(4) - Minimum gradient

tp(5) - Initial value for , learning rate

tp(6) - Multiplier for increasing

tp(7) - Multiplier for decreasing

tp(8) Maximum value for

Description:

trainlm - a function which employs the Levenberg-Marquart Algorithm in training the weights and
biases to map the input vectors.

Training continues until the error goal is met or until the number of epochs reaches a maximum num-
ber of epochs.

The variable determines whether learning progresses according to Newton’s method or gradient de-
scent. Here is the Levenberg-Marquardt rule for updating parameters (such as weights and biases):

µ

µ

µ

µ

µ

W J
T

J µI+()
1–
J

T
=

3.3 Training the Neural Network

29

Here, is the Jacobian matrix, as discussed in Chapter 2. As the error e gets large the term be-
comes negligible and learning progresses according to , which is gradient descent. Whenever
a step is taken with increasing error, is increased until a step can be taken without increasing error.
However, if becomes too large no learning takes place (i.e. approaches zero). This occurs
when an error minima has been found. This is why learning stops when reaches its maximum value.

simuff

Purpose:

Simulate a feed-forward network.

Synopsis:

simuff(P,w1,b1,F1,w2,b2,F2,w3,b3,F3)

Description

simuff - a feed-forward network consisting of a set of layers, where each layer receives its input
from the previous layers.

simuff(P,w1,b1,F1,w2,b2,F2,w3,b3,F3) takes the weights (w), biases (b) and user defined transfer
functions of three layers and returns the network outputs.

logsig

Purpose:

Log sigmoid transfer function.

Synopsis:

logsig(n)

Description:

logsig - log-sigmoid is a function used to map a neuron input from the interval into the
interval (0,1). The log-sigmoid is a differentiable function, which makes it suitable for neurons
being trained with Levenberg-Marquardt algorithm. The following is the log-sigmoid equation as
it is applied to each input element:

(3.1)

tansig

Purpose:

Tangent-sigmoid transfer function.

Synopsis:

tansig(n)

J J
T

J
µ 1–

J
T

e
µ

µ µ 1–
J

T
e

µ

∞ ∞,–()

sig n()log 1

1 e
n–

+
-----------------=

 CHAPTER 3: Methodology

30

Description:

tansig - a tangent-sigmoid function, used to map a neuron input from the interval into
interval (-1,1). The tangent-sigmoid is a differentiable function, which makes it suitable for neu-
rons being trained with Levenberg-Marquardt algorithm. The following is the tangent-sigmoid
equation as it is applied to each input element:

(3.2)

purelin

Purpose:

linear transfer function.

Synopsis:

purelin(n)

Description:

purelin - the simplest transfer function a neuron can have is the pure linear transfer function, which
simply passes a neuron’s input vectors on to its output, being altered only by the neuron’s bias,
which is added to it.

3.3.2 Selection of Training Algorithms

Based on the analysis performed with several transfer function algorithms the Levenberg-Marquardt
algorithms are found to be the most efficient and reliable means to be used for this study. Table 3.1
shows a comparison of the three most popular supervised algorithms. These numbers are based on
MATLAB Version 5.1 run on a PowerMacintosh 8500 computer (i.e., PowerPC 604-120 microproces-
sor).

Therefore, Levenberg-Marquardt Algorithm was the choice for our neural network design and analysis.

3.3.3 Design of the Appropriate Neural Network Topology

Design of the appropriate neural network topology involves several important steps:

TABLE 3.1. Comparison of Optimization Algorithms

Function Technique Time (s) Flops

TRAINBP Backpropagation 259.1 2.16E+0.8

TRAINBPX Fast Backprop 42.4 2.97E+0.7

TRAINLM Levenberg-Marquardt 3.3 315769

∞ ∞,–()

sig n()tan n)()tanh=

3.3 Training the Neural Network

31

1. Choosing the appropriate neurons’ transfer functions,

2. Basic decision about the amount of neurons to be used in each layer,

3. Selecting the amount of hidden layers.

Function approximation has been traditionally one of the most researched uses of neural networks.
Typically, a two or three layer network is sufficient to approximate any function with a finite number
of discontinuities. In order to gain an insight as to how topology effects the outputs, tangent-sigmoid,
logarithmic-sigmoid and pure linear neuron transfer functions were selected and tested for further in-
vestigation. Moreover, the amount of neurons each layer depends on the complexity of the target func-
tion used. If there are not enough neurons in each layer, the outputs will not be able to fit all the data
points (under-fitting). On the other hand, if there are too many neurons in each layer, oscillations may
occur between data points (over-fitting). Therefore, a topology study was conducted in order to find the
most appropriate architecture neural network to fit aircraft fuel consumption parameters. Note that
there are several hundred combinations of neurons and layers but for practical purposes we tested eight
candidate topologies shown in Table 3.2. The training input data sets for this part of the experiment are
805 data points selected from the flight manual cruise section and then tested (or generalized) with 805
random data points selected from the same flight performance manual (Fokker, 1995). Since the testing
data set was selected randomly these data points were not the same as those used in the training pro-
cedure.

TABLE 3.2. Results of the Topology Sensitivity Study

Number
of layers

Number
of

neurons
Transfer
functions

Mean
Relative
Error(%)

Standard
Deviation

of Error(%)

Floating
point

operations

2 4 tansig-purelin 0.611 0.0282 4.667E+08

2 6 tansig -purelin 0.606 0.0281 1.631E+09

2 8 tansig - purlin 0.628 0.0288 8.258E+08

3 4 logsig-tansig-pure-
lin

0.617 0.0288 1.563E+10

3 6 logsig-tansig-pure-
lin

0.610 0.0280 1.809E+10

3 8 logsig-tansig-pure-
lin

0.604 0.0279 7.687E+08

3 10 logsig-tansig-pure-
lin

0.656 0.0290 2.076E+09

3 12 logsig-tansig-pure-
lin

0.667 0.0295 1.271E+09

 CHAPTER 3: Methodology

32

The network topology study is based on the number of floating point operations (flops) and output er-
rors obtained for each network topology. Table 3.2 lists all the candidates selected and their corre-
sponding computational performance.

Based on the results shown in Table 3.2, the two best candidates are two layers with six neurons and
three layers with eight neurons. The corresponding mean errors are 0.606% and 0.604% (for 10,000
epoch). Unfortunately, further testing showed that the two layer architecture does not converge to a
minimum error during training with input data from the climb section after 10000 epochs. Therefore,
the final topology selected for this research is a three layer model with eight neurons in the first two
layers and one neuron in the output (third) layer. The corresponding transfer functions are logsig-tan-
sig-purelin, respectively.

3.4 Implementation and Generalization of the Neural Network

The neural network employed in the fuel burn evaluation model is based on a non-linear optimization
technique because of the non-linearity of the transfer functions. This technique is sometimes called
continuous-variable non-linear programming. It involves real decision variables but the objective and
constraint functions are not necessarily linear. The objective of optimization is to train the network pa-
rameters weights (w) and biases (b) so they can be adjusted in an effort to optimize the performance
of the network. Neural nets are taught to accommodate changes in the weights and bias to appropriately
reconfigure the output. Each time it iterates (teaches), the error between the output and target becomes
smaller until a minimized error goal is achieved. The goals of the model are as follows:

• Understandable and easy to use

• Suitable for a wide range of aircraft

• Easy to modify or update the model

3.4.1 Description of the Neural Network Aided Fuel Consumption Model

Fuel burn evaluation of a particular aircraft for each mission is divided in six segments:

• Warm Up and Taxi

• Takeoff and Climb-Out

• Climb

• Cruise

• Descent

• Approach and Landing

For each segment, there is a set of trained neural network weights and biases. The raw data for training
purposes is obtained from the flight manual of a particular aircraft and used as inputs to train the neural
network. A back-propagation neural network with Levenberg-Marquardt approximation model is em-
ployed. This model is created by generalizing the Widrow-Hoff learning rule to multiple-layer net-
works and non-linear differentiable transfer functions. Input vectors and the corresponding output

3.4 Implementation and Generalization of the Neural Network

33

vectors are used to train a network until it can accurately approximate a function. The reason for choos-
ing this model is that this network with biases, sigmoid layers, and a linear output layer is capable of
approximating any function with a finite number of discontinuities. The Levenberg-Marquardt approx-
imation is a non-linear optimization algorithm that would reduce the training time using Newton’s
method.

Figure 3.2 displays the architecture of the three layer fuel burn approximation network.

Figure 3.2 General Three Layer Neural Network.

where,

P is the input vector

Zi is the number of neurons in ith layer, for i=1,2,3

Z1=8

Z2=8

Z3=1

F1 is a logrithmic sigmoid transfer function

F2 is a tangential sigmoid transfer function

and F3 is a pure linear transfer function

Note that, although different flight segments require different inputs, the training procedure remains
the same. Once this network is developed, the fuel burn estimation of an aircraft is very simple. The
following are assumptions made to estimate the fuel burn:

• Aircraft acceleration is not taken into consideration, therefore all velocity changes are
assumed to be instantaneous.

• Aerodynamic effects are not used, all data is taken directly from the flight manual.

• Along with these assumptions, the fuel burn calculation for different flight segments can be
established.

For warm up and taxi, the fuel flow rate is calculated using results from a linear fitting technique. The
reason for using a linear fitting technique is that the fuel burn rate and initial weight have a linear rela-

P

P
RxQ

Input

1

 W1

 b1

 W2

 b2

 W3

 b3

Z1xR

Z1x1

n1

 Z1xQ

 a1
 Z1xQ

Z2xZ1

Z2X1

n2

 Z2xQ

, a2

 1 1

Z3xZ2

Z3x1

 Z2xQ n3

 Z3xQ

a3

Z3xQ
 F2 F3

F1

 CHAPTER 3: Methodology

34

tionship. Once the slope and the y-intersection of the line is found (see Figure 3.2), for any given initial
weight there will be a corresponding fuel rate. Multiplying the fuel flow rate by the taxing time gives
the total fuel burn for this particular segment.

For takeoff and climb-out, with the final aircraft weight left from the previous phase, the total fuel burn
for takeoff and climb-out to a certain altitude can be found for an aircraft using a trained neural net-
work. This statement is illustrated in Figure 3.3.The fuel burn for climb to cruise altitude can be cal-
culated given an initial weight at the beginning of the flight phase, initial and target altitudes,
temperature difference from ISA conditions and Mach number.

Figure 3.3 Fuel Burn for Takeoff and Climbout.

Figure 3.4 Fuel Estimation Procedure for Takeoff and Climbout.

Figure 3.5 Fuel Estimation Procedure for Climb Segment.

x - Initial weight (1000 lb.)

 Initial Weight

 Trained Network

 Fuel Burn Rate
 Takeoff and Climb out

Input Output

 Initial Weight
 Temperature

 Trained Network
 Fuel Burn Rate

 Climb Phase

Input Output

Mach Number
Initial/final alt.

Distance to Climb

3.5 Correlating Results

35

For cruise, given the cruise altitude and Mach number, for a given initial weight, the specific air range
(SAR) can be calculate using neural network.

Since,

(3.3)

 the fuel burn can be found using the required Mach number for a time interval. The fuel burn for de-
scent and landing is similar to the takeoff and climb-out phase, therefore the details will not be repeated
here.

As shown above, fuel burn estimation using neural network is simpler than calculating all the coeffi-
cients appearing in Collins algorithm. To demonstrate the capability and reliability of this method, the
Fokker 100 flight manual will be used to train the aforementioned networks. Table 3.3 contains a sum-
mary of the amount of data used to train and test the network for different segments of flight, and the
corresponding inputs and outputs.

Figure 3.6 Fuel Estimation Procedure for Cruise Segment.

3.5 Correlating Results

In order to justify the results standard statistical measures were used in this study. The following are
the statistical measures which will be employed for this research.

3.5.1 Statistical Analysis Testing Procedures

For the purpose of this research, neural network predicted fuel burn will be compared to the actual fuel
burn for each performance point. Each pair of actual and predicted fuel burn has an error value, i.e.

% (3.4)

for , where is the number of testing data points for the corresponding flight phase.

For each flight phase the mean and variance of all the errors was analyzed. Standard hypothesis testing
techniques were used to demonstrate that means of the actual and predicted data were the same.

FuelBurn lb() Range nm() SAR()⁄=

 Initial Weight

 Temperature
 Trained Network

 Cruise Phase

Input Output

Mach Number

Altitude

 Specific Air Range

Error i

Fuelburnactual()
i

Fuelburn predicted()
i

–

Fuelburnactual()
i

-- 100×=

i 1 2 … N, , ,= N

 CHAPTER 3: Methodology

36

3.6 Implementation of the Outputs to an Actual Flight Trajectory

The neural network trained weight matrix and bias vector were implemented in a simulation program.
This simulation program takes a desired four-dimensional aircraft trajectory as input and uses the cor-
responding weights and biases of the calibrated neural network model to estimate the fuel consump-
tion. A complete mission includes:

• Taxi and warm up

• Takeoff and climb out

• Climb to cruise altitude

• Cruise at desirable attitude

• Descent

• Approach and landing

The simulation program is basically a feed-forward one step process. For a single neuron, suppose each
layer has its own trained weight matrix W and its own bias vector b, along with the transfer function f

TABLE 3.3. Summary of Neural Network Training and Testing

Flight Phase
Number of

Training Points

Number of
testing
points Input Parameters Output

Takeoff and Climb-
Out

8 N/A a) ISA Cond.

b) Initial Weight (1000 lb.)

Fuel Burn Rate (lb/min)

Climb to Cruise
Altitude

852 (Fuel)

854(Distance)

Total 1706

852(Fuel)

854(Distance)

Total 1706

a) Initial Weight (1000 lb.)

b) ISA Cond

c) Mach Number

d) Target Altitude (1000 ft)

a) Fuel Burn (lb.)

b) Distance to Climb
(nm)

Cruise 805 805 a) Cruise Mach Number

b) Cruise Weight (1000 lb)

c) Cruise Altitude (1000 ft)

Specific Air Range
(nm/lb)

Descent 1210 (Fuel)

288(Distance)

Total 1498

1210 (Fuel)

288 (Distance)

Total 498

a) Initial Weight (1000 lb)

b) ISA Cond

c) Mach Number

d) Target Altitude (1000 ft)

a) Fuel Burn (lb)

b) Descent Distance
(nm)

3.6 Implementation of the Outputs to an Actual Flight Trajectory

37

and input vector p, output a can be expressed as:

(3.5)

For the purpose of this research, as noted previously, a three layered network with eight neurons in the
first two layers and one neuron in the third layer is utilized. Their corresponding transfer functions are
logarithmic-sigmoid for the first layer, tangential-sigmoid for the second layer and pure linear for the
third layer. As a demonstration of how the feed-forward process works, the climb phase of flight will
be used. As stated previously, inputs of this phase are initial weight, Mach number, target altitude and
ISA condition. The output is fuel consumption. Therefore, this model should be able to synthesize four
input parameters and give one output. The corresponding architecture is shown in Figure 3.7. Note that
there are four inputs, eight neurons in each hidden layer and one neuron in the output layer. The outputs
of layers one and two are the inputs for layers two and three. Thus layer two can be viewed as a one-
layer network with eight inputs, eight neurons, and an 8x8 weight matrix W2. The input to layer two
is a1, and the output is a2. Therefore, the three layer network in this example can be written as the fol-
lowing expression.

(3.6)

where

, and (3.7)

Hence for the first neuron in the first layer the output a1
1can be expressed as:

(3.8)

Since

(3.9)

therefore,

a f Wp b+()=

fuelburn a
3

f 3 W
3

f 2 W
2

f 1 W
1

p b
1

+() b
2

+() b
3

+()= =

W
1

w1 1,
1

w1 2,
1 … … w1 8,

1

w2 1,
1

w2 2,
1 … … w2 8,

1

w3 1,
1

w3 2,
1 … … w3 8,

1

w4 1,
1

w4 2,
1 … … w4 8,

1

= W
2

w1 1,
2

w1 2,
2 … … w1 8,

2

w2 1,
2

w2 2,
2 … … w2 8,

2

… … … … …

w8 1,
2

w8 2,
2 … … w8 8,

2

= W
2

w1 1,
3

w2 1,
3

…

w8 1,
3

=

a
1

1 f 1 w1 1,
1

w1 2,
1

w1 2,
1

w1 2,
1

altitude

Mach

Weight

ISA

b1
1

+

=

f 1 n() 1

1 e
n–

+
----------------=

 CHAPTER 3: Methodology

38

(3.10)

Calculation of fuel burn in all other flight phases is based on the same principle and therefore will not
be repeated here. Chapter 4 provides a description of all the computer programs created for this re-
search project giving the reader insight into some of the technical details involved in neural network
model testing and development.

a
1

1
1

1 e

w1 1,
1 w1 2,

1 w1 2,
1 w1 2,

1

altitude

Mach

Weight

ISA

b1
1+

–

+

---=

3.6 Implementation of the Outputs to an Actual Flight Trajectory

39

Figure 3.7 Selected Neural Network Architecture.

 CHAPTER 3: Methodology

40

41

CHAPTER 4 Neural Network Model
Development

This chapter describes all the computer programs constructed to support the development of a neural
network based fuel consumption model. The description of the computer programs is intended to
present all major components of this project. The format for this presentation is as follows:

1. Training of weight matrix for different flight phases

 Takeoff and climb out

 Climb to cruise altitude

 Cruise

 Descent

2. Testing of preliminary results using statistics

3. Implementation of results to actual flight trajectory

4.1 Training of Weight Matrix For Different Flight Phases

The program developed in this section was used to perform neural net training. Inputs for the program
are the learning set of data obtained from the flight manual. As discussed in Chapter 3, besides the
learning set of data, the following data sets are also required as inputs:

a) The number of inputs to the neural network

b) The value of each learning coefficient

c) The number of processing elements in hidden and output layers

 CHAPTER 4: Neural Network Model Development

42

d) The number for each run

The MATLAB notation such as initff (initialize feed-forward) model, trainlm (training network using
Levenberg-Marquardt Algorithm), and other transfer functions described in Chapter 3 are employed
throughout this section.

