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1. Overview of Problem and Results

1.1 Background

One of the prime NextGen objectives is to move peidormance-based air traffic
management system. Such a system should be cagfabéking intelligent trade offs
among different performance criteria when decidingspecific traffic flow management
actions. Viewed at a high level the objective a$ tlesearch is to provide a means for the
flight operator community to collectively set sewilevel expectations and thereby
define the criteria for making the required perfare trade offs.

One can also view the problem to be solved basemioent operational challenges.
Within today’s US National Airspace System (NASight operators influence the
decisions of FAA traffic managers in many ways andh variety of levels. Every two



hours, the FAA's air traffic control system commamshter holds a strategic planning
telecon in which airlines express their opinionsoptions being considered. When
ground delay programs (GDP’s) are being plannetines frequently call the command
center to collaborate on decisions involving GDPRap®eter settings and even the
decision on whether or not to implement the GDRth& local level airlines will
frequently interact with Center or Tracon persorinaxpress opinions on flow
management strategies. Such interactions are migrtpiite legitimate and desirable in
that they allow the NAS users who are impacteddnyous FAA decisions to help the
FAA understand their priorities and the impact 8fAFactions. At the same time, these
interactions can be somewhat ad hoc and at tinrekead to inequities. The flight
operators who are most aggressive in expressimgviea/s can sometimes have a
disproportionate influence on decisions that afeebtoad range of others who are less
vocal. Of even greater import, the verbal inpuufes on the mechanisms, e.g. GDP’s,
and not on the underlying performance objectivé® dverall goal of our research
proposed is to formalize these interactions undaeehanism that allows all flight
operators to participate but at the same time des/those most impacted by an FAA
decision to have the largest influence.

1.2 Description of Desired System Architecture

The result of this research should be a mecharatratlows the NAS flight operator
community to jointly set the service expectatidmet will guide NAS decision-making
on a given day or during given time period.

The 5 performance criteria of interest for this\att are:
1) capacity, 2) cost effectiveness, 3) efficientyflexibility, 5) predictability.

These are taken from the list of 11 globally enddrgerformance areas. In today’s world,
on any given day-of-operations, the FAA will makadieoffs among these criteria in
designing an operational traffic flow managemeriiN]) strategy. For an example, an
“aggressive” approach might yield very high expdatapacity/throughput, but at the
expense of delaying the times when final decismmseleasing flights are made, thus
reducing predictability. A highly cost effectiveaiegy might seek to reduce airborne
delay but sacrifice capacity/throughput. The gddhts research is to allow the flight
operator community to set service expectationsthnsl make tradeoff among these
criteria directly, before actual TFM strategies amechanisms are determined.

Figure 1 provides a high level view of the procieske investigated.
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Figure 1l: Architecture for Service Expectation Setting Pesce

The ultimate output of the process is a setystem-wide performance goélgper right-
hand box) that will be used by TFM specialistseb &M strategies and to choose
specific traffic management initiatives (TMI’s). &lprocess starts withputs from each
flight operator(set of boxes on upper left). These can be vieagetthe service
expectation desired by that flight operator; howefer reasons to be discussed later they
may take on a different form. Tl@ervice Expectation Resolutiprocess takes the inputs
from all flight operators and produces the setystam-wide performance goals. Further,
it provides individuaflight operator feedbackThis feedback should allow each flight
operator to assess the impact of the system-widerpgnce goals on its operational
performance. This is done by tRéght Operator Assessmeptocess. This process will
typically be proprietary to each flight operatos part of the assessment the flight
operator may determine appropriate adjustments iaput in order to influence the
system-wide performance goals and, thereby, toan®its operational performance. It
is anticipated that this feedback loop will be axed several times until a form of
equilibrium is reached.

1.3 Possible Meta-Models for Structuring Process

The problem setting just outlined does not immetldfit in a standard analytic
framework. Thus, we consider multiple paradigmsfifaming the problems and explore



the strengths and weaknesses of each. Each ofghggests a different way for
structuring and analyzing the problem. Some weaepgh more detail than others.

I nvestment alternatives: A flight operator could view each performanceaitn as an
investment option. In order to achieve its ovepaliformance goals the flight operator
would spread its investment out among several npfjost as investment managers to
balance expected return and risk. Flight operatansid be allocated a type of artificial
currency in proportion to their relative importarneith respect to the ATFM challenge
under consideration. At each iteration of the femttdoop illustrated in Figure 1, each
flight operator would allocate its currency amohg various performance criteria. After
observing the overall performance of the curreloication, i.e. the system wide
performance goals, the flight operators would piédlig change their allocations to
achieve a better result on the next iteration.

Voting: It is perhaps most natural to determine a singt@sibon for a group of
participants (the flight operators) using some tgpeoting mechanism. Under the
setting we propose, a small set of candidate padace vectors would be proposed (a
candidate performance vector is a “feasible” sedfpafcific values for each performance
criterion). Each flight operator would cast a votethese performance vectors. Since
there are many “candidates” in this case, we p@pasiechanism (instant runoff voting)
that provides for an effective way of determiningirsgle winner from among many
candidates. While such an approach does determiggul in a single iteration, it could
be very valuable to allow the dynamic generatioadditional candidate performance
vectors (candidates) — this could be accomplistsgtgunultiple iteration of the feedback
loop in Figure 1.

Game Theoretic Analysis: One can view the process illustrated in Figure game
theoretic terms, most specifically as a multi-ptayen-cooperative game. In such a
setting, each player submits a strategy (the flogigrator inputs). The set of all strategies
together with the game structure determines a p&yoéach player (the cost or value
each flight operator associates with the systene wetformance goals determined by the
ANSP). A fundamental question one asks about augdime is whether a Nash
Equilibrium exists. That is, does there exist acdedttrategies where no flight operator
could unilaterally adjust its own strategy to proea “better” outcome. A Nash
Equilibrium can be viewed as a solution to the gamtee sense that once all players
arrive at their equilibrium strategy there is nodntive to deviate from them. Further
analysis can be performed and other insights cagalved using game theoretic tools.
These help to better understand the structureeofdchanism and aid in its design.

