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Abstract 

We investigated the influence of several factors that might be expected to influence a 

flight’s estimated time en route (ETE): origin airport, destination airport, month of year, 

day of week, hour of day, aircraft type, and carrier. Our main interest was to see whether 

the ETEs in filed flight plans differed within and among carriers. We found much 

variation in ETEs. Sustained and significant trends in ETE have occurred for a number of 

origin-destination pairs. Route, month, hour of day and carrier are all statistically 

significant influences on ETE. Some routes have ETE distributions that are well modeled 

by a mixture of lognormals; in simple cases, this pattern can be regarded as a mixture of 

regular and irregular operations. Some origin-destination pairs show large differences in 

the number of different routes specified in flight plans, but variations in flight plan 

distances are too small to account for all the variation in ETEs. Overall, the simple 

question of how long it should take to fly from point A to point B turns out to have an 

intriguing number of revealing answers.  
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1. Introduction 

 Every airline flight is conducted on the basis of a flight plan filed with the Federal 

Aviation Administration (FAA). One component of flight plans is an estimate of the time 

between takeoff and landing, known as the estimated time en route (ETE). As part of a 

study of deviations from flight plans, we became interested in the phenomenon of 

variation in ETEs. Like so many other elements of the air transport system, ETEs are 

dynamic. In a system as stressed as the US National Airspace System (NAS), even single 

digit percentage changes in ETEs can carry operational significance. We investigated 

variations in ETEs in hopes of better understanding the behavior of airlines and the 

influence of external factors on that behavior. 

There is a good deal of variability in ETEs. For instance, the average ETE for 

flights from Memphis (MEM) to Cincinnati (CVG) was 76 minutes in winter 1998-99 but 

dropped to 73 minutes, 66 minutes, and 58 minutes in the three succeeding winters. Over 

the same period, the average winter ETE for commercial flights between Baltimore 

(BWI) and New York (LGA) rose steadily from 36 to 52 minutes. 

Variability is also present at a more microscopic level. Consider the case of one 

route served by two major carriers during the first five months of 2002. For one of the 

carriers, there was a 6% difference in ETEs for its own flights just two hours apart. And 

for flights departing at one particular hour, there was an 8% difference between the ETEs 

of the two carriers. 

Several factors could account for such differences. Some can be thought of as 

background influences: the origin and destination airports, the anticipated weather along 
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the route, and the type of aircraft. Of particular relevance to the FAA would be links 

between anticipation of airspace congestion and carriers’ flight planning. 

Of interest to the study of airline behavior would be evidence of differences in 

carriers’ flight planning styles. We have heard anecdotal evidence of substantial 

differences in carriers’ flying styles, such as the efforts taken to insure a ride free of 

turbulence and sudden maneuvers; similar differences might appear in flight planning. 

We know that airlines devote attention to flight planning issues: in summer 2002, United 

Airlines was advertising for an operations researcher to lead its SkyPath project for 

development of new flight planning software. 

To better understand the influences on the ETE component of flight planning, we 

undertook two statistical analyses. The first, broader study looked at trends in average 

ETEs for flights among 31 major airports. The second, more detailed study examined 

data on individual flights during early 2002. Section 2 reports trends in ETEs for flights 

among 31 major airports. Section 3 reports the results of bivariate statistical analyses, 

which relate ETEs to factors such as airline, day of week, etc. Section 4 reports the 

results of a multivariate analysis. Finally, Section 5 summarizes our findings and relates 

them to issues in air traffic management and airline operations. 

2. Trends in ETEs 

As part of an ongoing study on sources of delay, we obtained information on 

average ETEs for 31 major airports in the US. These data were retrieved from the FAA’s 

ASPM database (see http://www.apo.data.faa.gov). The data include operations of several 

major airlines, which we cannot name. The 31 airports were ATL, BOS, BWI, CLE, 
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CLT, CVG, DCA, DEN, DFW, DTW, EWR, IAD, IAH, JFK, LAS, LGA, LAX, MCO, 

MEM, MIA, MSP, ORD, PHL, PHX, PIT, SAN, SEA, SFO, SLC, STL, and TPA. 

To minimize the effect of convective weather on flight times, we narrowed our 

analysis to include only operations during the winters of 1998-1999, 1999-2000, 2000-

2001 and 2001-2002. We defined winter as December, January, and February. 

Out of over 900 routes, this analysis identified 33 for which the average ETE 

decreased across all four winters at an average rate of at least 2% per year. We also found 

six routes for which the average ETE increased for four consecutive winters at an average 

rate of at least 2% per year. Table 1 lists the routes and rates of change in ETEs. 

Memphis (MEM) figured prominently in OD pairs with decreasing ETEs. Most of the 

increases were on routes in the northeast. Table 1 establishes that, even averaging over 

many flights from many carriers, ETEs on some routes can be quite dynamic. 

3. Influences on ETEs of Individual Flights 

3.1 Data 

 To better understand the influences on ETEs, we used ASPM data for nearly 

60,000 individual flights during the first five months of 2002. Five relevant variables 

were available to us: 

• Carrier: A primary interest was to see if there were any systematic differences that 

could be attributed to differences in flight planning styles among major airlines. We 

studied flights from six major carriers, which we will refer to as AAA, BBB, CCC, 

DDD, EEE, FFF. 

• Route: The distance between the origin and destination airports is a major influence 

on ETE. Beyond that obvious fact, however, we could study whether the relative 
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behavior of competing airlines was different along different routes. We selected 

origin-destination (OD) pairs from among the 31 major airports listed in the previous 

section. Because we wanted to subdivide the data by hour of the day and to study 

routes served by more than one major carrier, we were forced to discard most of the 

possible OD pairs. In the end, we identified 14 OD pairs, accounting for 28 routes 

(i.e., we treated the two directions between the airports as different routes). Generally, 

we combined results from the two directions to give one overall set of results for any 

given OD pair. For a given OD pair, we excluded carriers with very few flights. 