The first step for training the weight matrix or neural network learning process is to initialize the data.
Before this task can be done, all the data in the training set must be normalized, such that the training
time can be reduced. The data in the training set consists of several input variables. The normalization
is performed by dividing the input variables by the maximum value for each input variable. This results
in the input field consisting of numbers that are greater than zero, and less than or equal to one, i.e.

.

Recall the initialization function from Chapter 3, initff. This particular function takes a matrix of an
input vector P, the number of neurons S, and the number of rows in target vector T, and returns the
weights and biases for a single layer with S neurons. It is important to note that each row of P contains
the minimum and maximum expected values of the network inputs so that the weights and biases can
be initialized properly. Figure 4.1 shows an illustration of the input vector P.

The second step is to train the weight matrix of the neural network using back-propagation with Lev-
enberg-Marquardt algorithm. A complete listing of the MATLAB neural network program is shown in
Appendix A. The structure of the program is illustrated in Figure 4.2.

Figure 4.1 Sample Input Vector P for Training Purposes.

Since different flight phases require different inputs, for each flight phase there is an individual training
routine to produce a corresponding weight matrix. Table 4.1 lists a summary of the input and output
parameters for various flight phases. Throughout this research project a series of training templates
were created to simplify future estimation of aircraft specific parameters. While all data presented in
this report addresses the Fokker 100 aircraft it is very easy to derive weight and bias parameters for any
other aircraft if a training dataset exists. Since most of the aircraft manufacturers present performance
information in either tabular or graphical form the training and generalization of neural networks using
the template approach developed in this project greatly simplifies future implementation tasks.

0 Input 1≤<

min max

min max

min max

min max

2

3

4

 input
parameters

1

Input Vector P

4.2 Testing Preliminary Results Using Statistics

43

Figure 4.2 Neural Network Training Process.

4.2 Testing Preliminary Results Using Statistics

Preliminary results for climb, cruise and descent segments of flight will be used to test the reliability
of using the neural network to estimate fuel consumption of an aircraft. For these three segments, test-
ing data sets shall be imported into the testing program developed. Using results from the neural net-
work training, each performance vector in the testing data set will be processed by a feed-forward
propagation (simulation) routine which gives an output. Outputs of the neural network are compared
with the actual values acquired from the flight manual for the corresponding performance point. Stan-
dard statistical methods were to validate that all data points conform to the sam set or not. For the climb
segment, a total of 1700 performance points were used to train the neural network. For the cruise seg-
ment, a total of 805 performance points were tested given that nonlinearities of the data are less severe
than those encountered in climb or descent phases. Finally, for the descent segment, a total of 1210
performance datapoints were be tested. Note that all the performance points were being selected in a
random manner. A simple flow diagram is shown in Figure 4.3 to demonstrate the testing process.
Moreover, a list of testing programs for this part of the study are shown in Appendix A.

Data Normalization

Training Data Set

Input learning pairs

Initialize connection
Weights

Learning Module

Import Data

Forward
Propagation

Compute
Error

 Change and
 Update weights

Configuration
Parameters

Error<
 eg

Number
of cycles > me

End of learning

YES

NO

YES

NO

eg - maximum allowable error
me- maximum allowable iterations

 CHAPTER 4: Neural Network Model Development

44

TABLE 4.1. Summary of Neural Network Input and Output Parameters.

4.3 Implementation of Neural Network to Actual Flight Trajectory

Once the training of the neural network is completed and tested, outputs are ready to be implemented
to a simulation program. In addition to the outputs from the neural network, a sample flight trajectory
is inputted into the simulation program. This flight trajectory is described by the initial weight of the
aircraft before takeoff, the velocity and altitude schedules, and the number of way points. The velocity
and altitude schedules are described by way points. Way points are points on the flight trajectory for
which the velocity and altitude are specified, as shown in Figure 4.4.

With these inputs, the simulation program will calculate the fuel consumed at each way point, in the
following manner:

1. For taxi, as already demonstrated, the fuel consumption is a linear function of weight, therefore the
neural network is not required. Based on the initial weight and taxi time, the fuel burned can be calcu-
lated.

2. Takeoff and climb-out are neural network aided. This flight phase consists of only one way point.
The initial weight for this flight segment is the final aircraft weight at the end of the taxi segment. The
weight is normalized as previously described, and entered into simuff, which yields a normalized fuel
burned.

Flight Phase Input Parameters Output Parameters

Takeoff and Climb Out Weight (1000lb)

ISA Conditions

Fuel Burn Rate(lb/min)

Climb to Cruise Altitude Weight (1000lb)

ISA Conditions

Mach Number

Target Altitude (1000ft)

Fuel Burn (lb.)

Distance to Climb (nm)

Cruise Altitude (1000 ft.)

Weight (1000 lb.)

Mach

Specific Air Range

(lb/nm)

Descent Weight (1000 lb.)

ISA Conditions

Mach Number

Target Altitude (1000 ft.)

Fuel Burn (lb.)

Descent Distance

4.3 Implementation of Neural Network to Actual Flight Trajectory

45

Figure 4.3 Neural Network Testing Procedure.

Figure 4.4 Flight Trajectory Implementation with Waypoints.

3. Techniques employed for fuel consumption estimations of the climb phase are based on the actual
procedures followed by a pilot during flight. Fuel consumption information conveyed in the flight man-
ual in most cases includes only typical speeds, altitudes and weights. For instance, in the flight manual
for the Fokker 100, climb profiles are given only for the following cases:

Testing Data
Set

Neural network
trained weights

Import Data

Forward
Propagation

Output from
the network

Statistical
Analysis

Histograms
and Charts

 V1
A1

waypoints

 1 2 3 nn-1Distance

Altitude

A(n-1),V(n-1)

 CHAPTER 4: Neural Network Model Development

46

 Mach 0.65, 0.70, 0.73, and 0.75

 Weight 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, and 106 (1000 lb.)

 ISA conditions 0 and +10

The neural network simulation program is capable of producing results for input values for which it
was not trained. However, these results will not be accurate because the network was not trained to
interpolate between two discrete input values, so caution must be taken. Therefore, human logic is in-
jected into the program, and the procedures followed by a pilot in actual flight are used. This is done
by using weighted averages.

Weighted averaging is performed using the following procedure. Suppose the Fokker F100 is climbing
with an initial climb weight W, at average Mach number M, such that W has a value between W1 and
W2, and M has a value between M1 and M2, i.e. and . Also the initial climb
altitude is assumed to be A1 and the target altitude is assumed to be A2.

Note that M1, M2, W1, and W2 are input values for which the corresponding information can be found
in the flight manual without using any form of interpolation.

To estimate the fuel consumption in this case, the following steps have to be taken:

1. Calculate fuel consumption for climb from A1 to A2 with initial weight W1 using Mach numbers
M1 and M2. The resultants is . Using weighted average for Mach number, fuel consumption of an
aircraft with initial weight W1 climbing from A1 to A2 is , which can be written as:

 (4.1)

2. Replace W1 by W2 and use the same procedure shown above. Fuel consumption for climb with W2
will be FW2, which can be written as:

 (4.2)

Finally, apply the same procedure for weight. The final fuel consumption F for an aircraft with initial
climb weight W, average climbing Mach number M, climbing from A1 to A2 is:

(4.3)

The climb distance calculation is basically the same as climb fuel calculation except that a new set of
weights and biases are used instead. The purpose of calculating the required climb distance is to check
if the aircraft will be able to climb to a certain altitude in a certain distance as the desired trajectory
requires. In this fashion one can detect if the input trajectory violates the performance limits of a par-
ticular aircraft and requires the user to correct the trajectory manually. On the other hand if the aircraft
is able to out-perform the desired trajectory such that the target altitude can be attained before reaching
the distance limit then the program will add a segment of cruise from the point where the required al-

W 1 W W 2≤< M1 M M2≤<

FW 1
FW 1

F
W 1

F W 1 M 1 A2, ,()

F
W 1 M 1 A2, ,()

F
W 1 M 2 A2, ,()

–

M 1 M 2–
-- M M 1–()+ F

W 1 M 1 A1, ,()

F
W 1 M 1 A1, ,()

F
W 1 M 2 A1, ,()

–

M 1 M 2–
-- M M 1–()+–=

F
W 2

F
W 2 M 1 A2, ,()

F
W 2 M 1 A2, ,()

F
W 2 M 2 A2, ,()

–

M 1 M 2–
--- M M 1–()+ F

W 2 M 1 A1, ,()

F
W 2 M 1 A1, ,()

F
W 2 M 2 A1, ,()

–

M 1 M 2–
--- M M 1–()+–=

F FW 1

FW 2 FW 1–

W 2 W 1–
---------------------------- W W 1–()+=

4.3 Implementation of Neural Network to Actual Flight Trajectory

47

titude is attained to the next way point. The extra fuel consumption for this portion is calculated based
on the weight of the aircraft after the particular climb segment and the target Mach number of the next
way point. Figure 4.5 is used to illustrate the self-adjustment feature of the program.

4. The techniques used to calculate fuel consumption for the cruise segment are very similar to the ones
used in the climb phase. The only difference is that data for altitude is in discrete format since perfor-
mance data is usually stated in terms of Specific Air Range - SAR (see Figure 5.2 in the next chapter).
An example of fuel burn calculation for an aircraft cruise at altitude A, with cruise Mach number M
and weights W is shown as follows:

Suppose and

where W1, W2, A1 and A2 are performance parameters which can be used to determine the specific
air range (SAR) without interpolation. In a similar vein to step(1) we calculate the specific air range
for both A1 and A2, such that SARW1 and SARW2 can be written as:

 (4.4)

and

(4.5)

Therefore, the specific air range SAR for the aircraft cruising at an altitude A, with cruise Mach number
M and weights W can be expressed as:

(4.6)

Figure 4.5 Possible Aircraft Climb Procedures.

5. The computation procedure of fuel consumption for the descent phase is the same as shown in the
climb phase and it will not be repeated here. A complete flow diagram summarizing the computational
procedures outlined in this section is shown in Figure 4.6. Note that implementation of this algorithm
in SIMMOD is possible if one parses the outcome file generated in every simulation. This procedure

W 1 W W 2≤< A1 A A2< <

SAR
W 1 SAR

W 1 M A1, ,()

SAR W 1 M A1, ,() SAR W 1 M A2, ,()–

A1 A2–
--- A A1–()+=

SAR
W 2 SAR

W 2 M A1, ,()

SAR W 2 M A1, ,() SAR W 2 M A2, ,()–

A1 A2–
--- A A1–()+=

SAR
W

SAR
W 1 M A1, ,()

SAR W 2 SAR W 1–

W 2 W 1–
-- W W 1–(+=

Distance between two way points
in the inputted trajectory

Target altitude

Performance limit

Additional
Cruise segment

Altitude

Out-performed
climb

Trajectory which requires modification

 CHAPTER 4: Neural Network Model Development

48

will be further explained in the following chapter in Section 5.4.The process here is to keep track of
the microscopic activities of every aircraft for all link traversals, ground and airspace hold actions and
airspace path stretching procedures.

Figure 4.6 Flow Chart for Neural Network Aided Fuel Consumption Model.

Import Data

Flight Trajectory

Initialize Data

Initial Takeoff
 Weight

ISA Condition

Calculate fuel burn for
Taxi and Takeoff

Climb phase
complete?

Cruise phase
complete?

Climb phase
complete?

Update weight
position changes

Call cruise phase
simulation Routine

Update weight
position changes

Yes

No
Update weight
position changes

Call climb phase
simulation Routine

Update weight
position changes

Call descent phase
simulation Routine

Update weight
position changes

Update weight
position changes

No

Update weight
position changes

Yes

No

Yes

Calculate
fuel for Approach

Create weight
history results

End of program

49

CHAPTER 5 Discussion of Results

This chapter presents the results generated by the neural network aided fuel consumption model de-
scribed in Chapters 3 and 4. The Fokker 100, a medium size, high by-pass ratio turbofan powered air-
craft was used as the test aircraft. Results generated from neural network aided model are compared
with the actual performance provided in the flight manual While the results presented in this chapter
are complete for the F100, our study suggests that high performance turbopropeller driven aircraft such
as many commuter aircraft operating today can also be modeled with the neural network topology used
in this paper. In this new instance the results are comparable in precision to those obtained for the tur-
bofan powered aircraft.

5.1 Training Results

The purpose of training the neural network is to create a set of weight matrices and bias vectors (as
explained in Chapter 2 of this report) that make up a mathematical model to predict fuel consumption
under any set of aircraft flight conditions. These weighs and biases are somewhat equivalent to the re-
gression constants found in may non-linear multivariate estimation models and thus can be easily in-
corporated in any programming environment that supports array manipulation, including SIMSCRIPT
II.5, the native computer simulation language used in SIMMOD.

Training data sets were obtained by either digitizing the flight manual of the test aircraft or through a
simple compilation of various table functions representing various aircraft performance characteristics
spanning the complete flight envelope of the aircraft in question. Sample flight information character-
istics for the Fokker 100 aircraft are shown in Figures 5.1 through 5.3 for climb, cruise and descent
conditions, respectively. Other flight phases such as takeoff and climbout to 1,500 ft., taxiing and loiter
(i.e., holding) conditions are simpler to analyze because the relationships are in general linear and can

 CHAPTER 5: Discussion of Results

50

perhaps be approximated with a simpler model (i.e., a simple regression model). In fact, these simpler
conditions can also be analyzed with lower order neural networks (2 layers and just 4-5 neurons in each
layer).

Close examination of Figures 5.1through 5.3 illustrates that under various speed, altitude, weather, and
weight conditions any high-performance aircraft exhibits quite a bit of nonlinear behavior in the fuel
consumption parameter. This fact coupled with numerous charts usually available for a single aircraft
make the use of neural networks desirable.

The sizes of the various training data sets used in the neural network learning process are shown in
Table 5.1. Note that all datasets used varied in length according to the characteristic non-linear behav-
ior observed. For example, the cruise phase, while non-linear in nature is more predictable with fewer
points that the descent phase because the aircraft velocity profile changes more drastically in a descent
from 37000 ft. that cruising at the same altitude. The size of each set was derived directly from perfor-
mance curves supplied by the manufacturer (Fokker) and reflect knowledge that we obtained through
several iterations in the modeling process.

.

Figures 5.4 to 5.11 show the plots of the training data sets used in this research project for climb, cruise
and descent phases respectively. In particular, Figures 5.4-5.5 depict in two and three dimensions data
points used to train the climb phase neural network,. Examination of Figure 5.5 reveals that four climb
profiles (as stated in the flight manual) are typically employed in the operation of this aircraft for reg-
ular climbs (i.e., mach numbers ranging from a low 0.65 to a high speed climb at 0.75 mach). Note also
that pressure altitudes vary from 1500 ft. (corresponding to the end of the climb out segment modeled
in another dataset) to 40,000 ft. corresponding to the maximum certified service ceiling of this aircraft.
In general, variations in fuel consumption are also very sensitive to climb weight and atmospheric con-
ditions prevalent along the climb path. These are represented in the variations along the z-axis in Figure
5.5. For this particular aircraft a low climb weight of 58,000 lb is possible with minimal payload (i.e.,
short stage lengths) up to a maximum climb weight of 98,000 lb (accounting some minor loses for taxi-

TABLE 5.1. Training Data Sets.

Flight Phase Number of Training Points

Takeoff and Climb-Out 8 (linear)

Climb to Cruise Altitude 852 (Fuel)

854 (Distance)

Cruise 805

Descent 1210 (Fuel)

288 (Distance)

5.1 Training Results

51

ing and climb-out fuel consumption). Temperature profiles contained in the flight manual accounted
for ISA (International Standard Atmosphere) and ISA+10 conditions. Note that in general the more in-
formation about varying temperature conditions is presented in the manual the more accurate predic-
tions are possible using the neural network. A minimum data set to predict climb fuel consumption
incorporates these four variables: a) pressure altitude at top of climb, b) temperature, c) mach number,
and d) aircraft weight.

Figure 5.1 Climb Fuel Information (source: Fokker 100 Performance Manual).

 CHAPTER 5: Discussion of Results

52

Figure 5.2 Specific Air Range Information (source: Fokker 100 Performance Manual).

5.1 Training Results

53

Figure 5.3 Descent Fuel Performance (source: Fokker 100 Performance Information).

 CHAPTER 5: Discussion of Results

54

Figure 5.4 Two-Dimensional View of Climb Fuel Database.

Figure 5.5 Three Dimensional View of Training Climb Fuel Database.

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

Pressure Altitude (kft)

0

10

20

30

40

0.65

0.7

0.75
0

1000

2000

3000

4000

5000

6000

Mach Number

Pressure Altitude (kft)

Weight and

Variations
Temperature

5.1 Training Results

55

Figure 5.6 Two-Dimensional View of Climb Distance Database.

Figure 5.7 Three-Dimensional View of Climb Distance Database.

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

Pressure Altitude (kft)

0
10

20
30

40

0.65

0.7

0.75
0

50

100

150

200

250

300

350

Mach Number
Pressure Altitude (kft)

Weight and

Variations
Temperature

 CHAPTER 5: Discussion of Results

56

Figure 5.8 Two Dimensional View of Cruise Segment Specific Range Database.

Figure 5.9 Three Dimensional View of Cruise Segment Specific Range Database.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Mach Number

0.2

0.4

0.6

0.8

1

60
70

80
90

100
110

0.04

0.06

0.08

0.1

0.12

0.14

Mach Number
Aircraft Weight (klb)

Altitude and

Variations
Temperature

5.1 Training Results

57

Figure 5.10 Two Dimensional View of Descent Fuel Database.