1.4 Summary of Research Results

Four general categories of research were carried ou

1) Overall problem modeling and structuring: all solso
2) Game theoretic analysis: MIT



3) Approximate models for trading off performance nostr UC Berkeley
4) Voting schemes: U of Maryland

Items 2) and 4) addressed the voting and gamedteanalysis topics discussed in the
previous section. Item 1) included a preliminarglgsis of the investment alternatives
approach discussed in the previous section. Itepr@®)uced functional models of how
performance metrics of interest change in resptmsbanges in the parameters of traffic
management initiatives. This work also produced elethat quantified the manner in
which one could trade off one performance metrithanother. This work represents a
key ingredient in the broader models needed tatire and evaluate the various
approaches under consideration for the overalllprob

We now summarize our findings relative to the trapproaches discussed in the
previous section.

I nvestment alternatives. Under this approach one views a flight operataseseking to
maximize some value function (return on investmeiit) do this the flight operator
seeks to invest in each of several options (thBopaance criteria). Here each flight
operator would be allocated some kind of artificiairency to use to makes its
investments. If a flight operator perceives thag ariterion, say capacity, is too low then
that flight operator would shift some of its invesint away from some other
performance criterion of lesser importance, say efisctiveness, and reinvest that
amount freed up in capacity. The process wouldtéeuntil no flight operator could find
any shift in investment that would improves itsuaafunction.

Our preliminary analysis of this paradigm foundesal major challenges.

In a standard investment or bidding (combinataiadtion) model, there is an amount of
each product available and an investor would seelugh his or her bids to obtain a
share of each of the available products. The ovealile achieved by one investor would
be determined by the amount of each product tlztitlwestor purchased. For the ATM
problem we seek to model, the products (performanteria) are not being split up.
Rather, performance criteria that receive a higestment level would have a high
individual value. The overall value achieved by ameestor would be determined by the
values of each performance criteria. That is, titeame will be a single vector of
performance criteria and each investor/flight opmraill derive a different value based
on their individual value functions. A major chaltgs in applying such a model is the so-
calledfreerider problem. If one investor was confident that another wanigest

heavily in say capacity, then that investor coaldus its investments on other criteria
knowing the capacity would be “taken care of’ blgests. This leads to “strategic
behavior” on the part of the bidders/investors gaderally unstable processes and poor
outcomes. These problems can be viewed as arigingthe fact that the investment
model does not fit the problem we are trying toseatell.



In spite of the aforementioned challenges, it wdaddrery valuable to obtain from flight
operators some valuation of the relative importasfaene criterion vs another. Thus, we
hope to incorporate ideas of this type on top wicse stable approach.

Voting: We have developed a practical voting approacladioiressing the problem of
interest. The core of the process uses the ingiaoff voting (IRV) method. IRV is
appropriate in a context where there are seveaadiclates” running and a single winner
is desired. In our case, flight operators vote @regal alternative performance vectors
and the process determines a single winning vetbile in theory the process could
produce an answer in a single iteration we emplaitipte iterations so that additional
performance vectors can be added from one iter&didime next. These vectors could be
provided by the ANSP or by any individual flighteyptor. While the overall process is
well defined and can reliably produce a resultthfer research is required to refine the
various steps through additional analysis and exyaartation.

Game Theoretic Analysis:

We were able to model the problem of interest amiliple-player non-cooperative game.
Furthermore, in certain cases we were able to ghatmhe game had a variety of
desirable properties, in that players played thmeeguthfully and equilibrium solutions
existed and could be obtained. On the other hé&wedsdlutions obtained were not
necessarily “desirable” in the sense that theyddrd be “extreme” solutions in which
one player got their most desirable option andfaradid not. Specifically,

“compromise” solutions were not achieved. In ongecdhere was some advantage
achieved by the use of randomized strategies anthich a flight operator chose among
input strategies based on a probability distributM/e anticipate that such strategies will
be a “tough sell” in practice. Our general conabasirom this analysis is that a practical
approach should generate a large number of caredidaformance vectors and then have
a voting procedure choose among them. This is Whstbeen proposed in the Section 3
of this report. It is also the case that the amafyamework we have developed should be
useful in studying the voting mechanism.

2. Representation and Analysis as a Multi-player Non-

Cooper ative Game (authors: Antony Evans, Vikrant Vaze, Cynthia
Barnhart)

2.1 Background

It is anticipated that the feedback loop in Figuneill be executed several times until a
form of equilibrium is reached. While one view bétflight operator inputs is a set of
desired service expectations, another view is afsatestments into each of the service
areas. We can view the problem as one where egbl dperator determines its
investment level so that, relative to the investtadry the other flight operators, it
optimizes the system-wide service expectationfadt one could seek a type of Nash
Equilibrium where no flight operator could unileably adjust its own investment levels



to produce a “better” set of system performancesetgiions (here better is relative to the
performance objectives of that flight operator)clsa game theoretical approach is
illustrated in Figure 2.

FAA: constraintson
service expectations/
user input Flight Operator

weights

Flight Operator: service o
prioritization vector — .| FAA: estimation of
(strategy) — system performance

————— -

—
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Figure2: Viewing the service level setting process as aimldyer non-cooperative

game.
Mathematically, this can be represented as follows:
Flight Operators: k=1,2,....K
System performance metrics, or Goals: 0=1,2,....5

FAA's initial estimate of the system performancetoe: G'=(G1,Gz,G3,G4,Gs)
Each flight operator would specify a modified penfi@ance vector:

Ik = (k260130 4k I5K)
Characterize the valid inputs as changes’to A'=(Ay, A2,43,44,45)

such that: =G + Ay
The set of feasiblg’«is defined by the feasible regi&iEAS_4:
— Parameters: for eagh Ag, 4%, by
— Constraints: Ay S A=Ay forallg andk (1)
Sgbgdg =0 forallk (2)

Performance goal vector of combined user prefesence

G* = (G*1,G*2,G*3,G*4,G*s)
— Flight Operator weightgwy, ..., w) with 5 wi = 1 andw 0.

— Combine user preferences according to: G* = 5 Wi I'k

Payoff to Flight Operatak: Pv= S5a5G g



In the initial model described above, a proposegtall/architecture is as follows:
» Initiation: The FAA specifies an initial system fimance goal vector@’) for

an initiative at a resource.

 Form of user input: Flight operators specify thpreferred performance goal
vectors [ ) by specifying the differencet(y) from FAA’s initial estimates@’).
The validity of this input is then checked by th&AFto ensure that the specified
differences {’y) belong are feasible (i.e., fall within the fedsibetFEAS_A)

» Performance goal resolution process: The FAA daternthe system-wide
performance goal vectoGt) by taking a weighted average of all user inpUte
weights may be proportional to the relative numbg&roperations each flight
operator has that are impacted by the initiativee Weighted average of valid
user inputs (i.e 4’ that fall within the feasible set) will always talid (i.e., will
alsofall within the feasible set).

« Form of FAA feedback to flight operator: The FAAesifies the resultant
performance goal vectoGf) based on the previous round of inputs.

» Flight operator assessment and response: Basdtededdback, flight operators
determine the best response that maximizes theim payoff, and submit a
revised input.

» Convergence to final solution: The above processeeated a set number of
times or until convergence to a stable equilibrium.

To demonstrate this architecture, a number of satrans were run with randomly
generated data. These simulations assumetealyperformance goals, arao flight
operators. Truthful solutions are identified foclkedlight operator, which represent the
performance goals that would maximize each fligtgrator's payoff independently.
However, because of the nature of mechanism desteabove, it may be more profitable
for flight operators to request performance gdadd aire not in fact their “truthful”
solution! This is because the performance goalluéiso process applies a linear
combination of flight operator preference§&* = 3, wi I’k

Thus, if a flight operator knew what the other iigpperator was requesting, it may shift
its own request such that the linear combinatiobath requests coincided with its profit
maximizing solution. This is called gaming. In sienulation results presented below, as
“strategic” solution represents the result of sgaming by both flight operators.

1.4 Sample Simulation Results

A sample simulation result is presented belowhbse results, linear flight operator
payoff functions were randomly generated, and hosvs in Figure 3. Separate payoff
functions were generated for performance goale&mh flight operator.
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Figure 3. Sample linear payoff functions

A convex feasible set is also specified, the ufoemdary of which is defined by the
solid black line in Figure 4. Any combination ofrfiemance goals falling inside (to the
left of) this boundary therefore represents a vasidr input. By overlaying lines of
constant payoff for each airline, we can identifgit truthful solutions. If each line of
constant payoff was shifted to the right, while eémng parallel to the lines shown, the
flight operator’s payoff would increase. Therefdtes truthful solution is the point at
which the lines of constant payoff are tangentfeasible region, as shown in Figure 4.
These points represent the preferred combinatibtieedwo performance goals for each
flight operator, if they were assured that they ldaet what they asked for.
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Figure 4. Truthful solutions




When we simulate the model framework describedeictiSn 2.2 above, allowing the
flight operators to strategically select their itgpaccording to what the other flight
operator has requested in the previous round gihdts are as shown in Figure 5.
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Figureb5. Solution of strategic game

As can clearly be seen by comparing the resulfgofes 4 and 5, the strategic solutions
requested by the flight operators are the samieeasttuthful solutions. The result of the
linear combination combining them is a new solufjlabeled ANSP feedback in Figure
5), that falls inside the feasible region. Thisufes attractive because it suggests that
there is no gaming, but is not system optimal, bseat does not fall on the boundary of
the feasible region. This latter point will be aglsbed in more detail later.

1.5 General Properties of Game

Using game theory, a number of statements can ble aitaout a more general problem of
a similar nature to that simulated above, as fatow
For the model described above, in whilight operator payoffsarelinear and the
feasibleregion isconvex, it can be proved that, regardless of the proldata, number
of flight operators, and performance goals:

1. There exists an equilibrium.

2. The equilibrium is devoid of any probabilistic dgons.

3. If each flight operator has a unique most prefepeit at which they want to
operate (i.e., the flight operators know what thveyt), then the equilibrium is
unique.

4. The feedback process converges to this uniqueilegurh point (in fact this will
always happen in exactly one iteration).



5. The flight operators haveo incentive to strategically submit different prefeces
than their real preferences. The equilibrium witrtefore be truthful (i.e., there
will be no gaming).

6. The system performance gdat will be an interior point, and therefore not
pareto optimal.

1.6 Non-linear Payoff Functions

In reality, flight operator payoffs are unlikely b linear for any of the performance
criteria described in Section 2.1. Flight opergtayoffs are often ‘concave increasing’
rather than linear. For example, beyond a certagshold, decreases in capacity lead to
faster than linear increases in passenger re-acodammon costs, reserve and delay crew
costs, airline recovery costs, etc, as illustratefigure 6. This is also the case for other
performance criteria.

Payoff ,//
(-Cost)

Capacity

Figure 6. Concavity of Payoff Functions

This case can also be simulated: Instead of spegifynear flight operator payoff
functions, concave increasing functions can beiipdcas follows:
» Payoff to flight operatok: Py = 24 fgk(G*g), wherefg are concave increasing

functions ofG'y
— For examplefg(G o) = a(G g)* + b(G ) + ¢, with a<0, b>0

Everything else in the simulation is identical hattsimulated above, including
performance goal resolution process, which is atilhear combination of user
performance inputs, i.eG* = 5 W Ik

Again, the simulation is run with randomly genedatlata for two performance goals and
two flight operators. Concave increasing flight igter payoff functions were randomly
generated, and are shown in Figure 7.
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Figure 7. Sample concave increasing flight operator payaftfions

A convex feasible set, with lines of constant p&jaf each airline (which are now
convex, because of the concave payoff functioms),the corresponding truthful solution
for each flight operators are shown in Figure 8aidgthese points represent the
preferred combinations of the two performance gtmlgach flight operator, if they
were assured that they would get what they asked fo
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Figure 8. Truthful solutions, with concave payoff functions.