Figure 5.11 Three Dimensional View of Descent Fuel Database.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

0

100

200

300

400

500

600

700

Pressure Altitude (kft)

Descent Profile
Speed Variations

Weight and
Temperature
Variations

0
1

2
3

4

x 104

0.65

0.7

0.75
0

100

200

300

400

500

600

700

Mach Number Pressure Altitude (ft)

Weight and

Variations
Temperature

 CHAPTER 5: Discussion of Results

58

Figures 5.5 through 5.11 demonstrate that the training data sets cover all the typical performance points
in the climb, cruise and descent phases of the mission profile. For the climb phase, fuel consumption
and distance estimation are trained for target altitudes ranging from 1,500 ft. to 40,000 ft. For the cruise
phase, specific air range (the distance covered for every pound of fuel consumed) is trained for cruise
Mach numbers ranging from 0.3 to 0.77 at various altitudes and temperature conditions. Note that
training data should be selected carefully such that a wide range of velocities and altitudes are included.
Selection of training data is a very important step; whether the neural network can be used to predict
fuel consumption accurately depends on how well the trained network can generalize the input data. A
good way to check whether the input data is well distributed is through the use of scattered plots for
various input parameters as shown in Figures 5.4, 5.6, 5.8, and 5.10.

Sample weight matrices and bias vectors are found for the Fokker 100 in Appendix B. It is worth men-
tioning that once these matrices and vectors are found and stored, they become a data base which can
be utilized in any other simulation programs, and do not depend on MATLAB. The computational pro-
cedure for doing this has been illustrated in Section 3.7 of Chapter 3.

5.2 Testing Results

The generalization of a neural network involves testing various data sets into the trained neural network
to assure the reliability of the fuel consumption estimations. Without doubt, this is one of the most im-
portant pieces in any neural network modeling effort. As stated in Section 5.1, whether the network is
reliable depends on how well the trained network can generalize the inputs. In other words, a well
trained and constructed network should be able to predict fuel consumption conditions dissimilar to
those used in the training procedure. The test results were evaluated based on the mean error and the
standard deviation of error (see Chapter 3). The results are examined and presented in this section.

Table 5.2 lists all the data sets used in the generalization step for various flight phases. In this research
it was decided that the number of data points in the generalization procedure should be equal or more
than the number of points used in the training procedure. This heuristic rule was used throughout the
generalization procedure to give sound statistical measures of the neural network errors compared to
the actual flight performance data. In all cases t-tests performed on the datasets demonstrated that the
mean errors came very close to be zero and thus the null hypothesis was an all cases accepted.

Figure 5.12 shows a plot of actual versus predicted climb fuel as a function of top-of-climb altitude.
From this figure, it can be seen that the fuel consumption of the aircraft increases in a non-linear man-
ner as the target altitude increases. Similar non-linearities are observed for variations of climb distance
and target altitude (see Figure 5.14). Figure 5.13 shows graphically the errors predicted by the three-
layer climb neural network. The mean and the standard deviation of the fuel estimation errors are 6.75
and 30.19 lb., respectively. To bring these numbers in perspective, the average computer fuel consump-
tion in the complete database was 1,528 lb. thus indicating a very small average percent error. In fact
the climb neural network was trained for nine hours for this aircraft on a 250 MHz PowerPC computer
to accuracies as low as .013% (RMS). Table 5.3 shows the mean errors and their respective standard
deviations for all phases of flight computed using neural networks.

5.2 Testing Results

59

Figures 5.14 and 5.15 show the errors obtained for the climb distance computation. Climb distance was
used as a parameter to demonstrate that neural networks can in fact predict other aircraft performance
measures such as climb and descent times that are also important in fast time simulation models. The
climb distance error computed was 0.377% with a standard deviation of 0.305%. Examination of Fig-
ure 5.15 shows that maximum dispersed errors of up to 10 nautical miles are possible for heavy F100
climbing to high flight levels (i.e., 95,000 lb flying at flying at 37,000 ft, for example). Note however,
that in most cases the climb distance error is confined to nautical miles ninety nine percent of
the time.Once again, this clearly illustrates that neural networks can yield very reasonable values of
fuel consumption for any high performance aircraft.

Figures 5.16 and 5.17 show the cruise phase fuel consumption results. Figure 5.16 shows a plot of Spe-
cific Air Range (SAR) versus cruise Mach number.This representation is typical in flight performance

TABLE 5.2. Neural Network Testing Data Sets.

Flight Phase Number of Testing Points

Takeoff and Climbout Nor applicable (linear regression used
instead)

Climb to Cruise Altitude 850 (Fuel)

850 (Distance)

Cruise 805

Descent 1210 (Fuel)

140 (Distance)

TABLE 5.3. Summary of Errors for All Phases of Flight.

Flight Phase
Mean Error

(%) Standard Deviation (%)
Null Hypothesis

(t-test at)

Climb

• Distance

• Fuel

0.377

 1.026

0.305

0.190

Accept

Accept

Cruise Specific Air Range -0.034 0.334 Accept

Descent

• Distance

• Fuel

1.760

1.423

1.860

1.177

Accept

Accept

5.4 +−

α 0.01=

 CHAPTER 5: Discussion of Results

60

manuals of high performance aircraft. This figure encompasses many charts and diagrams contained
in the flight performance manual and is also known as the “flight envelope” of the aircraft. In our mod-
eling procedure we selected data points so as to include all possible flight conditions of the aircraft to
make sure that the altitude and Mach schedule presented does not violate the aircraft performance lim-
its. The errors between the estimated and actual fuel burn are shown in Figure 5.17. Note that cruise
fuel burn predictions are fairly accurate with a mean estimation error of -0.034% and a standard devi-
ation of 0.334%. This is a result of the near quadratic behavior of SAR with Mach number (see Figure
5.2).

Figure 5.18 depicts a plot of estimated versus actual descent fuel resulting from the neural network es-
timation. Figure 5.19 shows a histogram with the errors resulting from the fuel consumption estimation
and shows that most fuel estimation errors are contained to less than ninety nine percent of
the time. The percent errors for mean and standard deviation are shown in Table 5.3.

Figure 5.20 shows a frequency plot of actual and estimated fuel consumption for the descent phase.
This plot demonstrates the general accuracy trends of the neural network estimation procedure. A Chi-
Square test of the descent fuel data indicates that both distributions fit well at .

5.3 Correlation of Neural Network Fuel Consumption Results

The final step of this research project is to develop a computer program which would perform the fol-
lowing tasks for the test aircraft:

1. Perform feed-forward simulation using weight matrices trained.

2. Calculate fuel consumption the sample aircraft for complete missions and compare the neural net-
work results with actual data (i.e., flight performance data).

A simulation program has been developed to test the validity of the results for a complete flight path;
the results obtained are shown in this section.

The input trajectory was developed according to the instructions provided in the flight manual of the
test aircraft, the Fokker F100. Each flight considered all typical segments of flight: a) taxi, b) takeoff
and climbout, c) climb to cruise altitude, d) cruise, e) descent from cruise altitude, f) landing and taxing
at destination airport. Six short stage length trips covering the East Coast of the U.S. were selected to
verify the accuracy of the model developed. Trips were chosen as they are typically flown by this type
of aircraft in NAS, under ISA+10 temperature conditions and respecting ATC control vertical separa-
tion procedures. The aircraft initial aircraft ramp gross weight was set to 95,000 lb for all analyses rep-
resenting 95% of the maximum allowable. In all cases ample fuel reserves were available at this
operating condition. All trips were modeled using Free Flight trajectories (i.e., pseudo globe circle
routes with constant heading waypoint legs of 100 nautical miles). A typical flight trajectory illustrat-
ing a flight from Dallas-Forth Worth to Miami is shown in Figure 5.21.

7.4 lbs.+−

α 0.01=

5.3 Correlation of Neural Network Fuel Consumption Results

61

Figure 5.12 Estimated and Actual Climb Fuel Results.

Figure 5.13 Climb Fuel Error Histogram.

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

Pressure Altitude (kft)

*
Actual Data

Estimated Data

-150 -100 -50 0 50 100 150
0

50

100

150

200

250

Climb Fuel Error (lb)

 CHAPTER 5: Discussion of Results

62

Figure 5.14 Climb Distance Correlation of Results.

Figure 5.15 Climb Distance Estimation Errors.

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

*
Actual Data

Estimated Data

Pressure Altitude (kft)

-15 -10 -5 0 5 10 15
0

50

100

150

200

250

300

Climb Distance Absolute Error (nm)

5.3 Correlation of Neural Network Fuel Consumption Results

63

Figure 5.16 Specific Range Generalization Results.

Figure 5.17 Specific Range Error Histogram.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

*
Actual Data

Estimated Data

Mach Number

-1.5 -1 -0.5 0 0.5 1 1.5
0

20

40

60

80

100

120

140

160

Complete flight envelope

805 data points

0.60 < Mach < 0.75

10,000 ft < altitude < 37,000 ft

58,000 lb < weight < 98,000 lb

Specific Range Error (%)

 CHAPTER 5: Discussion of Results

64

Figure 5.18 Descent Fuel Predicted vs. Actual.

Figure 5.19 Descent Fuel Error Histogram.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

-100

0

100

200

300

400

500

600

700

Pressure Altitude (ft)

*
Actual Data

Estimated Data

-20 -15 -10 -5 0 5 10 15
0

50

100

150

200

250

300

350

400

450

Descent Fuel Discrepancy (lb)

Complete flight envelope

1210 data points

0.3 < Mach < 0.75

1,500 ft < altitude < 37,000 ft

58,000 lb < weight < 98,000 lb

5.4 SIMMOD and SIMMOD 2000 Implementation Issues

65

Figure 5.20 Frequency Distributions for Actual and Computed Descent Fuel.

The output of the trajectory simulation program was fed to the neural networks for climb, cruise and
descent to estimate the fuel consumption for each flight leg. These results were compared with the per-
formance values contained in the flight manual. The results obtained in this comparison were very en-
couraging. An average fuel estimation error of less than 0.8% was found in the computations with a
maximum error of 1.61%. Table 5.4 presents the flight plan characteristics of the twelve flight plans
selected for this study.

5.4 SIMMOD and SIMMOD 2000 Implementation Issues

The implementation of the neural network model can be carried out within the existing SIMMOD
framework or in any future version of the model (called SIMMOD 2000 for this discussion). The basic
requirements to implement a neural network model are much less restrictive than those found today in
the SIMMOD fuel burn post-processor. For example, in the present implementation of the MITRE al-
gorithm to estimate fuel burn the spacing between data points in the flight trajectory has to be tightly
adjusted to less than 2,000 ft. (in the vertical dimension) to maintain reasonable accuracy. The pro-
posed neural network model can be implemented with larger vertical spacing requiring less computa-
tional effort while maintaining a good level of accuracy. This is because the fuel consumption model
using the neural network was generalized with absolute fuel consumption statistics represents altitude
changes from sea level up to the cruising altitude. In this fashion large altitude changes are captured
more accurately.

0 100 200 300 400 500 600 700
0

100

200

300

0 100 200 300 400 500 600 700
0

100

200

300
Estimated Descent Fuel (lb)

Actual Descent Fuel (lb)

 CHAPTER 5: Discussion of Results

66

Figure 5.21 Sample Flight Plan Profile.

The existing input/output file structure used in SIMMOD can be utilized in the implementation of the
neural network algorithm. Figure 5.22 illustrates graphically the current structure of the fuel burn post-
processor model. Minor modifications to the input file structure (INP file in large central box) will be
required to read weight and biases of the neural network files (routine INP.100.READ.FUELBURN.PARAME-

TERS in Table 5.5. This operation is analogous to reading large numbers of aircraft-engine specific con-
stants as currently done in SIMMOD

Table 5.5 shows all pertinent routines associated with the fuel burn post-processor. For fuel consump-
tion analysis alone minor changes to routines FBC.100.AIR.FUEL.BURN and FBG.100.GROUND.FUEL.BURN as
these two serve the role of fuel burn calculators for airspace and ground actions, respectively. These
routines are contained in submodules labeled FBC and FBG in Figure 5.22.

Figure 5.23 shows a proposed implementation methodology to embed the neural network fuel con-
sumption model developed in this project into the current structure of SIMMOD. A new set of files
(called Neural Network Fuel Consumption File in Figure 5.23) will be created to store weights and bi-
ases for a large aircraft population (100+ aircraft). Using the methodology outlined in Chapters 3 and
4 of this report we generate networks to cover detailed fuel consumptions for every phase of flight. In-
side the fuel burn post-processor module (see Figure 5.23) submodules FBC and FBG are modified
(routines FBC.100.AIR.FUEL.BURN and FBG.100.GROUND.FUEL.BURN) and labeled MFBC and MFBG.

80

85

90

95

100 26
26.5

27
27.5

28
28.5

29
29.5

0

10

20

30

Longitude (deg) Latitude (deg)

Flight plan way-points

DFW

MIA

Pseudo-globe circle route

Constant heading
segments

ClimbDescent

5.5 Neural Network Fuel Burn Correction in the Presence of Winds

67

5.5 Neural Network Fuel Burn Correction in the Presence of Winds

All performance data points contained in a typical flight manual refer to still air performance condi-
tions. For example, Figure 5.2 illustrates typical SAR profiles with zero wind conditions. Since still air
conditions seldom exist is necessary to adjust the resulting values of the neural network fuel consump-
tion model for changing wind conditions throughout the entire flight. One simple correction factor to
be introduce here is the well known concept of SAR shift due to enroute wind patterns. An approxima-
tion to account for variable winds enroute is,

TABLE 5.4. Flight Plans Used in the Correlation of the Neural Network Model (ISA+10).

Flight
Cruise Flight
Level (FL)

Distance
(nm) /

Time (hr)

Flight Manual
Fuel Burn

(lb)
Neural Net Fuel

Burn (lb)
Percent

Difference (%)

ROAa-MDWb

a. ROA - Roanoke Regional Airport (Virginia)

b. MDW - Midway Airport (Illinois)

280 448 / 1:08 6,457 6,546 1.37

310 448 / 1:10 6,360 6,330 0.46

MIAc-DFWd

c. MIA - Miami International (Florida)

d. DFW - Dallas-Forth Worth International (Texas)

310 972 / 2:24 11,851 11,865 0.12

350 972 / 2:13 11,510 11,544 0.29

ROA-LGAe

e. LGA - Laguardia Airport (New York)

290 352 / 0:57 5,298 5,260 0.71

330 352 / 0:58 5,343 5,429 1.61

ATLf-MIA

f. ATL - Atlanta Hartsfield International Airport (Georgia)

290 518 / 1:20 6,990 7,047 0.80

330 518 / 1:21 7,009 7,082 1.04

ATL-DCAg

g. DCA - National Airport (Virginia)

290 475 / 1:13 6,549 6,584 0.54

330 475 / 1:14 6,590 6,654 0.97

ROA-ATL 280 310 / 0:51 4,938 4,998 1.30

310 310 / 0:51 4,941 4,933 0.15

 CHAPTER 5: Discussion of Results

68

(5.1)

where,

 is the specific air range in the presence of winds, is the specific air range without winds,
is the wind component parallel to the flight path (negative for headwinds and positive for tailwinds)

and the denominator is the true airspeed of the aircraft in question in terms of mach number (), speed
of sound at sea level conditions () and temperature ratio . Figure 5.24 illustrates the varia-
tions in SAR for the Fokker 100 as predicted by the neural network at 30,000 ft. and ISA conditions
for various winds enroute. This characterization is important because most of the fast-time simulation
models incorporate wind patterns in the form of table look-up functions. In the particular case of SIM-
MOD a series of wind sets are specified by the user for various families of links in the airspace struc-
ture. Incorporation of wind requires minor modifications to routines FBC.100.AIR.FUEL.BURN and
FBC.900.INTERMEDIATE.VAUES.

Figure 5.22 Current SIMMOD Fuel Burn Post-processor Input/Output File Structure.

SARw SAR0 1 w

a0M
T h

T 0

----------------------+

=

SARw SAR0
w

M
a0 T h T 0⁄

SIMMOD Outcome
File

Fuel Burn
Parameters File

Route Information
File

Ground File

Unit 20

Unit 21

Unit 22

Unit 23

Fuel Burn Post-processor

AIR

FBC

FBG

GND UTIL

INP

INT

RPT

Exceptions File

Report Generation

File

Unit 25

Unit 26

5.5 Neural Network Fuel Burn Correction in the Presence of Winds

69

Figure 5.23 New SIMMOD Fuel Burn Post-processor Input/Output File Structure.

Figure 5.24 SAR Parameter Corrected for Enroute Winds.

SIMMOD Outcome
File

Neural Network

Weight/Biases File

Route Information
File

Ground File

Unit 20

Unit 21

Unit 22

Unit 23

Fuel Burn Post-processor

AIR

MFBC

MFBG

GND UTIL

INP

INT

RPT

Exceptions File

Report Generation

File

Unit 25

Unit 26

Fuel Burn

0.55 0.6 0.65 0.7 0.75
0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

Cruise Mach Number

+30 knots

No winds

-30 knots

-30 knots

 CHAPTER 5: Discussion of Results

70

TABLE 5.5. SIMMOD Fuel Burn Postprocessor Routines.