Again, we simulate the model framework describe8eation 2.2 above, allowing the
flight operators to strategically select their itgpaccording to what the other flight
operator has requested in the previous round. &hdts are as shown in Figure 9.
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Figure 9. Solution of strategic game, with concave payoffclions

As can immediately be seen in Figure 9, the strategutions and truthful solutions of
both flight operators no longer coincide. This écause of the linear combination used to
generate the combined solution. Each flight opereda be seen to attempt to “pull” the
solution away from its competition, in an attengpshift the FAA’s feedback closer to its
truthful solution. Of course, both flight operatatsempt to game the system in this way,
so the result is that the final solution is stillated between the two flight operator
preferences.

The result above suggests that, with more reakstncave payoff functions, flight
operators are likely to attempt to game the systerd,will not be truthful. In the
simulation, the degree to which flight operatorsgds a function of concavity of their
payoff functions, i.e., highly concave payoff fuiocts lead to greater gaming.

1.7 General Properties of Game with Concave Payoff Functions

As in Section 2.3.2, we can use game theory to rmaakember of statements about the
more general problem, as follows:
For the model described above, in whikight operator payoffs are concave
increasing and thefeasibleregion is convey, it can be proved that, regardless of the
problem data, number of flight operators, and pertnce goals:

1. There exists an equilibrium.

2. The equilibrium is devoid of any probabilistic dgons.
3. Uniquenesgannot be proved.
4. Convergenceannot be proved.

5. An outcome need not be truthful (i.e., there mag&aing). It is dependent on
the problem data.



6. The system performance gdat will also be an interior point, and therefore not
pareto optimal.

Two of the properties in the list above are notgred for the problem addressed. Firstly,
a solution that is not pareto optimal is unlikedybte system optimal, in the sense that
payoffs for all flight operators could still be le@ased (in a manner that maintained
fairness). This suggests that the linear combinatfauser preferences may not be the
best approach for combining the user preferenaor&lly, gaming can cause
significant problems because the flight operatoesnat expressing their truthful
preferences. In some cases, with minimal gaming,ntfay not be a problem. However,
in other cases, where flight operators game togetaextent, they may make extreme
requests, which can confuse the situation, and mapear that system solutions are
significantly further from the flight operators tgaeferences than they actually are. It
may also result in a system solution that is sigaiftly more favorable for one flight
operator than others, introducing issues to do eaghity. An example of this is provided
in the following section.

1.8 Alternativesto a Linear Combination of User Preferences

Two alternatives were considered to taking a limeanbination of the flight operator
preferences in order to address some of the prabtEscribed above. These are:
* To push the FAA feedbacks{) out to the boundary of the feasible set.

» Randomly choosing one of the flight operator inpglitg for system performance
goal vector G*). The probability of choosing each flight operatgouts (') may
be based on percentage of operations affected byirttiiative (v in the
formulation described in Section 2.2).

Pushing the G* out to the Boundary

Using the same inputs as for the simulation desedrib Section 2.5, a simulation was run
in which the FAA feedback3*) was taken as identical to the previous linear
combination, but pushed out to the boundary of¢lasible set. This ensures that the
FAA feedback is always pareto optimal. The flightaator solutions (both truthful and
strategic), in this case, are presented in FigQre 1
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Figure 10. Truthful and Strategic Solution: Pushi@g to Boundary

This result shows that, when the FAA feedbdgk)(is pushed out to the boundary of the
feasible set, this feedback is pareto optimal f@nltoundary of the feasible set), but there
is extensive gaming by both flight operators. Theng always converges with at least
one flight operator requesting one of the cornentsmf the feasible set. The flight
operator that reaches a corner point first isagaificant disadvantage because it is no
longer able to “pull” the system solution towarttstrue preference, while the other flight
operator is still able to do so. The result is thatfinal system solution is closer to the
second flight operator’s true preference. In theecahere only one flight operator
reaches a corner point, the final system solutionld/equal the other flight operator’s
true preference. This approach therefore has gignifissues with equity.

Random Choice of one of the Flight Operator IngatsG*

Again, using the same inputs as for the simulatiescribed in Section 2.5, a simulation
was run in which one of the flight operator inp(ltg) was randomly chosen for the
system performance goal vect@*(. The probability of choosing each flight operator
input (’x) was based on the percentage of operations affégtéhe initiative (i.e.w in

the formulation described in Section 2.2). Thehligperator solutions (both truthful and
strategic), in this case, are presented in Figlire 1
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Figure 11. Truthful and Strategic Solution: Random choic&f

This result shows that, when one of the flight eparinputs K «) is randomly chosen for
the system performance goal vect@r), the strategic and truthful solutions coincide.
The reason for this is that flight operators areincentivized to game in any way
because, if their solution is not chosen, theiutrgoes not affect the chosen solution in
any way. Thus, they are incentivized to submithiwitsolutions, and this is regardless of
how the probabilities are defined to randomly cleoose of the flight operator inputs.
The system goal vector (G*) is also pareto optifoalthe boundary of the feasible set).
The disadvantage of this solution is that it do@satcount for that fact that the payoff of
any chosen solution could vary significantly acriigit operators. The chosen solution
may therefore have highly disproportionate impa¢tsach flight operator. A solution
may exist that has lowest overall impact on afjHtioperators. This is dealt with in
greater detail in the following section.

With the random choice of a flight operator inpug)(for the system performance goal
vector G*), all the properties described in Section 2.4 ypgd well as the system
performance goal being pareto optimal.

1.9 Further Considerations

There are a number of further considerations thadtrine considered when applying the
framework described in this document to the realdvo

Firstly, for any given initiative, it may be preédrle for the FAA to specify a set of
discrete combinations of performance goals, oromgti for which flight operators must
indicate their preferences, instead of allowin@atimuous spectrum of combinations of
performance goals. This allows consideration ahankwork that allows voting on
individual options. Such a voting framework mayodabe designed in such a way as to
induce flight operators to indicate their relatogests or payoffs across different options.



This would provide information about whether aliliggperator was almost indifferent
about two options, or if it valued one significantiver another. This information would
be useful because it would allow the FAA to sethetoption that maximized the
(weighted) payoff across all flight operators.

Secondly, flight operators serve networks that m&aympacted by more than one
initiative in any given day. Flight operators magtefore have specific priorities for
which initiatives they would like to have tailoremltheir preferences, and which
initiatives they are indifferent about. They magahave preferences across multiple
initiatives, e.g., they may only want one optiorome initiative, if they can get another
option in another initiative (this may particulabg the case for simultaneous initiatives
in different geographical areas), but not otherwisgain, a framework that allows voting
may allow flight operators to indicate which fatids are most important to them, or
which combinations of options they prefer.