** Routines to be modified to accommodate a neural network model

Routine Purpose Subroutine Names

AIR Processes airborne fuel consuming events AIR.100.AIRSPACE.ACTION '
AIR.110.TRAVERSE.AIR.LINK
AIR.120.SPEED.UP.AIR.LINK
AIR.130.PATH.STRETCH.AIR.LINK
AIR.140.SLOW.DOWN.AIR.LINK
AIR.150.HOLD.AT.AIR.NODE
AIR.160.NON.SIMOD.NODE
AIR.170.RESET.AIR.ACTION

FBC Processes fuel burn calculations FBC.100.AIR.FUEL.BURN **
FBC.200.LEG.DISTANCE
FBC.900.INTERMEDIATE.VAUES **
FBC.910.DENSITY.ALTTUDE
FBC.920.SPEED.OF.SOUND
FBC.930.FUEL.FLOW.LIM **
FBC.940.THRUST **
FBC.950.F.CONSTANTS**

GND Processes ground fuel consuming events GND.100.GROUND.ACTION
GND.110.TAXI.GROUND.LINK
GND.120.HOLD.AT.GROUND.NODE
GND.130.LANDING.ROLL
GND.140.TAKEOFF.ROLL

FBG Processes ground fuel burn computations FBG.100.GROUND.FUEL.BURN **
FBG.200.GROUND.THRUST **

INP Reads an input file and initializes variables INP.100.READ.FUELBURN.PARAMETERS **
INP.200.READ.ROUTE.INFORMATION
INP.210.STD.TEMPERATURE

INT Initiates an action such as a flight or a cross-
over between air and ground or vice versa

INT.100.INITIATE.FLIGHT
INT.200.GROUND.THEN.AIR
INT.300.AIR.THEN.GROUND

RPT Reports the results of a fuel burn calculation RPT.100.TERMINATE.FLIGHT
RPT.110.REPORT.AIRSPACE.ACTION
RPT.120.REPORT.GROUND.ACTION
RPT.200.REPORT.STATISTICS

UTL Utility routines tracking statistical accumula-
tors needed in the fuel report

UTL.100.GET.AIRLINE.INDEX
UTL.110.ADD.AIRLINE
UTL.200.GET.ROUTE.INDEX
UTL.210.ADD.ROUTE
UTL.300.UPDATE.CUMULATIVES

71

CHAPTER 6 Conclusions and
Recommendations

6.1 Conclusions

The existing SIMMOD fuel consumption model based on aircraft performance parameters was stud-
ied. Advantages and disadvantages of this model were reviewed. A representative neural network aided
fuel consumption model was developed using data given in the aircraft performance manual. The neu-
ral network was trained to estimate fuel consumption of an example aircraft. Results were compared
to the actual performance provided in the aircraft performance manual and found to be accurate for
possible implementation in SIMMOD and other fast-time simulation programs.

The following conclusions are derived from our analysis:

1. The advantage of the existing advanced fuel consumption model (i.e. those not using
neural networks) is that it can be easily transferred to any flight trajectory program,
therefore, implementation of this model is simple. The disadvantage of this model is
that the information required to create the data base for this particular algorithm is
very difficult to obtain. This fact has been without doubt a constraint in the expansion
of the fuel burn database in SIMMOD.

2. The information provided in the aircraft performance manual is a reliable source to
obtain fuel consumption data of any aircraft. Along with neural network technology, a
neural network aided fuel consumption model has been developed.

3. Results obtained from the neural network aided fuel consumption model show that a
neural network with proper training is an accurate and efficient mean to calculate fuel
consumption of fixed wing aircraft. The added benefit of this approach is that only the

 CHAPTER 6: Conclusions and Recommendations

72

flight performance manual of the aircraft is needed to characterize the complete fuel
burn behavior of the vehicle throughout its flight envelope.

4. A neural network is found to be a viable alternative in fuel consumption estimating
application. The computational results obtained in this paper indicate that the neural
network approach can be implemented in fast-time simulation models such as SIM-
MOD, RAMS, TAAM and future products where flight trajectories are described in
terms of waypoints. Moreover, neural networks can approximate with good accuracy
the complete performance of the vehicle (including climb, cruise, maneuvering, and
decent) and simplify the implementation of realistic aircraft models without compro-
mising aircraft sensititive data that is seldom made public.

6.2 Remarks and Recommendations

6.2.1 Remarks

One of the advantages of using neural networks to estimate fuel consumption is that neural networks
are able to automatically create an internal distributed model of the problem during training. The prob-
lem is, however, that this distributed storage of information makes it almost impossible to explain the
network response to input patterns. Here, rule-based systems, such as Expert Systems or Fuzzy Logic,
offer a better choice. However, neural networks have already been developed that combine both train-
ing from examples and definition of knowledge in the form of rules. The trick is to restrict the inter-
connectivity of the neural network so that its structure can be interpreted as an implementation of a
rules set. An example of such neural networks are Neuron-Fuzzy systems. The problem of finding the
optimal amount of neurons for most neural network types can only be solved by a time consuming trail
and error approach. Nevertheless, in our study we found that once a network topology is identified
yielding accurate results the same network topology can be used to model other aircraft.

In general, the amount of neurons should be large enough to store all relevant information within the
weights and biases, but at the same time small enough to force the neural network to generalize and
not to learn the inherent noise present in the training patterns. There are neural networks that automat-
ically insert new neurons for patterns that are not similar to any of the learned ones. Additionally, there
are methods like Genetic Algorithms to automatically optimize neural networks. Many neural network
types tend to forget what they've previously learned when only new patterns are presented during train-
ing. The only way to prevent this is to store all the patterns, to add new patterns, and then to present
the whole set during training. Therefore, the artificial intelligence algorithms mentioned above should
also be considered as an alternative to estimate fuel consumption of an aircraft.

Fuel Efficient Flight Path

Fuel efficient trajectory is one of the interesting by-products of the fuel consumption estimation model.
For each feasible trajectory of an aircraft there will be a corresponding fuel consumption profile. By
comparing different trajectories, it is possible to determine the most fuel efficient trajectory. One way

6.2 Remarks and Recommendations

73

to approach this task is using dynamic programming techniques. The disadvantage of this technique is
that the computational procedure is very time consuming and repetitive. Although a fuel efficient tra-
jectory may not be executable from air-traffic controllers’ point of view, it is beneficial to determine
this particular trajectory. Without any doubt, under future free flight conditions, fuel consumption es-
timation and flight profile generation will be analyzed interactively in advanced air traffic management
systems.

Neural Network Model Extensions

The model developed in this research project purely addressed the fuel burn and performance compu-
tations typical of fast time simulation models. A future enhancement to the model presented here is the
extension to estimate thrust associated with a fuel burn flight condition. In simple terms thrust and fuel
burn are related by a characteristic parameter called Thrust Specific Fuel Consumption (TSFC). This
paramater is usually a complex function of mach number, temperature, pressure altitude, among other
factors. Preliminary results obtained in our research indicate that thrust and TSFC can also be easily
characterized using neural networks (we used a Pratt and Whitney JTD9-7R engine for this purpose)
and thus thrust values can be be obtained from operational simulation models to support noise studies.

6.2.2 Recommendations

Due to the time constraints of this project, the neural network approach was used to fully describe the
fuel consumption metrics of a single aircraft. Although not shown here, the Saab 2000 turboprop air-
craft was also modeled using the same network topology and the results were as accurate as those of
the Fokker 100. This is a first order demonstration that neural networks can approximate the perfor-
mance characteristics for various engine-airframe technologies. The algorithms developed in this re-
search project have merit because they simplify matters to add fuel burn computations to any fast-time
simulation program where aircraft trajectories are approximated using waypoint structures.

The evolution of future airport and airspace models is likely to implement fuel consumption models as
an integral part of the analysis and not as a post-processor module as currently done in practice. SIM-
MOD 2000 should implement more complete fuel burn procedures that those found in SIMMOD to-
day. In an environment where scarce economic resources are important is perhaps inadmissible to
forget the costs associated with aircraft operations in the National Airspace System (NAS).

Recommendations for future research are:

a) Test the implementation of neural networks to predict fuel consumption for general aviation aircraft.
This should be done to ensure that out network topology is robust and applicable to piston engine air-
craft.

b) Connect the model developed within the current structure of SIMMOD using standard SIMSCRIPT
II.5/C routines. This step should be a formality since we have tested the algorithms in C and MATLAB
for full aircraft trajectories. In fact, the SIMMOD outcome file provides a lot more data points than
usually required for minimum precision of our program and thus no anticipated surprises should be
expected.

 CHAPTER 6: Conclusions and Recommendations

74

c) Validate the model for a large aircraft database. This is a critical step if fuel burn is ever to be used
by airspace and airport planners in a reliable fashion. Ironically, SIMMOD was developed as a fuel
consumption prediction tool. Yet few people today employ this model for this purpose because the fuel
consumption data base is very small compared to the number of aircraft modeled operationally (only
17 aircraft are actually represented in terms of fuel consumption parameters). This trend should be re-
versed because a model that predicts some of the economic aspects of airport and airspace operations
would have more appeal to a wider range of users. Besides, expenditure of fuel resources might be-
come increasingly important in future years as communities around the world are more in tune with
the preservation of natural resources and fuel becomes a more expensive commodity.

77

APPENDIX A Neural Network Templates
Source Code

This appendix contains computer algorithms and source code to train and generalize aircraft fuel consumption
neural networks. The following sections are included:

A.1-3 Neural Network Training Templates

1. Take-off and climb out fuel estimation

2. Climb performance estimation

3. Cruise specific air range

4. Descent performance estimation

A.4-5 Neural Network Testing Program

1. Testing main program

2. Statistical analysis

A.6 Main Program to Calculate Fuel Consumption

1. Main Program

2. Climb subroutine

3. Cruise subroutine

4. Descent subroutine

 APPENDIX A: Neural Network Templates Source Code

78

A.1 Take-off and Climb Out Fuel Estimation

%NEURAL NETWORKS TRAINING FOR TAKEOFF AND CLIMBOUT
%DEVELOPED BY FRANK CHEUNG
%UNDERSPERVISION OF DR. ANTONIO TRANI
%LAST MODIFIED 23/11/97 by Toni Trani
fid = fopen ('cof')
cof = fscanf(fid, '%g %g %g ', [3,inf]);
cof=cof';

fclose(fid)

for i = 1 : 8;
Weightco(i)=cof(i,1);
Fuelco(i)=cof(i,2);
ISAco(i)=cof(i,3);

end

% Data Normalization

W_co = Weightco/max(Weightco);
F_co = Fuelco/max(Fuelco);
ISA_co = ISAco/max(ISAco);

%Set Inputs and Targets

W_co_min = min(W_co);
W_co_max = max(W_co);
ISA_co_min = min(ISA_co);
ISA_co_max = max(ISA_co);
F_co_max = max(F_co);
F_co_min = min(F_co);

P1_co = [W_co_min W_co_max; ISA_co_min ISA_co_max];
T1_co = [F_co_min F_co_max] ;
P_co = [W_co; ISA_co];
Ta_co = [F_co];
% Initialize Traning Parameters

df = 10000; % Frequency of progress displays (in epochs).
me = 10000; % Maximum number of epochs to train.
eg = 0.02; % Sum-squared error goal.
tp = [df me eg];

%********************************
% For Fuel Burn **
%********************************

% Initialize Weights and Biasis

A.2 Climb Performance Estimation

79

nns = 8; % Number of Neurons in each layer
nns2 = 8;

[W11_co,b11_co,W12_co,b12_co,W13_co,b13_co]=initff(P1_co,nns,'logsig',nns2,'tansig',T1_co,'purelin');

% Taining of the neural networks using Lavenberg-Marquardt Alogrithm

[W11_co,b11_co,W12_co,b12_co,W13_co,b13_co]= trainlm(W11_co,b11_co,'logsig',W12_co,b12_co,'tan-
sig',W13_co,b13_co,'purelin',P_co,Ta_co,tp);

% Export result

fid=fopen('wbtx.txt','w');

fprintf(fid,'%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f\n',W11_co,b11_co,W12_co,b12_co,W13_co,b13_co);

% Simulate Traning Results

[F1] = simuff (P,W11_co,b11_co,'logsig',W12_co,b12_co,'tansig',W13_co,b13_co,'purelin');

end

A.2 Climb Performance Estimation

__
% NEURAL NETWORKS TRAINING FOR CLIMB PHASE
%DEVELOPED BY FRANK CHEUNG
%UNDERSPERVISION OF DR. ANTONIO TRANI
%LAST MODIFIED 06/07/97

% Data input

fid = fopen ('CDISTFINALA')
climbd = fscanf(fid, '%g %g %g %g %g', [5,inf]);
climbd=climbd';

for i = 1 : 864;

Mach_cbd(i)=climbd(i,1);
Weight_cbd(i)=climbd(i,2);
Dist_cbd(i)=climbd(i,3);
Alt_cbd(i)=climbd(i,4);
ISA_cbd(i)=climbd(i,5);

 end
fid = fopen ('CF_FINALWA')
climbf = fscanf(fid, '%g %g %g %g %g', [5,inf]);
climbf=climbf';
for i = 1 : 864;

Mach_cbf(i)=climbf(i,1);
Weight_cbf(i)=climbf(i,2);

 APPENDIX A: Neural Network Templates Source Code

80

Fuel_cbf(i)=climbf(i,3);
Alt_cbf(i)=climbf(i,4);
ISA_cbf(i)=climbf(i,5);

 end
% Data Normalization

W_cbd = Weight_cbd/max(Weight_cbd);
M_cbd = Mach_cbd/max(Mach_cbd);
ISA_cbd = ISA_cbd/max(ISA_cbd);
A_cbd = Alt_cbd/max(Alt_cbd);
D_cbd = Dist_cbd/max(Dist_cbd);

W_cbf = Weight_cbf/max(Weight_cbf);
M_cbf = Mach_cbf/max(Mach_cbf);
ISA_cbf = ISA_cbf/max(ISA_cbf);
A_cbf = Alt_cbf/max(Alt_cbf);
F_cbf = Fuel_cbf/max(Fuel_cbf);

%Set Inputs and Targets

W_cbd_min = min(W_cbd);
W_cbd_max = max(W_cbd);
M_cbd_min = min(M_cbd);
M_cbd_max = max(M_cbd);
ISA_cbd_min = min(ISA_cbd);
ISA_cbd_max = max(ISA_cbd);
A_cbd_min = min(A_cbd);
A_cbd_max = max(A_cbd);
D_cbd_min = min(D_cbd);
D_cbd_max = max(D_cbd);

W_cbf_min = min(W_cbf);
W_cbf_max = max(W_cbf);
M_cbf_min = min(M_cbf);
M_cbf_max = max(M_cbf);
ISA_cbf_min = min(ISA_cbf);
ISA_cbf_max = max(ISA_cbf);
A_cbf_min = min(A_cbf);
A_cbf_max = max(A_cbf);
F_cbf_max = max(F_cbf);
F_cbf_min = min(F_cbf);

P1_cbd = [W_cbd_min W_cbd_max; M_cbd_min M_cbd_max; ISA_cbd_min ISA_cbd_max ...
; A_cbd_min A_cbd_max];
P1_cbf = [W_cbf_min W_cbf_max; M_cbf_min M_cbf_max; ISA_cbf_min ISA_cbf_max ...
; A_cbf_min A_cbf_max];
T1_cbf = [F_cbf_min F_cbf_max] ;
T1_cbd = [D_cbd_min D_cbd_max] ;

P_cbd = [W_cbd; M_cbd; ISA_cbd; A_cbd];
P_cbf = [W_cbf; M_cbf; ISA_cbf; A_cbf];

Ta_cbf = [F_cbf];

A.2 Climb Performance Estimation

81

Ta_cbd = [D_cbd];

% Initialize Traning Parameters

df = 100; % Frequency of progress displays (in epochs).
me = 10000; % Maximum number of epochs to train.
eg = 0.02; % Sum-squared error goal.
tp = [df me eg];

% Initialize Weights and Biasis

nns = 8; % Number of Neurons in each layer
nns2 = 8;

%********************************
% For Climb Distance **
%********************************

[W31_cb_d,b31_cb_d,W32_cb_d,b32_cb_d,W33_cb_d,b33_cb_d]=initff(P1_cbd,nns,'logsig',nns2 ...
,'tansig',T1_cbd,'purelin');

% Taining of the neural networks using Lavenberg-Marquardt Alogrithm

[W31_cb_d,b31_cb_d,W32_cb_d,b32_cb_d,W33_cb_d,b33_cb_d]= trainlm(W31_cb_d,b31_cb_d,'logsig' ...
,W32_cb_d,b32_cb_d,'tansig',W33_cb_d,b33_cb_d,'purelin',P_cbd,Ta_cbd,tp);

%********************************
% For Climb Fuel **
%********************************

[W31_cb_f,b31_cb_f,W32_cb_f,b32_cb_f,W33_cb_f,b33_cb_f]=initff(P1_cbf,nns,'logsig',nns2,'tansig' ...
,T1_cbf,'purelin');

% Taining of the neural networks using Lavenberg-Marquardt Alogrithm

[W31_cb_f,b31_cb_f,W32_cb_f,b32_cb_f,W33_cb_f,b33_cb_f]= trainlm(W31_cb_f,b31_cb_f,'logsig',W32_cb_f ...
,b32_cb_f,'tansig',W33_cb_f,b33_cb_f,'purelin',P_cbf,Ta_cbf,tp);

end

 APPENDIX A: Neural Network Templates Source Code

82

A.3 Cruise Specific Air Range

__
% NEURAL NETWORKS TRAINING FOR CRUISE PHASE
%DEVELOPED BY FRANK CHEUNG
%UNDERSPERVISION OF DR. ANTONIO TRANI
%LAST MODIFIED 11/07/97

% Data input

fid = fopen ('CRVFINE')
cruise = fscanf(fid, '%g %g %g %g ', [4,inf]);
cruise=cruise';

for i = 1 : 805;
Alt_cr(i)=cruise(i,1);
Weight_cr(i)=cruise(i,2);
Mach_cr(i)=cruise(i,3);
Fuel_cr(i)=cruise(i,4);

 end

% Data Normalization

W_cr = Weight_cr/max(Weight_cr);
M_cr = Mach_cr/max(Mach_cr);
A_cr = Alt_cr/max(Alt_cr);
F_cr = Fuel_cr/max(Fuel_cr);

%Set Inputs and Targets

W_cr_min = min(W_cr);
W_cr_max = max(W_cr);
M_cr_min = min(M_cr);
M_cr_max = max(M_cr);
A_cr_min = min(A_cr);
A_cr_max = max(A_cr);
F_cr_max = max(F_cr);
F_cr_min = min(F_cr);
P1_cr = [W_cr_min W_cr_max; M_cr_min M_cr_max; A_cr_min A_cr_max];
T1_cr = [F_cr_min F_cr_max] ;

P_cr = [W_cr; M_cr; A_cr];
Ta_cr = [F_cr];
% Initialize Traning Parameters

df = 10; % Frequency of progress displays (in epochs).
me = 10000; % Maximum number of epochs to train.
eg = 0.02; % Sum-squared error goal.
tp = [df me eg];

% Initialize Weights and Biasis

A.3 Cruise Specific Air Range

83

nns = 10; % Number of Neurons in each layer
nns2 = 10;

%********************************
% For Cruise Fuel **
%********************************

[W31_cr,b31_cr,W32_cr,b32_cr,W33_cr,b33_cr]=initff(P1_cr,nns,'logsig',nns2,'tansig',T1_cr,'purelin');

% Taining of the neural networks using Lavenberg-Marquardt Alogrithm

[W31_cr,b31_cr,W32_cr,b32_cr,W33_cr,b33_cr]= trainlm(W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tan-
sig',W33_cr,b33_cr,'purelin',P_cr,Ta_cr,tp);

% Export Result

fid=fopen('wbcr.txt','w');

fprintf(fid,'%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f,%6.3f,%6.3f\n',W31_cr,b31_cr,W32_cr,b32_cr,W33_cr,b33_cr);

% Simulate Traning Results
end
4. Descent performance estimation

% NEURAL NETWORKS TRAINING FOR DESCENT PHASE
%DEVELOPED BY FRANK CHEUNG
%UNDERSPERVISION OF DR. ANTONIO TRANI
%LAST MODIFIED 24/06/97

% Data input

fid = fopen ('dd')
dd = fscanf(fid, '%g %g %g %g %g ', [5,inf]);
dd=dd';

for i = 1 : 288;
Mach_dd(i)=dd(i,1);
Weight_dd(i)=dd(i,2);
Dist_dd(i)=dd(i,3);
Alt_dd(i)=dd(i,4);
ISA_dd(i)=dd(i,5);

 end

% Data Normalization

W_dd = Weight_dd/max(Weight_dd);
M_dd = Mach_dd/max(Mach_dd);
A_dd = Alt_dd/max(Alt_dd);
D_dd = Dist_dd/max(Dist_dd);
ISA_dd = ISA_dd/max(ISA_dd);

 APPENDIX A: Neural Network Templates Source Code

84

%Set Inputs and Targets

W_dd_min = min(W_dd);
W_dd_max = max(W_dd);
M_dd_min = min(M_dd);
M_dd_max = max(M_dd);
A_dd_min = min(A_dd);
A_dd_max = max(A_dd);
ISA_dd_min = min(ISA_dd);
ISA_dd_max = max(ISA_dd);
Dist_dd_min = min(D_dd);
Dist_dd_max = max(D_dd);
P1_dd = [W_dd_min W_dd_max; M_dd_min M_dd_max; A_dd_min A_dd_max;ISA_dd_min ISA_dd_max];
T1_dd = [Dist_dd_min Dist_dd_max] ;

P_dd = [W_dd; M_dd; A_dd;ISA_dd];
Ta_dd = [D_dd];

% Initialize Traning Parameters

df = 100; % Frequency of progress displays (in epochs).
me = 10000; % Maximum number of epochs to train.
eg = 0.02; % Sum-squared error goal.
tp = [df me eg];

% Initialize Weights and Biasis

nns = 8; % Number of Neurons in each layer
nns2 = 8;

%********************************
% For Descent Distance **
%********************************

[W31_dd,b31_dd,W32_dd,b32_dd,W33_dd,b33_dd]=initff(P1_dd,nns,'logsig',nns2,'tansig',T1_dd,'purelin');

% Taining of the neural networks using Lavenberg-Marquardt Alogrithm

[W31_dd,b31_dd,W32_dd,b32_dd,W33_dd,b33_dd]= trainlm(W31_dd,b31_dd,'logsig',W32_dd,b32_dd,'tan-
sig',W33_dd,b33_dd,'purelin',P_dd,Ta_dd,tp);

% Export Result

fid=fopen('wbdd.txt','w');

fprintf(fid,'%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f\n',W31_dd,b31_dd,W32_dd,b32_dd,W33_dd,b33_dd);

A.3 Cruise Specific Air Range

85

fid = fopen ('df')
df = fscanf(fid, '%g %g %g %g %g ', [5,inf]);
df=df';

for i = 1 : 270;
Weight_df(i)=df(i,1);
Mach_df(i)=df(i,2);
fuel_df(i)=df(i,3);
Alt_df(i)=df(i,4);
ISA_df(i)=df(i,5);

 end

% Data Normalization

W_df = Weight_df/max(Weight_df);
M_df = Mach_df/max(Mach_df);
A_df = Alt_df/max(Alt_df);
F_df = fuel_df/max(fuel_df);
ISA_df = ISA_df/max(ISA_df);

%Set Inputs and Targets

W_df_min = min(W_df);
W_df_max = max(W_df);
M_df_min = min(M_df);
M_df_max = max(M_df);
A_df_min = min(A_df);
A_df_max = max(A_df);
ISA_df_min = min(ISA_df);
ISA_df_max = max(ISA_df);
F_df_min = min(F_df);
F_df_max = max(F_df);
P1_df = [W_df_min W_df_max; M_df_min M_df_max; A_df_min A_df_max;ISA_df_min ISA_df_max];
T1_df = [F_df_min F_df_max] ;

P_df = [W_df; M_df; A_df;ISA_df];
Ta_df = [F_df];

% Initialize Traning Parameters

df = 100; % Frequency of progress displays (in epochs).
me = 10000; % Maximum number of epochs to train.
eg = 0.02; % Sum-squared error goal.
tp = [df me eg];

% Initialize Weights and Biasis

nns = 8; % Number of Neurons in each layer
nns2 = 8;

%********************************

 APPENDIX A: Neural Network Templates Source Code

86

% For Descent Fuel **
%********************************

[W31_df,b31_df,W32_df,b32_df,W33_df,b33_df]=initff(P1_df,nns,'logsig',nns2,'tansig',T1_df,'purelin');

% Taining of the neural networks using Lavenberg-Marquardt Alogrithm

[W31_df,b31_df,W32_df,b32_df,W33_df,b33_df]= trainlm(W31_df,b31_df,'logsig',W32_df,b32_df,'tan-
sig',W33_df,b33_df,'purelin',P_df,Ta_df,tp);

% Export Result

fid=fopen('wbdf.txt','w');

fprintf(fid,'%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f\n',W31_df,b31_df,W32_df,b32_df,W33_df,b33_df);

fid = fopen ('dt')
dt = fscanf(fid, '%g %g %g %g %g ', [5,inf]);
dt=dt';

for i = 1 : 258;
Weight_dt(i)=dt(i,1);
Mach_dt(i)=dt(i,2);
time_dt(i)=dt(i,3);
Alt_dt(i)=dt(i,4);
ISA_dt(i)=dt(i,5);

 end

% Data Normalization

W_dt = Weight_dt/max(Weight_dt);
M_dt = Mach_dt/max(Mach_dt);
A_dt = Alt_dt/max(Alt_dt);
T_dt = time_dt/max(time_dt);
ISA_dt = ISA_dt/max(ISA_dt);

%Set Inputs and Targets

W_dt_min = min(W_dt);
W_dt_max = max(W_dt);
M_dt_min = min(M_dt);
M_dt_max = max(M_dt);
A_dt_min = min(A_dt);
A_dt_max = max(A_dt);
ISA_dt_min = min(ISA_dt);
ISA_dt_max = max(ISA_dt);
T_dt_min = min(T_dt);
T_dt_max = max(T_dt);
P1_dt = [W_dt_min W_dt_max; M_dt_min M_dt_max; A_dt_min A_dt_max;ISA_dt_min ISA_dt_max];
T1_dt = [T_dt_min T_dt_max] ;

P_dt = [W_dt; M_dt; A_dt;ISA_dt];

A.4 Neural Network Testing Program

87

Ta_dt = [T_dt];

% Initialize Traning Parameters

df = 100; % Frequency of progress displays (in epochs).
me = 10000; % Maximum number of epochs to train.
eg = 0.02; % Sum-squared error goal.
tp = [df me eg];

% Initialize Weights and Biasis

nns = 8; % Number of Neurons in each layer
nns2 = 8;

%********************************
% For Descent Time **
%********************************

[W31_dt,b31_dt,W32_dt,b32_dt,W33_dt,b33_dt]=initff(P1_dt,nns,'logsig',nns2,'tansig',T1_dt,'purelin');

% Taining of the neural networks using Lavenberg-Marquardt Alogrithm

[W31_dt,b31_dt,W32_dt,b32_dt,W33_dt,b33_dt]= trainlm(W31_dt,b31_dt,'logsig',W32_dt,b32_dt,'tan-
sig',W33_dt,b33_dt,'purelin',P_dt,Ta_dt,tp);
% Export Result

fid=fopen('wbdt.txt','w');
fprintf(fid,'%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f\n',W31_dt,b31_dt,W32_dt,b32_dt,W33_dt,b33_dt);
end

A.4 Neural Network Testing Program

A.4.1 Testing main program
__
%NEURAL NETWORKS TRAINING FOR DATA TESTING
%DEVELOPED BY FRANK CHEUNG
%UNDERSPERVISION OF DR. ANTONIO TRANI
%LAST MODIFIED 11/07/97

load Climb;
load Cruise3_8;
load descent;

global W31_cb_f b31_cb_f W32_cb_f b32_cb_f W33_cb_f ...
 b33_cb_f W31_cb_d b31_cb_d W32_cb_d b32_cb_d W33_cb_d ...
 b33_cb_d W31_cr b31_cr W32_cr b32_cr W33_cr b33_cr ...
 W31_df b31_df W32_df b32_df W33_df b33_df W31_d
global b31_dd W32_dd b32_dd W33_dd b33_dd Weight_cbd Mach_cbd ISA_cbd Dist_cbd ...

 APPENDIX A: Neural Network Templates Source Code

88

 Alt_cbd Weight_cbf Mach_cbf ISA_cbf Alt_cbf Fuel_cbf ...
 Alt_cr Weight_cr Mach_cr Fuel_cr Weight_dd ...
 Mach_dd Alt_dd ISA_dd Weight_df Mach_df fuel_df Alt_df ISA_df;

fid = fopen ('CDTFINAL');
CBD = fscanf(fid, '%g %g %g %g %g', [5,inf]);
CBD=CBD';
for i=1:854;
CBDM(i)=CBD(i,1);
CBDW(i)=CBD(i,2);
TCBD(i)=CBD(i,3);
CBDA(i)=CBD(i,4);
 CBDI(i)=CBD(i,5);

end

fid = fopen ('CFTFINAL');
CBF = fscanf(fid, '%g %g %g %g %g', [5,inf]);
CBF=CBF';
for i=1:852;
CBFM(i)=CBF(i,1);
CBFW(i)=CBF(i,2);
TCBF(i)=CBF(i,3);
CBFA(i)=CBF(i,4);
CBFI(i)=CBF(i,5);

end

fid = fopen ('CRT');
CBT = fscanf(fid, '%g %g %g %g ', [4,inf]);
CBT=CBT';
for i=1:805;
CTA(i)=CBT(i,1);
CTW(i)=CBT(i,2);
CTM(i)=CBT(i,3);
CTF(i)=CBT(i,4);

end

fid = fopen ('DDT');
DD = fscanf(fid, '%g %g %g %g %g', [5,inf]);
DD=DD';
for i=1:140;
DDTM(i)=DD(i,1);
DDTW(i)=DD(i,2);
DDTD(i)=DD(i,3);
DDTA(i)=DD(i,4);
DDTI(i)=DD(i,5);

end

A.4 Neural Network Testing Program

89

fid = fopen ('DFT');
DF = fscanf(fid, '%g %g %g %g %g', [5,inf]);
DF=DF';
for i=1:140;
DFTM(i)=DF(i,1);
DFTW(i)=DF(i,2);
DFTF(i)=DF(i,3);
DFTA(i)=DF(i,4);
DFTI(i)=DF(i,5);

end

WMX_cbd = max(Weight_cbd);
MMX_cbd = max(Mach_cbd);
IMX_cbd = max(ISA_cbd);
AMX_cbd = max(Alt_cbd);
WMX_cbf = max(Weight_cbf);
MMX_cbf = max(Mach_cbf);
IMX_cbf = max(ISA_cbf);
AMX_cbf = max(Alt_cbf);
MCBF = max(Fuel_cbf);
MCBD = max(Dist_cbd);
MCRA = max(Alt_cr);
MCRW = max(Weight_cr);
MCRM = max(Mach_cr);
MFCR = max(Fuel_cr);
MWDD = max(Weight_dd);
MMDD = max(Mach_dd);
MDDD = max(Dist_dd);
MADD = max(Alt_dd);
MWDF = max(Weight_df);
MMDF = max(Mach_df);
MFDF = max(fuel_df);
MADF = max(Alt_df);

%For Climb

% Mach Number Normalization

M1 = CBFM./MMX_cbf;

M2 = CBDM./MMX_cbd;

% Altitude Normalization

A1=CBFA./AMX_cbf;

A2= CBDA./AMX_cbd;

 APPENDIX A: Neural Network Templates Source Code

90

T1N = CBFI./10;

T2N = CBDI./10;

% Weight Normalization

WN1 = CBFW./WMX_cbf;

WN2 = CBDW./WMX_cbd;

P1C = [WN1; M1; T1N; A1];

P2C = [WN2; M2; T2N; A2];

F1=simuff(P1C,W31_cb_f,b31_cb_f,'logsig',W32_cb_f,b32_cb_f,'tansig',W33_cb_f,b33_cb_f,'purelin');

D1=simuff(P2C,W31_cb_d,b31_cb_d,'logsig',W32_cb_d,b32_cb_d,'tansig',W33_cb_d,b33_cb_d,'purelin');

FC_cal = F1.*MCBF;

DC_cal = D1.*MCBD;

for i= 1:852;

if TCBF(i) <= 0.001;
FC_err(i) = 0;
RFC_err(i) = 0;

else;

FC_err(i) = (TCBF(i) - FC_cal(i))/TCBF(i);
RFC_err(i) = (TCBF(i) - FC_cal(i));
end
end
for i = 1:854;

if TCBD(i) <= 0.001;

DC_err(i) = 0;
RDC_err(i) = 0;

else;

DC_err(i) = (TCBD(i) - DC_cal(i))/TCBD(i);
RDC_err(i)= (TCBD(i) - DC_cal(i));
end
end

AVG_DC = sum(abs(DC_err))/852*100;

A.4 Neural Network Testing Program

91

AVG_FC = sum(abs(FC_err))/864*100;

% For Cruise

% Mach Number Normalization

TM3 = CTM./MCRM;

% Altitude Normalization

TA3= CTA./MCRA;

% Weight Normalization

WN3 = CTW./MCRW;

P3 = [WN3; TM3; TA3];

F3 =simuff(P3,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin');

CRF_cal = F3.*MFCR;

CRF_err = (CTF-CRF_cal)./CTF;
RCRF_err = (CTF-CRF_cal);
AVG_CRF = sum(abs(CRF_err))/805*100;

% Mach Number Normalization

M4 = DFTM./MMDF;

M5 = DDTM./MMDD;

% Altitude Normalization

A4= DFTA./MADF;

A5 = DDTA./MADD;

%ISA Initialization

for i = 1:140;

T4(i) = DFTI(i)/10;

end

for i = 1:140;

T5(i) = DDTI(i)/10;

end

 APPENDIX A: Neural Network Templates Source Code

92

% Weight Normalization

WND = DDTW./MWDD;

WNF = DFTW./MWDF;

% Initialization

P4 = [WNF; M4; A4; T4];

P5 = [WND; M5; A5; T5];

F4=simuff(P4,W31_df,b31_df,'logsig',W32_df,b32_df,'tansig',W33_df,b33_df,'purelin');

D5=simuff(P5,W31_dd,b31_dd,'logsig',W32_dd,b32_dd,'tansig',W33_dd,b33_dd,'purelin');

D5_cal = D5.*MDDD;

F4_cal = F4.*MFDF;

DD_err = (DDTD-D5_cal)./DDTD;
RDD_err = (DDTD-D5_cal);
DF_err = (DFTF-F4_cal)./DFTF;
RDF_err = (DFTF-F4_cal);
AVG_DD = sum(abs(DD_err))/140*100;

AVG_DF = sum(abs(DF_err))/140*100;

i=1:850;

%**********PLOTS**********************

%*********For Climb******************

plot(i,RFC_err(i), '-',i,TCBF(i),'o',i,FC_cal(i),'x');
xlabel('Testing Point No.');
ylabel('Climb Fuel (lb)');
title(['Average absolute relative error is ', num2str(AVG_FC),'%']);
legend('Actual Error','Actual Fuel Burn','Estimated Fuel Burn',2);

pause

plot(i,RDC_err(i), '-',i,TCBD(i),'o',i,DC_cal(i),'x');
xlabel('Testing point No.');
ylabel('Climb Distance (nm)');
title(['Average absolute relative error is ',num2str(AVG_DC),'%']);
legend('Relative Error','Actual Climb Distance','Estimated Climb Distance',2);