A framework that allows voting is introduced in todowing section.

2. Voting-based Approach (authors: Prem Swaroop, Michael O.
Ball)

2.1 Background

The Service Expectations Problem (SEP) aims tcecbiinput from competing flight
operators in the form of target NAS-wide performamaetrics. A possible starting point
would be for the ANSP to announce the likely dewiad of five performance metrics
from their normal levels. These deviations canrégresented as a vector with five
elements, each corresponding to a specific me&kgsuming the performance criteria of:
1) capacity, 2) cost effectiveness, 3) efficiendy, flexibility, 5) predictability, an
example candidate vector could be {0.9, 0.8, 0®36, 0.85}, representing a 10%
reduction in capacity, 20% reduction in cost effaatess, 5% reduction in efficiency,
and so on.

The flight operators then return with their feedbaad preferences, which are then used
to update the ANSP's target vector. This procesxpected to be iterative: the flight
operators submit their preferences, the ANSP update announces the winning target
vector; the airlines then fine-tune and re-subinéirt preferences, and so on, until an
acceptable vector is determined.

The SEP has elements of multi-attribute, consebagsd decision making, in which a
common burden is shared among multiple partiesuels of fairness and equity would
arise in such settings, more so because the AN&Rublic entity with an explicit goal
to be equitable towards all the flight operatofsr this procedure to be acceptable in the
long-term, it is vitally important to ensure théitthe players perceive the mechanism to
be fair to all of them. In this section, we propasvoting mechanism to handle various
aspects of the SEP, and present the research agenda



2.2 Consensus-based Fair Multi-Voting M echanism: Introduction

We propose the following conditions be met by thechanism:

singlewinner determination. The mechanism should result in a single winwviegtor.
confidentiality. The private information requirements from thghli operators should
be minimal.

practicality. The procedure should be easy to administer, ahthwolve time-
consuming information gathering and / or processiegs.

consensus-building. The winning vector should have “maximum accepitgbamong
the airlines.

equitable. The mechanism should be perceived to be faill fpagties involved from the
outset.

strategy-proof. As far as possible, the mechanism should disgeugaming, and
encourage truth-telling behavior.

We propose a multi-round voting mechanism thatngtts to meet the above objectives
as we describe below. An instant run-off voting\{) is proposed to determine a single
winner among a pool of candidate vectors. IRVnswn to be a practical method that
requires only preference rankings to be eliciteamfrthe voters, which is a relatively
simple task. Instead of asking for detailed payofictions that may infringe upon

airlines' private information, it asks for prefecenordering for the top few candidates
alone, further reducing information load. Hence, meet conditions (i)-(iii) by use of

IRV.

Before proceeding, we present a simple exampl®&dfih the following table. 5 airlines
express their preference ordering as given for4heandidate vectors. As the first
iteration finds no absolute majority winner, the ct@ 2 being least-preferred is
eliminated in this iteration. Next, the airlineeference ordering is updated for iteration 2.
Note for example, if an airline had ranked Vectoras its first choice then, upon
elimination of vector 2, the second choice of @idine would become its first choice, its
third choice would become its second, etc. On tiad rteration, Vector 3 is eliminated.
In the final iteration, Vector 1 is found to haugsalute majority, and is declared winner.



Iteration Vectorl Vector2 Vector3 Vector4d
1 Airline 1 1 3 4 2
1 Airline 2 2 4 3 1
1 Airline 3 1 3 2 4
1 Airline 4 3 2 1 4
1 Airline 5 4 2 3 1
1 Most preferred by 2 0 1 2
1 %age of total 40% 0% 20% 40%
1 Decision Eliminate
2 Airline 1 1 - 3 2
2 Airline 2 2 - 3 1
2 Airline 3 1 - 2 3
2 Airline 4 2 - 1 3
2 Airline 5 3 - 2 1
2 Most preferred by 2 - 1 2
2 %age of total 40% - 20% 40%
2 Decision - Eliminate
3 Airline 1 1 - - 2
3 Airline 2 2 - - 1
3 Airline 3 1 - - 2
3 Airline 4 1 - - 2
3 Airline 5 2 - - 1
3 Most preferred by 3 - - 2
3 %age of total 60% - - 40%
3 Decision Winner - - Eliminate

An IRV implementation requires the specification fafther details, like tie-breaking

rules, whether multiple least-preferred vectorssameultaneously eliminated, whether all
candidates must be necessarily ranked by all oetcs The simple example shown
glosses over these for brevity.

In order to address conditions (iv)-(vi), we needtittress IRV. Instead of an absolute
majority, we propose to build a consensus: a catéigector would need a larger than
absolute majority to be declared a winner. In adidj for reasons discussed in Section
1,we propose to use a weighting scheme to reflextdiffering importance of various
flight operators. Further, unlike IRV, we propdsenave more than just one round. And,
unlike traditional voting schemes, we propose td awbre candidate vectors in each
round, instead of restricting the choice set toydhk initial set of proposed vectors.
Finally, we wish to study the entire mechanism digto simulation and game-theoretic
models to verify its susceptibility to strategidimg and nomination.

We now give an example of a weighted IRV in theldieing table. The weights
emphasize the heterogeneity among the airlines ¢dmer stakeholders), and let them
have a proportional representation in the decismaking process. A more detailed
discussion of weights follows later.



An absolute majority is again not found in thetfiteration, which eliminates the least-
preferred Vector 2. The second iteration has same&me as the first, as Vector 2 was
not the most preferred candidate for any airlitteration 2 eliminates the Vector 3 as it
has the minimum support; rankings are then updateidieration 3. Iteration 3 now finds
Vector 1 to have an absolute majority.

Iteration Vector Vector2 Vector3 Vector4 A|rI.|ne
1 Weight

Airline 1 1 3
Airline 2 2 4
Airline 3 1 3
Airline 4 3 2
Airline 5 4 2

T

Weighted top
preference
%age of total weight 39% 0% 17% 43%
Decision Eliminate

1

1

1

2 Airline 1 1 3 2 6

2 Airline 2 2 3 1 6

2 Airline 3 1 - 2 3 3

2 Airline 4 2 1 3 4

2 Airline 5 3 2 1 4
Weighted top

preference
%age of total weight 39% - 17% 43%
Decision - Eliminate

2

2

2

3 Airline 1 1 2 6

3 Airline 2 2 1 6

3 Airline 3 1 - - 2 3

3 Airline 4 1 2 4

3 Airline 5 2 1 4
Weighted top

preference
%age of total weight 57% - - 43%

Decision Winner - - Eliminate

W w w

Like any voting procedure, IRV is known to suffeorh shortcomings. Firstly, a
“Condorcet" winner is not guaranteed to be an Riher, that is, it is possible in an
IRV that a candidate that would win against evetlyeo candidate in pairwise contests
may not be declared an IRV winner. Furthermord/ tRes not meet independence of
irrelevant alternatives (llA) criterion, that isn dRV winner may be different if a
candidate who cannot be a winner is included asm@mon. Thus, IRV is prone to
strategic nomination. Thirdly, according to Gibdb&atterthwaite theorem, no voting
system is entirely immune to strategic voting uslésis dictatorial or incorporates an
element of chance. Fourthly, IRV is not a proporél voting system; proportionality
being an established measure of fairness, largemes may have an advantage if IRV
alone were to be used.



The above shortcomings serve to highlight our cddeuttressing the simple IRV with
the proposed enhancements in order to meet congli(i®)-(vi). While adding more
rounds seems counter-productive -- IRV after-athelates the need for multiple rounds
-- it is necessitated due to our proposal to addencandidates. As the simple example
above indicates, Vector 1 is deemed winner by lzerahin margin in the final iteration.
If a consensus-building approach were to be uséldl avrequirement of 2/3'rd majority
for the winner, then this round alone would not dngaroduced a satisfactory winner.
Moreover, the initial rankings show that it waseed less preferred than Vector 4, and
would have lost to it in a pairwise contest.

We propose to (a) allow flight operators to proptier own candidate vectors, and (b)
replace the running candidate vectors with new ickate vectors that may have a better
chance of being a consensus winner. In order ttemaw proposals, we shall be using
the data on previous rank-orderings, and our utalgigg of the feasible vectors. This
obviously would require defining clear stoppingeria.

With the above introduction, we now present thelmacsm details.

Weights for each
airiine

Initial

considerationset

&I-I/f

Lindatad
whpoatec

Airline private

information

consideration set

— A

Voted weights for

each vector

Winner
Determination

Consolidation _
Final Vector |4

Stopping Criteria Y




2.3 Consensus-based Fair Multi-Voting M echanism: Details

Please refer to the accompanying flow-chart focleematic view of our proposal. We
explain the various processes in the following sahens. The “black-boxes” depict the
proposed research agenda items.

3.3.1 Weight Determination.

The ANSP initializes the voting process by firdbeating weights to the airlines. This

assignment procedure will be based on agreed-uges,rand must be perceived to be
fair by the flight operators. Research would begureed to determine equitable

procedures.

One way is to assign the weights proportional ® namber of flights impacted due to
the weather conditions on the given day of openatioHowever, this may treat smaller
airlines unfairly, as they could effectively becomelevant. This drawback could be
mitigated by using a transformation with a decnegisate of increase, e.g. a square-root,
or logarithm function (The ANSP would then take tegling of the fractional numbers).
Yet another way could be to take a monotonicalbreasing step-functional form of the
number of flights impacted: an airline is assigmemight of sayw; if number of its flights
impacts is within say ... U, it gets weight ofv, (> w,) if its flights impacted is within
(Up +1) ... Uy, and so on.

An altogether different procedure may incorporatedomization. Flight operators with

more flights impacted than sdy would get an allocation as above; the smallehtflig

operators would be grouped together, and one (oe)rmaf them would be chosen at
random and assigned the weight for all smalleiraisl flights impacted. Hence, as the
procedure gets repeated in practice, all the smailttnes would get a significant say in

the decision every once in a while.

At the outset, it only seems fair that the numidfeftights impacted be taken as the sole
criterion for determining weights for the decisioaking. This metric has a direct
relevance to the problem at hand, is based ongulalvailable data, and has an element
of randomization as well (instances of bad weagierunlikely to have exactly the same
composition of number of flights impacted on any teccasions). However, the weather
conditions typically play out somewhat similarly given geographies, and the overall
fleet composition for airlines may be expecteddcstable in the geography.

For example, consider Northeast region of the UrSthe winter season. Flow
Constrained Areas may be similar all over the wintbenever bad weather hits as the
snow-storms move northward and eastward from tiferggion. Also, the broad mix of
flights operated by the different airlines can bgexted to be broadly stable for the
season. Hence, while the exact weights may berdiit over multiple instances, the
dominance or otherwise of particular airlines maynain more-or-less the same. It
seems appropriate therefore to consider differppta@aches and allocation formulas that
may incorporate more criteria into the weight deii@ation process.



Research should be directed at the overall impheteight allocation process on the
decision-making. While the ex-ante process mustiéemed fair in itself, it would
further boost confidence in the proposal if it @balso be seen as being fair ex-post.

3.3.2 Initiation.

The ANSP next introduces a set of initial perfornenectors that are all individually
feasible. In practical terms, these may corresptmdvarious ATFM alternatives
available for the given day of operations and weathThe initial set may be a null set,
implying that the ANSP wishes to let the airlinesgnse the performance vectors. The
vectors in the initial set are required to be fielesiand constitute theonsideration set

3.3.3 Proposal.

Each airline may propose new feasible vector(9)@lweith its preference ordering across
the entire consideration set. Each new vectocrisemied: it must be feasible, and it must
have a minimum rank given by the airline (to disege cheap talk). Only the screened
vectors are then added into the consideration set.

Again, the models described in Section 4 may béulser feasibility verification. The
research described in Section 2 may be useful terméning the individual airline
proposals.

3.3.4 Voting.

A weighted IRV is now conducted, and the final tesacross all the candidate vectors
are shared with all the flight operators, withowutging the individual airlines' rankings.