A.4 Neural Network Testing Program

93

pause
plot(CBFA,TCBF,'x');
xlabel('Altitude (1000ft)');
ylabel('Climb Fuel (lb)');
legend('Fuel Burn',2);

pause

plot(CBFA,TCBF,'x',CBFA,FC_cal,'o');
xlabel('Altitude (1000ft)');
ylabel('Climb Fuel (lb)');
title(['Average absolute relative error is ',num2str(AVG_FC),'%']);
legend('Actual Climb Fuel','Estimated Climb Fuel',2);
pause

plot(CBDA,TCBD,'x');
xlabel('Altitude (1000ft)');
ylabel('Climb Distance (nm)');
legend('Climb Distance',2);
pause

plot(CBDA,TCBD,'x',CBDA,DC_cal,'o');
xlabel('Altitude (1000ft)');
ylabel('Actual Climb Distance (nm)');
title(['Average absolute relative error is ',num2str(AVG_DC),'%']);
legend('Actual Climb Distance','Estimated Climb Distance',2);
pause

%*************For Cruise***************

i=1:805;

plot(Mach_cr,Alt_cr,'x');
xlabel('MACH NUMBER');
ylabel('Altitude (1000ft)');
title('Cruise Envelope of F100');
legend('Performance Point',2)
pause

plot(CTM,CTF,'x');
xlabel('MACH NUMBER');
ylabel('Specific Air Range (nm/lb)');
title(['Average absolute relative error is ',num2str(AVG_CRF),'%']);
legend('Cruise Specific Air-Range',2)
pause

plot(CTM,CTF,'x',CTM,CRF_cal,'o');
xlabel('MACH NUMBER');
ylabel('Specific Air Range (nm/lb)');
title(['Average absolute relative error is ',num2str(AVG_CRF),'%']);
legend('Actual Cruise Specific Range' ...
,'Estimated Cruise Specific Range',2);
pause

 APPENDIX A: Neural Network Templates Source Code

94

plot(i,RCRF_err(i), '-',i,CTF(i),'o',i,CRF_cal(i),'x');
xlabel('Tesing Point Number');
ylabel('Specifc Air Range (nm/lb)');
title(['Average absolute relative error is ',num2str(AVG_CRF),'%']);
legend('Relative Error','Actual Cruise Specific Range' ...
,'Estimated Cruise Specific Range',2);
pause

%***************For Descent***********************
i=1:140;
plot(i,RDD_err(i), '-',i,DDTD(i),'o',i,D5_cal(i),'x');
xlabel('Points');
ylabel('Descent Distance (nm)');
legend('Relative Error','Actual Descent Distance','Estimated Descent Distance',2);

title(['Average absolute relative error is ', num2str(AVG_DD),'%']);
pause
plot(i,RDF_err(i),'-',i,DFTF(i), 'o',i,F4_cal(i),'x');
xlabel('Points');
ylabel('Descent Fuel (lb)');

legend('Actual Error','Actual Descent Fuel','Estimated Descent Fuel',2);
title(['Average absolute relative error is ', num2str(AVG_DF),'%']);
pause

A.5 Statistical analysis

__
%NEURAL NETWORKS TRAINING FOR STATISTICAL ANALYSIS
%DEVELOPED BY FRANK CHEUNG
%UNDERSPERVISION OF DR. ANTONIO TRANI
%LAST MODIFIED 11/07/97

load cruise3_8;
load climb;
load descent;
fid = fopen ('CDTFINAL');
CBD = fscanf(fid, '%g %g %g %g %g', [5,inf]);
CBD=CBD';
for i=1:854;
CBDM(i)=CBD(i,1);
CBDW(i)=CBD(i,2);
TCBD(i)=CBD(i,3);
CBDA(i)=CBD(i,4);
 CBDI(i)=CBD(i,5);

end

fid = fopen ('CFTFINAL');
CBF = fscanf(fid, '%g %g %g %g %g', [5,inf]);

A.5 Statistical analysis

95

CBF=CBF';
for i=1:852;
CBFM(i)=CBF(i,1);
CBFW(i)=CBF(i,2);
TCBF(i)=CBF(i,3);
CBFA(i)=CBF(i,4);
CBFI(i)=CBF(i,5);

end

% Simulate Traning Results

fid = fopen ('CRT');
CBT = fscanf(fid, '%g %g %g %g ', [4,inf]);
CBT=CBT';
for i=1:805;
CTA(i)=CBT(i,1);
CTW(i)=CBT(i,2);
CTM(i)=CBT(i,3);
CTF(i)=CBT(i,4);

end
fid = fopen ('DDT');
DD = fscanf(fid, '%g %g %g %g %g', [5,inf]);
DD=DD';
for i=1:140;
DDTM(i)=DD(i,1);
DDTW(i)=DD(i,2);
DDTD(i)=DD(i,3);
DDTA(i)=DD(i,4);
DDTI(i)=DD(i,5);

end

fid = fopen ('DFT');
DF = fscanf(fid, '%g %g %g %g %g', [5,inf]);
DF=DF';
for i=1:140;
DFTM(i)=DF(i,1);
DFTW(i)=DF(i,2);
DFTF(i)=DF(i,3);
DFTA(i)=DF(i,4);
DFTI(i)=DF(i,5);

end

WMX_cbd = max(Weight_cbd);
MMX_cbd = max(Mach_cbd);
IMX_cbd = max(ISA_cbd);
AMX_cbd = max(Alt_cbd);
WMX_cbf = max(Weight_cbf);
MMX_cbf = max(Mach_cbf);

 APPENDIX A: Neural Network Templates Source Code

96

IMX_cbf = max(ISA_cbf);
AMX_cbf = max(Alt_cbf);
MCBF = max(Fuel_cbf);
MCBD = max(Dist_cbd);
MCRA = max(Alt_cr);
MCRW = max(Weight_cr);
MCRM = max(Mach_cr);
MFCR = max(Fuel_cr);
MWDD = max(Weight_dd);
MMDD = max(Mach_dd);
MDDD = max(Dist_dd);
MADD = max(Alt_dd);
MWDF = max(Weight_df);
MMDF = max(Mach_df);
MFDF = max(fuel_df);
MADF = max(Alt_df);
%For Climb

% Mach Number Normalization

M1 = CBFM./MMX_cbf;

M2 = CBDM./MMX_cbd;

% Altitude Normalization

A1=CBFA./AMX_cbf;

A2= CBDA./AMX_cbd;

T1N = CBFI./10;

T2N = CBDI./10;

% Weight Normalization

WN1 = CBFW./WMX_cbf;

WN2 = CBDW./WMX_cbd;

P1C = [WN1; M1; T1N; A1];

P2C = [WN2; M2; T2N; A2];

F1=simuff(P1C,W31_cb_f,b31_cb_f,'logsig',W32_cb_f,b32_cb_f,'tansig',W33_cb_f,b33_cb_f,'purelin');

D1=simuff(P2C,W31_cb_d,b31_cb_d,'logsig',W32_cb_d,b32_cb_d,'tansig',W33_cb_d,b33_cb_d,'purelin');

A.5 Statistical analysis

97

FC_cal = F1.*MCBF;

DC_cal = D1.*MCBD;

for i= 1:800;

if TCBF(i) <= 0.001;
FC_err(i) = 0;
RFC_err(i) = 0;

else;

FC_err(i) = (TCBF(i) - FC_cal(i))/TCBF(i)*100;

end
end
for i = 1:800;

if TCBD(i) <= 0.001;

DC_err(i) = 0;
RDC_err(i) = 0;

else;

DC_err(i) = (TCBD(i) - DC_cal(i))/TCBD(i)*100;

end
end

AVG_DC = sum(DC_err)/852;

AVG_FC = sum(FC_err)/864;

%difference of actual and trained fuel burn
%The sum of the difference is divided by the sample size

% CALCULATING THE MEANS

% W = THE DIFFERENCE OF THE SAMPLE MEANS

% CALCULATING THE RMS (Standard Deviation)

sd = sqrt(sum(DC_err.^2)-(sum(DC_err-AVG_DC)^2/852))/851
sf = sqrt(sum(FC_err.^2)-(sum(FC_err-AVG_FC)^2/864))/863

hist(DC_err,50)
xlabel('Error (%)');
ylabel('Frequency');
title(['Mean Error is ',num2str(AVG_DC),'% and Standard deviation is'...

 APPENDIX A: Neural Network Templates Source Code

98

,num2str(sd), '%']);

grid
legend('Climb Distance Statistics');
pause

hist(FC_err,50)
xlabel('Error (%)');
ylabel('Frequency');
title(['Mean Error is ',num2str(AVG_FC),'% and Standard deviation is'...
,num2str(sf), '%']);

grid
legend('Climb Fuel Statistics');
pause

%******************** CRUISE *****************************
% Mach Number Normalization

TM3 = CTM./max(Mach_cr);

% Altitude Normalization

TA3= CTA./max(Alt_cr);

% Weight Normalization

WN3 = CTW./max(Weight_cr);

P3 = [WN3; TM3; TA3];

F3 =simuff(P3,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr ...
,'purelin')*max(Fuel_cr);

%**************************STATISTICS*****************************

%difference of actual and trained fuel burn
%The sum of the difference is divided by the sample size
%sw = sum(w)/600 = mean(w)

% CALCULATING THE MEANS
% CTF = GENERALIZED DATA
% F3 = AFBM AFTER INVOKING THE NEURAL NET GENERALIZED DATA
i = 1:805;
w(i) = (CTF(i) - F3(i))./CTF(i)*100;

m = mean(w(i))
for i=1:805;
me(i)=m;
end
% W = THE DIFFERENCE OF THE SAMPLE MEANS

A.5 Statistical analysis

99

% CALCULATING THE RMS (Standard Deviation)

s1 = sqrt(sum(w.^2)-(sum(w(i)-me(i))^2/805))/804

hist(w,20)
xlabel('Error %');
ylabel('Frequency');

title(['Mean Error is ',num2str(m),'% and Standard deviation is'...
,num2str(s1), '%'])
legend('Cruise Specific Air Range Statistics');
grid
pause

end

% Mach Number Normalization

M4 = DFTM./MMDF;

M5 = DDTM./MMDD;

% Altitude Normalization

A4= DFTA./MADF;

A5 = DDTA./MADD;

%ISA Initialization

for i = 1:140;

T4(i) = DFTI(i)/10;

end

for i = 1:140;

T5(i) = DDTI(i)/10;

end

% Weight Normalization

WND = DDTW./MWDD;

WNF = DFTW./MWDF;

% Initialization

P4 = [WNF; M4; A4; T4];

 APPENDIX A: Neural Network Templates Source Code

100

P5 = [WND; M5; A5; T5];

F4=simuff(P4,W31_df,b31_df,'logsig',W32_df,b32_df,'tansig',W33_df,b33_df,'purelin');

D5=simuff(P5,W31_dd,b31_dd,'logsig',W32_dd,b32_dd,'tansig',W33_dd,b33_dd,'purelin');

D5_cal = D5.*MDDD;

F4_cal = F4.*MFDF;

DD_err = (DDTD-D5_cal)./DDTD*100;
RDD_err = (DDTD-D5_cal);
DF_err = (DFTF-F4_cal)./DFTF*100;
RDF_err = (DFTF-F4_cal);
AVG_DD = sum(DD_err)/140;

AVG_DF = sum(DF_err)/140;

sd = sqrt(sum(DC_err.^2)-(sum(DD_err-AVG_DD)^2/140))/139
sf = sqrt(sum(FC_err.^2)-(sum(DF_err-AVG_DF)^2/140))/139

hist(DD_err,15)
xlabel('Error (%)');
ylabel('Frequency');
title(['Mean Error is ',num2str(AVG_DD),'% and Standard deviation is'...
,num2str(sd), '%']);

grid
legend('Descent Distance Statistics');
pause

hist(DF_err,15)
xlabel('Error (%)');
ylabel('Frequency');
title(['Mean Error is ',num2str(AVG_DF),'% and Standard deviation is'...
,num2str(sf), '%']);

grid
legend('Descent Fuel Statistics');
pause

A.6 Main Program to Calculate Fuel Consumption

101

A.6 Main Program to Calculate Fuel Consumption

A.6.1 Main Program
__
%FUEL BURN CALCULATION
%DEVELOPED BY FRANK CHEUNG
%UNDER SUPERVISION OF DR. ANTONIO TRANI
%LAST MODIFIED 25/10/97

% Data input

load climb;
load cruise;
load descent;
load co;

global W31_cb_f b31_cb_f W32_cb_f b32_cb_f W33_cb_f ...
 b33_cb_f W31_cb_d b31_cb_d W32_cb_d b32_cb_d W33_cb_d ...
 b33_cb_d W31_cr b31_cr W32_cr b32_cr W33_cr b33_cr;
 global W31_df b31_df W32_df b32_df W33_df b33_df W31_dd ...
 b31_dd W32_dd b32_dd W33_dd b33_dd Weight_cbf Mach_cbf ISA_cbf Dist_cbf ...
 Alt_cb Fuel_cb Time_cb Alt_cr Weight_cr Mach_cr Fuel_cr Weight_dd ...
 global Mach_dd Alt_dd ISA_dd Weight_df Mach_df fuel_df Alt_df ISA_df ...
W31_co b31_co W32_co b32_co W33_co ...
 b33_co Weightco Fuelco ISAco Weight_cbd Mach_cbd ISA_cbd Dist_cbd;
% Data initialization

WMX_cbf = max(Weight_cbf);
MMX_cbf = max(Mach_cbf);
TMX_cbf = max(ISA_cbf);
AMX_cbf = max(Alt_cbf);
WMX_cbd = max(Weight_cbd);
MMX_cbd = max(Mach_cbd);
TMX_cbd = max(ISA_cbd);
AMX_cbd = max(Alt_cbd);
MCBF = max(Fuel_cbf);
MCBD = max(Dist_cbd);
MCRA = max(Alt_cr);
MCRW = max(Weight_cr);
MCRM = max(Mach_cr);
MFCR = max(Fuel_cr);
MWDD = max(Weight_dd);
MMDD = max(Mach_dd);
MDDD = max(Dist_dd);
MADD = max(Alt_dd);
MWDF = max(Weight_df);
MMDF = max(Mach_df);
MFDF = max(fuel_df);
MADF = max(Alt_df);

clear A_cb P1_cb A_cb_max P_cb A_cb_min T1_cb Alt_cb T2_cb ...
 T3_cb D_cb T_cb Dist_cb T_cb_max Dist_cb_max T_cb_min Dist_cb_min Ta_cb ...

 APPENDIX A: Neural Network Templates Source Code

102

 F_cb Tb_cb F_cb_max Tc_cb W_cb_min F_cb_min Tem_cb Weight_cb Fuel_cb Tem_cb_max M_cb ...
 Tem_cb_min M_cb_max Temp_cb M_cb_min Time_cb Mach_cb;
clear A_cr M_cr me ...
 A_cr_max M_cr_max nns ...
 A_cr_min M_cr_min ...
 Alt_cr Mach_cr W_cr cruise tp;
clear F_cr P1_cr W_cr_max df ...
 F_cr_max P_cr W_cr_min eg ...
 F_cr_min T1_cr Weight_cr ...
Fuel_cr Ta_cr ans i ...
A_dd ISA_dt T_dt_max Weight_dt ...
A_dd_max ISA_dt_max T_dt_min ans ;
clear A_dd_min ISA_dt_min Ta_dd ...
A_df M_dd Ta_df ...
A_df_max M_dd_max Ta_dt ...
A_df_min M_dd_min ...
A_dt M_df ...
A_dt_max M_df_max ...
A_dt_min M_df_min ...
Alt_dd M_dt ...
Alt_df M_dt_max ...
Alt_dt M_dt_min;
clear D_dd Mach_dd ...
Dist_dd Mach_df ...
Dist_dd_max Mach_dt W_dd eg ...
Dist_dd_min P1_dd W_dd_max fid ...
F_df P1_df W_dd_min fuel_df;
clear F_df_max P1_dt W_df i ...
F_df_min P_dd W_df_max me ...
ISA_dd P_df W_df_min nns ...
ISA_dd_max P_dt W_dt nns2 ...
ISA_dd_min T1_dd W_dt_max time_dt ...
ISA_df T1_df W_dt_min tp ...
ISA_df_max T1_dt Weight_dd ...
ISA_df_min T_dt Weight_df ;

fid = fopen ('finaldata.txt')
path = fscanf(fid, '%g %g %g ', [3,inf]);
path=path';

% Counter N

N=0;

%ISA Condition

ISA=0;

% ISA Normalized

ISAN=ISA/10;

A.6 Main Program to Calculate Fuel Consumption

103

% Number of waypoints included from the beginning of climb segment to Cruise Segment

X = 10;

% Number of waypoints included from the beginning of cruise segment to descent Segment

Y = 20;

% Number of waypoints included from the beginning of descent to the end

Z = 10;

%Initial take off weight (1000 lb)

W(1) = 95;
A(1)= 0;

% Taxi Time

TT = 5; %Taxi Time (min)

% *********************Taxi Fuel Burn(lb)**************************

F(2) = (W(1)*(2/13)+24.2)*TT;

W(2) = W(1)-F(2)/1000;

A(2) = 0

% *************Take off and Climb out to 1500ft************************

%Take off and climbout fuel Calculation

W_in= W(2);

% Weight Normalization

W_in_N= W_in/max(Weightco);

ISA_in = ISAN;

% Input for the Neural Nets

P= [W_in_N;ISAN];

%Output = Fuel Burn

F(3)= simuff (P,W11_co,b11_co,'logsig',W12_co,b12_co,'tansig',W13_co,b13_co,'purelin');

% Weight after Take off and Climbout to 1500 ft;

 APPENDIX A: Neural Network Templates Source Code

104

W(3)=W(2)-(F(3)*max(Fuelco))/1000;