3.3.5 Winner Determination / Stopping Criterion.

A pre-specified stopping criterion would be usedatpudge whether the voting rounds
should be closed and a winner vector be announcéd. example could be simple
majority (over 50% weight). A consensus-based @tapcriterion may look for higher
agreement, say 80%. Research will be requiredtatbéishing a good stopping criterion.
IRV assumes proportionality in preferences ovekirags. An flight operator has to
necessarily pronounce a vector to be of a lowek rdespite it being indifferently
favoring two (or more) vectors. A more nuancedgmence elicitation may be effected
by asking flight operators to allocate their assijrweights to each candidate vector.
This would also allow a flight operator to give dan weights to similarly preferred
vectors. As it requires additional effort from tiight operators, this procedure may be
proposed for the top few winning candidates alamsgead of the entire consideration set.

Establishing a winner fairly may also require agneat by a minimum number of flight
operators -- small or big, or a mix of the two. difer words, it may be perceived to be
more equitable to have, say, at least 50% of trexatprs to agree on a vector before
declaring it to be a winner. This would again comii additional complexity in winner-



determination procedure. Such rule-based procedane common in voting literature,
and research should be done to establish a goatewdetermination model.

A simple stopping criterion may be required thaguees that at least a minimum number
of rounds are conducted before a final winning @e announced. This would ensure
that initial perceptions alone do not dominate, arnthance is given to elicit preferences
and form a consensus. Another simple stoppingrarit may specify a maximum
number of rounds in the interest of time.

3.3.6 Consolidation.

The stopping criterion would specify whether a adiaation of performance vector is
required to be done by the ANSP. The preferenkeised in the previous rounds could
be exploited by the ANSP in this phase. The cadabbn may involve either selecting a
few vectors from subsets of “similar’ candidatesl a&liminating the rest, and / or
proposing new candidate vectors in place of a sulifs&similar” vectors that may have
the maximum acceptability given the votes and thesst.

Broadly, the SEP feasible region would be discostatinuous. ATFM TMIs themselves
form a finite and discrete set, and each TMI ha®ssibly continuous range of feasible
parameters. Each feasible vector then has a jpatémt votes (or weights) from each
airline; and hence a likelihood of being accepte@ avinning candidate. SEP thus seeks
to establish a mechanism to efficiently search fdesible space for a vector that has
maximum acceptability.

This assumes that the ANSP has no particular abgedtinction that it wishes to
optimizes, but is only interested in basic feagipiio ensure safety in operations. In a
more general setting, the ANSP may wish to optimize one (or more) objective
function(s), and thus may influence the likelihaddacceptance directly.

This procedure would be conducted by the ANSP,raayg involve a procedure akin to
column-generation. Research will be required talesh fair and useful ways to exploit
the preference data. Weight-based procedure &dighted above may be used for this
consolidation phase.

3.3.7 Repeat.

The consideration set would now be updated, ancdegsorepeated either from "Proposal”
phase or just “Voting" phase. Reverting to a Bsap round may be fair to the flight

operators, especially if the ANSP makes a mistakeits assumptions about the
acceptability of the consolidated vector(s). Hoerevit may prolong the entire

proceeding, and may be prone to filibustering, wheran airline may continually

propose newer vectors instead of acting rationalBisincentives toward this may be
implemented by allowing a fixed number of propostseach airline; however this

would require some judgment from the ANSP.



2.4 Conclusion

The history of voting has been fraught with parasoxand impossibility results.
Research will be required to establish an overaitmanism that would be fair, practical,
and leads to a useful outcome in most of the lilsglgnarios that may arise. Research
may incorporate elements of voting theory, gameortheinformation and decision
analysis, statistical likelihood methods, and searitinuous optimization, including
mixed integer programming.

4. Performance Metrics and Trade-offs in Ground
Delay Programs authors: Yi Liu, Mark Hansen)

4.1 Introduction

Before we design a distributed mechanism wheregltfoperator community can
collectively express its performance goals, it $tidne clear that what the performance
criteria should be. In this chapter, we will irdtace our performance metrics for capacity,
efficiency and predictability and show how thesdring may be traded off in the design
of Ground Delay Programs under capacity uncertailtythe metrics are constructed
such that the values are between 0 and 1. The GBRrD decision variables: the
duration and the scope. We focus on the effedtetiuration of a GDP on the
performance metrics. The impact of GDP modificaiionesponse to updated
information is ignored, but has been consideresuinongoing work.

The remainder of this chapter is organized aswalorhe GDP model for this analysis is
set up in 4.2. Then we describe our performanceieseind discuss how they will
change with the duration of the GDP in 4.3. A r&tion of the results has been
presented in 4.4. And finally the analysis is cadeld in 4.5

4.2 Model Specification

The situation is examined at a single airport. \&uane the scheduled arrival demand
rate is a constand, (flight/hour). For a normal day, the capacity is at a constarit lagel
Ch. When the GDP is initiated on a bad day, the aapadll decrease to a constant low
level C.. The duration of the GDP is assumed td’ber say we assume the capacity of
this airport will go up to the normal level afferDue to errors in predication, in the real
case the capacity may increase at tanehich can be different from the assumed tifme
as we can see from Figure 1.
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Figure 1: Queueing Diagrams of Possible Scenarios

When the GDP is initiated, is set butris unknown. We assunwehas a uniform
distribution betweety,i, andtnax Conceptually, ifT is set close tonin, Tis very likely to
be larger thar. In this case, capacity will be more fully utilizéut there will be less
predictability. On the contrary, if is set close ttna thenr has a big chance to be
smaller tharT. As a result, it is very possible that the capawill be underutilized and
unnecessary delay will be resulted. However, disldyghly predictable.

4.3 Performance Metrics

Metrics have been constructed for three performanteria: capacity, predictability and
efficiency.

4.3.1 Capacity Utilization

Once the GDP is initiated, flights will be delayadd queue will build up until the
capacity goes back to the normal level. After tqague starts to vanisNg is denoted as
the realized throughput from the beginning of tHeRQuntil when there is no more delay.
It should be noticed that the realized throughpilitlve smaller than the throughput that
would be possible if the capacity actually goesafore the assumed time. DefiNeas
the ideal throughput that would have been possthi®ugh this time if perfect
information is available. The metric of capacitylimation, ac, is then constructed as the
ratio of Nr to N;. Whenris less tharil, the capacity will be underutilized for a period.
The situation is illustrated with Figure 2. As aul, a; is less than 1.
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Figure 2: Values of the Realized Throughput and Itieal Throughput whemris less
thanT

Oppositely if the capacity increases affan the real situation, then the capacity has
been overestimated. We may need to further extemn&DP or airborne delay will occur.
In either case, the realized throughput will beghme as the ideal throughput because all
the available capacity is utilized and nothing barimproved even perfect information
can be obtained at the beginning.&as equal to 1.
With consideration to both situations, we can getfollowing equations for the capacity
metric as a function of:
AT

Aa(t) =4t +Cy(T—1),if T<T

Lift=>T
To evaluate how the duration of the GDP will impatthe metric, we must take
expectation of it over, which is showed below:

toae — T AT AT
Ela.]= — - log( )
tmax — Lmin [CH _‘lj [tmﬂx - tm:’nj CyT — [CH _A)tm:’n
A realization in Section 2.3 will show how capaaitifl change withT based on this
formula.

4.3.2 Predictability Ratio

Predictability is assumed to be equivalent to asuesaof delay variability. When the
duration of the GDP is determined, we may calculagetotal flight delay. We call Dp,
which is the flight delay as planned at the begigrof the GDP. We further define the
total realized delay &3 and the predictability metrigp as the ratio oDp to Dgr. When
the capacity recovers before the assumed Tinsénce higher capacity is available than
assumed and no modification to the program is demed, the planned delay will be the
same as the realized delay and the metric vallielighe normal capacity is not
achievable at tim&, as shown in Figure 3, the planned delay will in@lger than the
realized delay andp is less than 1. It should be noticed that wherctdpacity is not
enough to satisfy the scheduled flights, the GDR g& extension or airborne delay may
occur. The cost of the additional delay will be mexpensive than the planned delay.



This difference is not reflected in the metric poedictability but will be considered in
the metric for efficiency.

Cumulative arrivals
Cumulative arrivals

T 7 time - T 7 time
Figure 3: Planned Delay and Realized Delay whisnarger tharm

The predictability metric can be expressed as atiom of -

-
=

ap(1) = 72"
1,ift<T

ift=>=T

Integrating it overr, we may get the expectation of the predictabdgya function of our
decision variable T:

1 T?
E[aP]=t —t B +2T—tmin
Mo min mas
— 1 _E:T_tmﬂxj‘_l_t _t
Lmax — tain tax e m

The feasible region foF is betweenqi, andtqax SO predictability is expected to increase
with T.

4.3.3 Efficiency

As mentioned previously, the cost of the additiatelhy could be more expensive than
the planned ground delay when the capacity godatapthan it is supposed to be. We
assume the extra delay is twice as expensive agdhed delay. If perfect information is
available when decision is made, then all the de&fined byr will be ground delay.

The cost of this delay is denoted@sThe total realized cost is defined@s which
consists of ground delay and additional delay wihencapacity actually increases after
the assumed time, as shown in Figure 4.
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Figure 4: Ideal Delay and Realized Delay whes larger thar

The efficiency metriar, then is defined as the ratio of the cost of idkddy to that of
realized delay and may be written as:

-
&

T
——ift =T
a, (=1 T

E, ift=T
Take the expectation and we can get

T
d +—0-
fTar’
tmrzx - tmin
where,d = mim + 1 _T)ande = lo (—Etm“_ﬁ‘lr) —log(>3)
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4.4 Realization

The performance metrics are defined for capacigdiptability and efficiency in the
previous section. Now, we will illustrate how vetuof these metrics will vary with the
duration of the GDP with an example. The paramsgeof the realization is summarized
in Table 1.

Table 1: Parameter Set of Realization of the Grddeldy Program

Parameters Notations  Values Units
Demand arrival rate A 45 Flights per hour
Low capacity C 30 Flights per hour
High (Normal) capacity Cy 60 Flights per hour
Lower bound for 7 tmin 2 Hour
Upper bound for 1 tmax 4 Hour

The simulation results are shown in Figures 5 tim Figure 5, it shows that with
increasing T, capacity utilization will decrease predictability ratio will increase. And



predictability ratio is more sensitive to the inese. When the duration of the GDP
increases from 2 hours to 4 hours, value of thaa&pmetric decreases only by 7% but
the predictability ratio is double. Airlines maylwa capacity and predictability
differently. If different unit costs are assignedtem, the sensitivity may change but the
trend of change will not change. It means if ohlgge two criteria are under
consideration, there is always an optimum T whidhmaximize the output. Different
from the metrics of capacity and predictabilitye #fficiency metric does not change
with T monotonously, as shown in Figure 6. As Traases, value of efficiency metric
first increases because of reduced chance of aelaelay. After a certain point,
efficiency decreases with T because it has bighgance that the capacity actually goes
up before the assumed time and realized ground detauch larger than it could be if
we had perfect information at the beginning of @i2P. Variation of efficiency with
capacity utilization in Figure 7 follows a similpattern. But T decreases from the left to
right in Figure 7.
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4.5 Conclusions

Performance metrics are constructed for capaaigdiptability, and efficiency. By
employing these metrics, the FAA and flight operaiiee able to see how operational
performance will change with design parametersiefGDP under uncertainty. As
shown in the realization example, conservativesiecion the duration of the GDP will
improve predictability but underutilize the runwegpacity. On the contrary, a bold
decision will diminish predictability but enable tesbetter utilize capacity. Metrics of
predictability and capacity have monotonous refegiop with the designed duration.
However, efficiency metric is always below 1 dueaitwertainty and has an intermediate
peak. Different decisions on the duration will gexte different performance goal vector.



In ongoing work, we are evaluating metrics for tiiger performance goals, flexibility
and cost effectiveness, and adding another desigimyeter, scope of the GDP, to the
existing model. Additionally, the impact of GDP nifochtion in response to updated
information is being taken into consideration.