% ***********************Climbing, Cruise and descent**************************

Alt(3)= 1.500; % Starting Altitude
Mach(3)=0.65; % Starting Mach Number
WC = W(3); % Starting Weight
D(3)=0; % Starting distance

for i = 1:X;

D(i+3)=path(i,1); % nm away from origin
Alt(i+3)=path(i,2); % 1000ft
Mach(i+3)=path(i,3); % Mach Number

% Weight Normalization

Dist = D(i+3)-D(i+2)

W_in = WC;

M1 = Mach(i+2);

M2 = Mach(i+3);

A1 = Alt(i+2);

A2 = Alt(i+3);

TrueWeight = W(i+2);

%Calculated Fuel Burn

[EX,NW,F,FEXF,D_cb]= cal_cb(Dist,A1, M1, A2, M2, W_in,WMX_cbd,MMX_cbd,AMX_cbd ...
,WMX_cbf,MMX_cbf,AMX_cbf,MCBF ...
,MCRA,MCRW,MCRM,MFCR,MCBD,TrueWeight,ISAN);

%Data Registration

EXDIST(i+3) = EX;
W(i+3) = NW;
TrueWeight = W(i+3);
FB(i+3) = F;
FEXFN(i+3) = FEXF;

end

% ****************************End of Climb**

A.6 Main Program to Calculate Fuel Consumption

105

for i = X+1:X+Y;

D(i+3)=path(i,1); % nm away from origin
Alt(i+3)=path(i,2); % 1000ft
Mach(i+3)=path(i,3); % Mach Number

% Weight Normalization

Dist = D(i+3)-D(i+2);

W_in = W(i+2);

M1 = Mach(i+2);

M2 = Mach(i+3);

A1 = Alt(i+2);

A2 = Alt(i+3);

%Calculated Fuel Burn

[NW,F] = cal_cr(Dist,A1, M1, A2, M2, W_in,MCRA,MCRW,MCRM,MFCR);

%Data Registration

EXDIST(i+3) = 0;
W(i+3) = NW;
FB(i+3) = F;
FEXFN(i+3) = 0;
 W_in=NW;
end

%*************************End of Cruise*********************************
for i = X+Y+1:X+Y+Z;

D(i+3)=path(i,1); % nm away from origin
Alt(i+3)=path(i,2); % 1000ft
Mach(i+3)=path(i,3); % Mach Number

% Weight Normalization

Dist = D(i+3)-D(i+2);

W_in = W(X+Y);

TrueWeight = W(i+2)

 APPENDIX A: Neural Network Templates Source Code

106

M1 = Mach(i+2);
M2 = Mach(i+3);
A1 = Alt(i+2);
A2 = Alt(i+3);

%Calculated Fuel Burn

[EX,NW,F,FEXF,D_d] = cal_d(Dist,A1, M1, A2, M2, W_in, ISA, MCRA,MCRW,MCRM,MFCR ...
,MWDF,MMDD,MDDD,MADD,MWDF,MMDF,MFDF,MADF,MWDD,TrueWeight);

%Data Registration

EXDIST(i+3) = EX;
W(i+3) = NW;
FB(i+3) = F;
FEXFN(i+3) = FEXF;

end
% Approach and landing
A(X+Y+Z+4) = 0;
W(X+Y+Z+4)=W(X+Y+Z+3)-((W(X+Y+Z+3)-62)*(.392-.318)/(88-62)+.318);
D(X+Y+Z+4)=1200;
Mach(X+Y+Z+4)=0;
Alt(X+Y+Z+4) =A(X+Y+Z+4);

% Data presentation
plot3(D,Mach,Alt,'-');
xlabel('Distance in NM');
ylabel('Mach Number');
zlabel('Altitude in 1000ft');
title('3D Flight Profile');
grid
pause
plot(D,Alt,'-');
xlabel('Distance (NM)');
ylabel('Altitude in (1000ft)');
title('2D Flight Profile');
grid
pause
plot(D,W,'-');
xlabel('Distance (NM)');
ylabel('Weight (1000lb)');
title('Weight History of F100');
grid
pause
plot(Alt,W,'-');
xlabel('Altitude (1000ft)');
ylabel('Weight (1000lb)');
title('Weight History of F100');
grid
pause
2. Climb subroutine
__
function [EX,NW,F,FEXF,D_cb]= CAL_CB(Dist,A1, M1, A2, M2, W_in,WMX_cbd,MMX_cbd,AMX_cbd ...

A.6 Main Program to Calculate Fuel Consumption

107

,WMX_cbf,MMX_cbf,AMX_cbf,MCBF,MCRA,MCRW,MCRM,MFCR,MCBD,TrueWeight,ISAN);

global W31_cb_f b31_cb_f W32_cb_f b32_cb_f W33_cb_f ...
 b33_cb_f W31_cr b31_cr W32_cr b32_cr W33_cr b33_cr W31_cb_d ...
 b31_cb_d W32_cb_d b32_cb_d W33_cb_d b33_cb_d;

if W_in > 62;
if W_in <= 66;
W1 = 62;
W2 = 66;
end
end
if W_in > 66;
if W_in <= 70;
W1 = 66;
W2 = 70;
end
end

if W_in > 70;
if W_in <= 74;
W1 = 70;
W2 = 74;
end
end
if W_in > 74;
if W_in<= 78;
W1 = 74;
W2 = 78;
end
end

if W_in > 78;
if W_in <= 82;
W1 = 78;
W2 = 82;
end
end

if W_in > 82;
if W_in <= 86;
W1 = 82;
W2 = 86;
end
end

if W_in > 86;
if W_in <= 90;
W1 = 86;
W2 = 90;
end
end

if W_in > 90;

 APPENDIX A: Neural Network Templates Source Code

108

if W_in <=94
W1 = 90
W2 = 94
end
end
if W_in > 94;
if W_in <=98
W1 = 94;
W2 = 98;
end
end
if W_in > 98;
if W_in <= 102;
W1 = 98;
W2 = 102;
end
end
if W_in > 102;
if W_in <= 106;
W1 = 102;
W2 = 106;
end
end

% Mach Number Normalization

M1ND = M1/MMX_cbd;

M2ND = M2/MMX_cbd;
M1NF = M1/MMX_cbf;
M2NF = M2/MMX_cbf;

% Altitude Normalization
A1ND= A1/AMX_cbd;
A2ND= A2/AMX_cbd;
A1NF= A1/AMX_cbf;
A2NF= A2/AMX_cbf;

% Weight Normalization

W1ND = W1/WMX_cbd;
W2ND = W2/WMX_cbd;

W1NF = W1/WMX_cbf;
W2NF = W2/WMX_cbf;

P1D1 = [W1ND; M1ND;ISAN; A1ND];

P2D1 = [W1ND; M2ND;ISAN; A1ND];

P3D1 = [W1ND; M1ND;ISAN; A2ND];

A.6 Main Program to Calculate Fuel Consumption

109

P4D1 = [W1ND; M2ND;ISAN; A2ND];

P1F1 = [W1NF; M1NF;ISAN; A1NF];

P2F1 = [W1NF; M2NF;ISAN; A1NF];

P3F1 = [W1NF; M1NF;ISAN; A2NF];

P4F1 = [W1NF; M2NF;ISAN; A2NF];

F1F1 = simuff(P1F1,W31_cb_f,b31_cb_f,'logsig',W32_cb_f,b32_cb_f,'tansig',W33_cb_f,b33_cb_f,'purelin');

F1F2 = simuff(P2F1,W31_cb_f,b31_cb_f,'logsig',W32_cb_f,b32_cb_f,'tansig',W33_cb_f,b33_cb_f,'purelin');

F1F3 = simuff(P3F1,W31_cb_f,b31_cb_f,'logsig',W32_cb_f,b32_cb_f,'tansig',W33_cb_f,b33_cb_f,'purelin');

F1F4 = simuff(P4F1,W31_cb_f,b31_cb_f,'logsig',W32_cb_f,b32_cb_f,'tansig',W33_cb_f,b33_cb_f,'purelin');

D1D1 = simuff(P1D1,W31_cb_d,b31_cb_d,'logsig',W32_cb_d,b32_cb_d,'tansig',W33_cb_d,b33_cb_d,'purelin');

D1D2 = simuff(P2D1,W31_cb_d,b31_cb_d,'logsig',W32_cb_d,b32_cb_d,'tansig',W33_cb_d,b33_cb_d,'purelin');

D1D3 = simuff(P3D1,W31_cb_d,b31_cb_d,'logsig',W32_cb_d,b32_cb_d,'tansig',W33_cb_d,b33_cb_d,'purelin');

D1D4 = simuff(P4D1,W31_cb_d,b31_cb_d,'logsig',W32_cb_d,b32_cb_d,'tansig',W33_cb_d,b33_cb_d,'purelin');

D1_cb = (((D1D3+D1D4)-(D1D1+D1D2))/2)*MCBD;

F1 = ((F1F3+F1F4)/2-(F1F1+F1F2)/2)*MCBF/1000;

P1D2 = [W2ND; M1ND;ISAN; A1ND];

P2D2 = [W2ND; M2ND;ISAN; A1ND];

P3D2 = [W2ND; M1ND;ISAN; A2ND];

P4D2 = [W2ND; M2ND;ISAN; A2ND];

P1F2 = [W2NF; M1NF;ISAN; A1NF];

P2F2 = [W2NF; M2NF;ISAN; A1NF];

P3F2 = [W2NF; M1NF;ISAN; A2NF];

P4F2 = [W2NF; M2NF;ISAN; A2NF];

F2F1=simuff(P1F2,W31_cb_f,b31_cb_f,'logsig',W32_cb_f,b32_cb_f,'tansig',W33_cb_f,b33_cb_f,'purelin');

F2F2=simuff(P2F2,W31_cb_f,b31_cb_f,'logsig',W32_cb_f,b32_cb_f,'tansig',W33_cb_f,b33_cb_f,'purelin');

F2F3=simuff(P3F2,W31_cb_f,b31_cb_f,'logsig',W32_cb_f,b32_cb_f,'tansig',W33_cb_f,b33_cb_f,'purelin');

F2F4=simuff(P4F2,W31_cb_f,b31_cb_f,'logsig',W32_cb_f,b32_cb_f,'tansig',W33_cb_f,b33_cb_f,'purelin');

 APPENDIX A: Neural Network Templates Source Code

110

D2D1=simuff(P1D2,W31_cb_d,b31_cb_d,'logsig',W32_cb_d,b32_cb_d,'tansig',W33_cb_d,b33_cb_d,'purelin');

D2D2=simuff(P2D2,W31_cb_d,b31_cb_d,'logsig',W32_cb_d,b32_cb_d,'tansig',W33_cb_d,b33_cb_d,'purelin');

D2D3=simuff(P3D2,W31_cb_d,b31_cb_d,'logsig',W32_cb_d,b32_cb_d,'tansig',W33_cb_d,b33_cb_d,'purelin');

D2D4=simuff(P4D2,W31_cb_d,b31_cb_d,'logsig',W32_cb_d,b32_cb_d,'tansig',W33_cb_d,b33_cb_d,'purelin');

D2_cb = ((D2D3+D2D4)/2-(D2D1+D2D2)/2)*MCBD;

F2 = (((F2F3+F2F4)-(F2F1+F2F2))/2)*MCBF/1000;

F = F1+((F2-F1)/(W2-W1))*(W_in-W1);

D_cb = D1_cb+((D2_cb-D1_cb)/(W2-W1))*(W_in-W1);

if Dist< D_cb;

A2 = A2-0.5;

pause
else

TW = TrueWeight-F;

EX = Dist-D_cb ;% Extra distance required

% Normalize inputs

EXDMN = (M2)/MCRM;% Extra Distance Mach Normal

EXDAN = A2/MCRA; % Extra Distance Altitude Normal

if TW > 62;
if TW <= 66;
W1 = 62;
W2 = 66;
end
end
if TW > 66;
if TW <= 70;
W1 = 66;
W2 = 70;
end
end

if TW > 70;
if TW <= 74;

A.6 Main Program to Calculate Fuel Consumption

111

W1 = 70;
W2 = 74;
end
end
if TW > 74;
if TW<= 78;
W1 = 74;
W2 = 78;
end
end

if TW > 78;
if TW <= 82;
W1 = 78;
W2 = 82;
end
end

if TW > 82;
if TW <= 86;
W1 = 82;
W2 = 86;
end
end

if TW > 86;
if TW <= 90;
W1 = 86;
W2 = 90;
end
end

if TW > 90;
if TW <=94
W1 = 90
W2 = 94
end
end
if TW > 94;
if TW <=98
W1 = 94;
W2 = 98;
end
end
if TW > 98;
if TW <= 102;
W1 = 98;
W2 = 102;
end
end
if TW > 102;
if TW <= 106;
W1 = 102;
W2 = 106;

 APPENDIX A: Neural Network Templates Source Code

112

end
end

TWN1= W1/MCRW; % Temporary Weight Normal
TWN2= W2/MCRW; % Temporary Weight Normal

PEXD1 = [TWN1; EXDMN; EXDAN]; % Input for the cruise network
 PEXD2 = [TWN2; EXDMN; EXDAN];

EXF1 =simuff(PEXD1,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin'); % Fuel Burn Estimation
EXF2 =simuff(PEXD2,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin'); % Fuel Burn Estimation

EXF = EXF1+((EXF2-EXF1)/(W2-W1))*(TW-W1);

FEXF = (inv((EXF*MFCR))*EX)/1000; % Actual Extra Fuel Burn

NW = TW - FEXF;

end

A.6.2 Cruise Cubroutine
__
function [NW,F]= cal_cr(Dist,A1, M1, A2, M2, W_in ,MCRA,MCRW,MCRM,MFCR);

global W31_cr b31_cr W32_cr b32_cr W33_cr b33_cr;

% Mach Number Normalization

M1N = M1/MCRM;

M2N = M2/MCRM;

% Altitude Normalization

A1N= A1/MCRA;

A2N= A2/MCRA;

% Weight Normalization

if W_in > 62;
if W_in <= 66;
W1 = 62;
W2 = 66;
end
end
if W_in > 66;
if W_in <= 70;
W1 = 66;
W2 = 70;

A.6 Main Program to Calculate Fuel Consumption

113

end
end

if W_in > 70;
if W_in <= 74;
W1 = 70;
W2 = 74;
end
end
if W_in > 74;
if W_in<= 78;
W1 = 74;
W2 = 78;
end
end

if W_in > 78;
if W_in <= 82;
W1 = 78;
W2 = 82;
end
end

if W_in > 82;
if W_in <= 86;
W1 = 82;
W2 = 86;
end
end

if W_in > 86;
if W_in <= 90;
W1 = 86;
W2 = 90;
end
end

if W_in > 90;
if W_in <=94;
W1 = 90
W2 = 94
end
end
if W_in > 94;
if W_in <=98;
W1 = 94;
W2 = 98;
end
end
if W_in > 98;
if W_in <= 102;
W1 = 98;
W2 = 102;
end

 APPENDIX A: Neural Network Templates Source Code

114

end
if W_in > 102;
if W_in <= 106;
W1 = 102;
W2 = 106;
end
end

WN1 = W1/MCRW;

WN2 = W2/MCRW;

P1C1 = [WN1; M1N; A1N];

P2C1 = [WN1; M2N; A1N];

P3C1 = [WN1; M1N; A2N];

P4C1 = [WN1; M2N; A2N];

F1F1=simuff(P1C1,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin');

F1F2=simuff(P2C1,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin');

F1F3=simuff(P3C1,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin');

F1F4=simuff(P4C1,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin');

F1 = inv((F1F1+F1F2+F1F3+F1F4)/4*MFCR)*Dist;

P1C2 = [WN2; M1N; A1N];

P2C2 = [WN2; M2N; A1N];

P3C2 = [WN2; M1N; A2N];

P4C2 = [WN2; M2N; A2N];

F2F1=simuff(P1C2,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin');

F2F2=simuff(P2C2,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin');

F2F3=simuff(P3C2,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin');

F2F4=simuff(P4C2,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin');

F2 = inv((F2F1+F2F2+F2F3+F2F4)/4*MFCR)*Dist;

F = (F1+(F2-F1)/(W2-W1)*(W_in-W1))/1000;

A.6 Main Program to Calculate Fuel Consumption

115

NW = W_in-F;

end

A.6.3 Descent Subroutine
__
function [EX,NW,F,FEXF,D_d]= CAL_D(Dist,A1, M1, A2, M2, W_in, ISAN, MCRA,MCRW,MCRM,MFCR ...
,MWDF,MMDD,MDDD,MADD,MWDF,MMDF,MFDF,MADF,MWDD,TrueWeight);

global W31_df b31_df W32_df b32_df W33_df ...
 b33_df W31_dd b31_dd W32_dd b32_dd W33_dd ...
 b33_dd W31_cr b31_cr W32_cr b32_cr W33_cr b33_cr;

% Mach Number Normalization
if W_in > 58;
if W_in <= 66;
W1 = 58;
W2 = 66;
end
end
if W_in > 66;
if W_in <= 74;
W1 = 66;
W2 = 74;
end
end

if W_in > 74;
if W_in <= 82;
W1 = 74;
W2 = 82;
end
end
if W_in > 82;
if W_in <= 90;
W1 = 82;
W2 = 90;
end
end
if W_in > 90;
if W_in<= 98;
W1 = 90;
W2 = 98;
end
end

% Mach Number Normalization

 APPENDIX A: Neural Network Templates Source Code

116

M1ND = M1/MMDD;

M2ND = M2/MMDD;

M1NF = M1/MMDF;

M2NF = M2/MMDF;

% Altitude Normalization

A1ND= A1/MADD;

A2ND= A2/MADD;

A1NF= A1/MADF;

A2NF= A2/MADF;

% Weight Normalization

W1ND = W1/MWDD;
W2ND = W2/MWDD;

W1NF = W1/MWDF;
W2NF = W2/MWDF;

P1D1 = [W1ND; M1ND; A1ND;ISAN];

P2D1 = [W1ND; M2ND; A1ND;ISAN];

P3D1 = [W1ND; M1ND; A2ND;ISAN];

P4D1 = [W1ND; M2ND; A2ND;ISAN];

P1F1 = [W1NF; M1NF; A1NF;ISAN];

P2F1 = [W1NF; M2NF; A1NF;ISAN];

P3F1 = [W1NF; M1NF; A2NF;ISAN];

P4F1 = [W1NF; M2NF; A2NF;ISAN];

F1F1=simuff(P1F1,W31_df,b31_df,'logsig',W32_df,b32_df,'tansig',W33_df,b33_df,'purelin');

F1F2=simuff(P2F1,W31_df,b31_df,'logsig',W32_df,b32_df,'tansig',W33_df,b33_df,'purelin');

F1F3=simuff(P3F1,W31_df,b31_df,'logsig',W32_df,b32_df,'tansig',W33_df,b33_df,'purelin');

F1F4=simuff(P4F1,W31_df,b31_df,'logsig',W32_df,b32_df,'tansig',W33_df,b33_df,'purelin');

D1D1=simuff(P1D1,W31_dd,b31_dd,'logsig',W32_dd,b32_dd,'tansig',W33_dd,b33_dd,'purelin');

A.6 Main Program to Calculate Fuel Consumption

117

D1D2=simuff(P2D1,W31_dd,b31_dd,'logsig',W32_dd,b32_dd,'tansig',W33_dd,b33_dd,'purelin');

D1D3=simuff(P3D1,W31_dd,b31_dd,'logsig',W32_dd,b32_dd,'tansig',W33_dd,b33_dd,'purelin');

D1D4=simuff(P4D1,W31_dd,b31_dd,'logsig',W32_dd,b32_dd,'tansig',W33_dd,b33_dd,'purelin');

D1_d = ((D1D1+D1D2)/2-(D1D3+D1D4)/2)*MDDD;

F1 = ((F1F1+F1F2)/2 -(F1F3+F1F4)/2)*MFDF;

P1D2 = [W2ND; M1ND; A1ND;ISAN];

P2D2 = [W2ND; M2ND; A1ND ;ISAN];

P3D2 = [W2ND; M1ND; A2ND ;ISAN];

P4D2 = [W2ND; M2ND; A2ND ;ISAN];

P1F2 = [W2NF; M1NF; A1NF;ISAN];

P2F2 = [W2NF; M2NF; A1NF;ISAN];

P3F2 = [W2NF; M1NF; A2NF;ISAN];

P4F2 = [W2NF; M2NF;A2NF; ISAN];

F2F1=simuff(P1F2,W31_df,b31_df,'logsig',W32_df,b32_df,'tansig',W33_df,b33_df,'purelin');

F2F2=simuff(P2F2,W31_df,b31_df,'logsig',W32_df,b32_df,'tansig',W33_df,b33_df,'purelin');

F2F3=simuff(P3F2,W31_df,b31_df,'logsig',W32_df,b32_df,'tansig',W33_df,b33_df,'purelin');
F2F4=simuff(P4F2,W31_df,b31_df,'logsig',W32_df,b32_df,'tansig',W33_df,b33_df,'purelin');

D2D1=simuff(P1D2,W31_dd,b31_dd,'logsig',W32_dd,b32_dd,'tansig',W33_dd,b33_dd,'purelin');

D2D2=simuff(P2D2,W31_dd,b31_dd,'logsig',W32_dd,b32_dd,'tansig',W33_dd,b33_dd,'purelin');

D2D3=simuff(P3D2,W31_dd,b31_dd,'logsig',W32_dd,b32_dd,'tansig',W33_dd,b33_dd,'purelin');

D2D4=simuff(P4D2,W31_dd,b31_dd,'logsig',W32_dd,b32_dd,'tansig',W33_dd,b33_dd,'purelin');

D2_d = ((D2D1+D2D2)/2-(D2D3+D2D4)/2)*MDDD;

F2 = ((F2F1+F2F2)/2-(F2F3+F2F4)/2)*MFDF;

F = (F1+(F2-F1)/(W2-W1)*(W_in-W1))/1000;

D_d = D1_d+(D2_d-D1_d)/(W2-W1)*(W_in-W1);

if Dist<D_d;

 APPENDIX A: Neural Network Templates Source Code

118

A2 = A2-0.5;

pause
else

TW = (TrueWeight-F);

EX = Dist-D_d; % Extra distance required

% Normalize inputs

EXDMN = (M2)/MCRM;% Extra Distance Mach Normal

EXDAN = A2/MCRA; % Extra Distance Altitude Normal

if TW > 62;
if TW <= 66;
W1 = 62;
W2 = 66;
end
end
if TW > 66;
if TW <= 70;
W1 = 66;
W2 = 70;
end
end

if TW > 70;
if TW <= 74;
W1 = 70;
W2 = 74;
end
end
if TW > 74;
if TW<= 78;
W1 = 74;
W2 = 78;
end
end

if TW > 78;
if TW <= 82;
W1 = 78;
W2 = 82;
end
end

if TW > 82;
if TW <= 86;
W1 = 82;
W2 = 86;

A.6 Main Program to Calculate Fuel Consumption

119

end
end

if TW > 86;
if TW <= 90;
W1 = 86;
W2 = 90;
end
end

if TW > 90;
if TW <=94
W1 = 90
W2 = 94
end
end
if TW > 94;
if TW <=98
W1 = 94;
W2 = 98;
end
end
if TW > 98;
if TW <= 102;
W1 = 98;
W2 = 102;
end
end
if TW > 102;
if TW <= 106;
W1 = 102;
W2 = 106;
end
end

TWN1= W1/MCRW; % Temporary Weight Normal
TWN2= W2/MCRW; % Temporary Weight Normal

PEXD1 = [TWN1; EXDMN; EXDAN]; % Input for the cruise network
 PEXD2 = [TWN2; EXDMN; EXDAN];

EXF1 =simuff(PEXD1,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin'); % Fuel Burn Estimation
EXF2 =simuff(PEXD2,W31_cr,b31_cr,'logsig',W32_cr,b32_cr,'tansig',W33_cr,b33_cr,'purelin'); % Fuel Burn Estimation

EXF = EXF1+((EXF2-EXF1)/(W2-W1))*(TW-W1);

FEXF = inv((EXF*MFCR))*EX/1000; % Actual Extra Fuel Burn

NW = TW - FEXF;

end

 APPENDIX A: Neural Network Templates Source Code

120

121

APPENDIX B Neural Network Trained
Matrices and Bias Vectors

This appendix contains a sample of weights and biases of the neural network estimated for the climb, cruise and
descent phases. The data applies to the Fokker 100 aircraft.

B.1 Climb Neural Network Matrices

Recall that out network topolgy consists of 3 layers with a total of eight neurons per layer.

Figure B.1 Climb Fuel Consumption Neural Network.

B.1.1 First Layer Climb Fuel Weight Matrix (8 x 4)

Name of variable in source code: W31_cb_f

W31_cb_f = [1.4433 16.1224 -5.1308 4.1978
0.7292 -56.4483 7.5036 6.4436
-1.2606 31.7945 0.9047 5.3956
1.3031 37.4262 -0.4690 3.6161

P

P
RxQ

Input

1

 W1

 b1

 W2

 b2

 W3

 b3

Z1xR

Z1x1

n1

 Z1xQ

 a1
 Z1xQ

Z2xZ1

Z2X1

n2

 Z2xQ

, a2

 1 1

Z3xZ2

Z3x1

 Z2xQ n3

 Z3xQ

a3

Z3xQ
 F2 F3

F1

weight

temperature

climb speed

altitude

 APPENDIX B: Neural Network Trained Matrices and Bias Vectors

122

0.7410 29.0485 3.4602 -2.0486
-3.1726 -45.0995 -1.4852 -2.7352
1.9145 -11.7073 12.6932 -3.7325
1.3329 -9.5420 1.7506 -2.4465]

B.1.2 First Layer Bias Climb Fuel Vector (8 x 1)

Name of variable in source code: b31_cb_f

b31_cb_f’ = [1-16.7970 1 43.9789 1 -31.6941 1-42.7644 1 -28.6348 147.15951 -2.3517 19.0268]

B.1.3 Second Layer Climb Fuel Weight Matrix (8 x 8)

Name of variable in source code: W32_cb_f

W32_cb_f = [-0.6005 -0.5870 -0.7480 -1.7733 -1.3437 0.2434 0.6188 1.4815
 -0.2233 -0.3751 -0.8264 -1.3783 -1.0784 0.4015 0.9850 -2.3304
 0.9568 -0.7226 -0.5406 -2.4272 -6.1678 1.6676 6.4060 4.1179
 -1.3189 -0.8735 -1.7891 -1.9017 -2.5168 0.5247 0.1467 -3.3560
 -1.2485 -0.9816 -0.8140 -1.7289 -2.2851 -0.0013 1.1800 -0.9163
 1.9170 0.5568 1.5908 -5.6420 -5.4944 -1.6828 4.8786 3.6204
 -0.9679 0.8287 -0.8533 6.6745 0.7747 0.0693 0.9815 -1.4368
 -4.0090 -2.7320 -2.2132 -4.5606 4.1227 2.9075 -2.7943 -5.9217]

B.1.4 Second Layer Bias Climb Fuel Vector (8 x 1)

Name of variable in source code: b32_cb_f

b32_cb_f’ = [3.3329 3.1060 -3.0608 6.9925 3.9623 -2.7703 -0.8586 8.8345]

B.1.5 Third Layer Climb Fuel Weight Matrix (1 x 8)

Name of variable in source code: W33_cb_f

W33_cb_f = [-8.9400 2.8457 0.0614 1.4502 2.7007 0.2713 -1.0206 -5.7028]

B.1.6 Third Layer Bias Climb Fuel Vector (1 x 1)

Name of variable in source code: b33_cb_f

b33_cb_f = [6.9078]

B.2 Cruise Neural Network Matrices

123

B.2 Cruise Neural Network Matrices

Recall that out network topolgy consists of 3 layers with a total of eight neurons per layer. In the cruise segment
three inputs form the P vector: a) altitude, b) cruise mach number and c) weight. The temperature is implicitly
modeled because SAR curves have a constant SAR adjustment factor for non-ISA conditions.

Figure B.2 Cruise Fuel Consumption Neural Network.

B.2.1 First Layer Cruise Fuel Weight Matrix (8 x 3)

Name of variable in source code: W31_cr

W31_cr = [6.3938 -9.8763 0.6649
 -0.1808 7.9561 -8.2477
 1.6851 -11.6343 -2.2276
 10.0500 7.7243 -9.4891
 -5.2912 6.2386 13.3908
 2.7012 12.7482 8.4157
 -9.7159 4.4772 -7.1510
 -7.0059 -1.2290 11.5976]

B.2.2 First Layer Bias Cruise Fuel Vector (8 x 1)

Name of variable in source code: b31_cb_f

b31_cr’ = [0.0156 -2.2324 12.6392 -7.5378 -10.2912 -10.7929 11.4901 -5.0219]

B.2.3 Second Layer Cruise Fuel Weight Matrix (8 x 8)

Name of variable in source code: W32_cr

W32_cr = [-0.6202 -0.5070 -0.7396 0.2002 0.2389 0.1129 -0.1460 -1.1135
0.4843 -0.0916 -0.7863 -0.4668 0.2533 -0.4232 0.6174 -2.2879

 0.0348 -0.0384 -0.3301 0.1160 0.5629 -0.0947 -0.0742 -0.4790
 -0.7224 -0.1714 -1.0539 -0.1012 -0.9725 0.2464 0.2292 -0.8991
 -1.6445 -19.3290 -8.5896 0.9265 8.6182 3.4082 -4.6841 -0.0982
 -0.4339 -1.0528 0.1404 -0.1411 -0.3719 -0.1410 0.1876 -1.3745
 0.3263 -0.3183 -0.8243 -0.4162 0.2460 -0.8841 1.2335 -2.6649
 0.4940 0.4168 -0.6962 1.1764 -0.2112 0.3459 0.5304 -2.1430]

P

P
RxQ

Input

1

 W1

 b1

 W2

 b2

 W3

 b3

Z1xR

Z1x1

n1

 Z1xQ

 a1
 Z1xQ

Z2xZ1

Z2X1

n2

 Z2xQ

, a2

 1 1

Z3xZ2

Z3x1

 Z2xQ n3

 Z3xQ

a3

Z3xQ
 F2 F3

F1

weight

climb speed

altitude

 APPENDIX B: Neural Network Trained Matrices and Bias Vectors

124

B.2.4 Second Layer Bias Cruise Fuel Vector (8 x 1)

Name of variable in source code: b32_cr

b32_cr’ = [0.8888 2.6767 0.2862 0.9785 3.4955 0.4767 0.1963 2.3233]

B.2.5 Third Layer Cruise Fuel Weight Matrix (1 x 8)

Name of variable in source code: W33_cr

W33_cr = [3.4282 5.3365 -5.4049 -1.7693 0.0286 -1.0977 0.5139 -5.8195]

B.2.6 Third Layer Bias Cruise Fuel Vector (1 x 1)

Name of variable in source code: b33_cr

b33_cr = [1.3720]

B.3 Descent Neural Network Matrices

This network topolgy consists of 3 layers with a total of twelve neurons per layer. In the descent segment four
inputs form the P vector: a) altitude, b) cruise mach number,c) weight, and d) temperature.

Figure B.3 Descent Fuel Consumption Neural Network.

B.3.1 First Layer Descent Fuel Weight Matrix (12 x 4)

Name of variable in source code: W31_df

W31_df = [0.8511 52.8616 -8.6578 5.0650
 -1.5315 33.1232 -4.6842 -1.4033
 -0.0997 -58.3401 -13.7583 -4.5358
 0.1058 -39.4660 8.2775 5.8887
 0.5674 37.1619 2.0485 3.5484
 0.2326 15.8703 7.3495 -2.3180
 -0.5385 -0.4510 -184.0259 88.2574
 -3.8665 38.5448 2.7645 0.7520
 1.3531 -38.4882 -3.1255 8.8929
 -0.4177 -13.1107 9.7991 -2.1331
 -0.2185 53.2039 -5.8740 3.4922
 0.7447 -49.7325 -3.4859 -5.4073]

P

P
RxQ

Input

1

 W1

 b1

 W2

 b2

 W3

 b3

Z1xR

Z1x1

n1

 Z1xQ

 a1
 Z1xQ

Z2xZ1

Z2X1

n2

 Z2xQ

, a2

 1 1

Z3xZ2

Z3x1

 Z2xQ n3

 Z3xQ

a3

Z3xQ
 F2 F3

F1

weight

temperature

climb speed

altitude

B.3 Descent Neural Network Matrices

125

B.3.2 First Layer Bias Descent Fuel Vector (12 x 1)

Name of variable in source code: b31_df

b31_df’ = [-49.3891 -26.7955 61.6388 31.1293 -40.9867 -21.9681 50.2503
-31.9546 30.4832 12.1114 -43.6518 50.9938]

B.3.3 Second Layer Descent Fuel Weight Matrix (12 x 12)

Name of variable in source code: W32_df

W32_df = [-0.3441 0.0356 0.1744 0.7858 1.6451 4.8408 0.8007
 -0.7591 1.6862 -0.8373 0.9596 -2.2921 -1.3884 0.1174
 4.1915 3.1200 -6.3542 -5.8100 10.2786 21.1127 -3.5153
 1.2613 -0.4000 -0.7177 -1.4973 -1.5431 1.2969 0.7868
 15.7700 -11.6365 -0.0752 25.4629 1.2772 -12.9458 6.1164
 1.2899 -4.1841 2.4559 8.0063 -6.3241 7.7492 -1.6877
 -0.0633 0.0252 -0.6305 -0.5820 -2.1185 1.5752 0.5957
 -0.9591 -0.4096 0.0772 0.5444 1.4693 -0.0506 -0.5681
 35.0054 -3.7473 3.6455 -30.2444 -45.5501 -39.7679 25.2169
 -1.6790 -0.3125 0.8318 -7.8237 6.7393 6.5104 1.4588
 0.0445 0.3169 -0.5943 2.7784 17.2762 -1.4082 0.0629
 -0.4590 -0.2112 0.1123 0.6804 1.5115 4.3249 0.7915

 Columns 8 through 12

 -0.0862 0.4148 0.3094 -1.0727 0.5149
 -0.1962 -0.9792 0.6816 2.6692 2.6671
 -5.0880 -7.2074 -13.2910 5.6920 -2.8350
 0.1593 -0.9023 -0.8160 0.2214 -0.0807
 11.6813 -12.2832 14.2854 24.6876 16.010
 3.4205 -5.7693 4.2349 2.5722 -7.0593
 -0.2754 -1.1515 -2.9731 1.0873 -2.8333
 0.0738 0.4027 -1.0044 -0.6905 -0.4023
 -0.5374 0.0539 17.5249 1.5512 -7.3604
 0.7041 -3.9677 0.1896 -4.2407 -3.9139
 -1.1530 0.4714 -0.8786 4.0312 2.7061
 -0.0035 -0.1634 -0.6757 -1.1861 0.1354]

B.3.4 Second Layer Bias Descent Fuel Vector (12 x 1)

Name of variable in source code: b32_df

b32_df’ = [-2.3422 -1.4546 3.0836 2.4604 -61.3439 -9.2880 6.1743
0.6685 19.4247 7.6869 -3.3949 -0.6705]

B.3.5 Third Layer Descent Fuel Weight Matrix (1 x12)

Name of variable in source code: W33_df

W33_df = [3.9943 0.6872 0.0370 2.3114 0.0130 0.1381 -1.5006
3.0206 0.0454 0.1203 1.2498 -4.2761]