Figure 1 shows these routes on a map. Table 2 shows the count of flights in our study 

broken down by OD pair and carrier. Overall, we analyzed about 60,000 individual 

flights. (We excluded flights made by carriers having very little traffic for a given OD 

pair.)  

• Month: Seasonal weather patterns can have an effect on ETEs. We could expect the 

effect to be different for routes at different latitudes. We used ASPM data from 

January – May 2002.  

• Hour: Both winds aloft and airspace congestion can be expected to vary by time of 

day. To insure stable estimates, we excluded from analysis any hour on any route that 

did not have at least four flights per month. In general, there were sufficient flights to 

study operations from 0600 to 2200 local time. To the extent that there are large 

hourly variations in ETEs along the same routes, we could suspect that congestion 

would play some part. (To investigate this association, we would need to compile 

data on hourly airport arrival and departure rates relative to airport capacity. This 
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would expose any correlation between congestion in terminal airspace and longer 

ETEs. We have not done this analysis.) 

• Aircraft type: To the extent that different aircraft operate at different speeds and 

different carriers use different types of aircraft, this variable can confound any 

comparison of airline flight planning. Likewise, it can contribute to ETE variability 

within a single carrier. However, because it is quite common for aircraft to cruise at 

speeds much lower than their maximum speeds, this problem may not be acute. 

3.2 Analysis of ETEs by OD pair and carrier 

 We begin the data analysis with a series of tables showing ETE statistics broken 

down by OD pair and carrier. Table 2 shows counts of flights. The Range/Average 

column divides the difference between the largest and smallest values in a row by the 

average of the values in the row. It is a measure of the relative variability across carriers 

serving a given OD pair. For Table 2, it provides a measure of dominance for each OD 

pair: a large value indicates very unequal market shares across carriers. By this measure, 

the most balanced market was DTW:CLT, where DDD and FFF had nearly equal 

numbers of flights; the least balanced was SFO:LAX, which EEE dominated. (Note that 

in all our OD pairs, only two or three of our six carriers had appreciable market share, so 

the overall level of competition was not as high as it might have been.) 

 Table 3 shows average ETEs. While the averages are very route-specific, the 

Range/Average column standardizes for this to show which OD pairs saw the greatest 

variability across carriers. The variability ranged from 1% to 10%, the latter being for the 

SFO:LAX route. These levels of variability in average ETEs suggest that the differences 
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among carriers’ flight plans are large enough to be interesting and merit further 

investigation. 

 Table 4 shows the standard deviations in ETEs. The value in each cell represents 

the extent to which flight plans vary from flight to flight for the same carrier flying the 

same route. The absolute levels of the standard deviations tend to increase with the mean 

ETEs shown in Table 3; it is not surprising that longer flights would have more room for 

variety in flight plans. The Range/Average column can be interpreted here as a measure 

of differences in internal variability of carriers’ flight planning processes: a high value 

indicates that there are substantial differences across airlines in the extent to which they 

vary the ETE from flight to flight on the same route. Note that a big difference in 

standard deviation between two carriers does not imply which flight planning process is 

better. The fact that one carrier has a lower standard deviation might mean that the carrier 

strives for predictability, which is good, but it could also mean that the carrier is not very 

particular about its planning and rarely changes ETEs to account for weather or other 

variable factors, which is bad. 

 Table 5 shows the coefficients of variation of the ETEs in each cell. The 

coefficient of variation is the standard deviation divided by the mean. Using the 

coefficient of variation places the raw differences in standard deviations in context by 

standardizing them for the mean ETE on a route. This makes it easier to read down a 

column and develop an overall impression of the variability of flight planning for a 

particular carrier. For some OD pairs and carriers, there is a fairly high relative variability 

in ETEs, up to 17% for BBB flying between EWR and ORD. Because the data have 

already been standardized to take account of differences in route distance, the rightmost 
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column shows the simple range. The OD pair that provoked the greatest difference in 

carrier behavior was ATL:CLT, where the internal variability in ETEs was 15% for FFF 

but only 10% for CCC. In fact, CCC had the most consistent ETE (i.e., lowest coefficient 

of variation) in all six of the markets in which we compared it to other carriers.  

 We analyzed the data in Table 5 using unbalanced two-way analysis of variance 

(ANOVA). Both the carrier and route effects were highly significant. Multiple 

comparisons using Tukey’s method with α = 0.05 showed that the differences between 

CCC and all five other carriers were statistically significant. In the same way, many pairs 

of routes had differences in coefficients of variation that were statistically significant. 

Thus it is clear that the level of consistency in ETEs varies by route and by carrier. 

3.3 Bivariate analyses of standardized ETEs 

Earlier, we listed five variables that we expected to influence ETE. In this section, 

we show how each in turn changed the distribution of ETE. 

The response variable in these analyses is the standardized ETE, not the raw ETE 

studied in the previous section. To allow us to combine results across routes, we removed 

the obvious effect of route distance by dividing every ETE for flights between a given 

OD pair by the average ETE for all such flights. For example, every ETE for flights 

involving EWR and ORD was divided by the ETE of all flights between EWR and ORD. 

We present the bivariate results in a series of side-by-side boxplots supplemented by 

tables of summary statistics.  

Figure 2 shows how standardized ETE varied by carrier. CCC had the lowest 

average standardized ETE, indicating the most aggressive flight planning; it also had the 

lowest interquartile range (IQR), indicating the greatest internal consistency in its flight 
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planning. At the other extreme, AAA had the highest mean and IQR. The difference 

between the means was about 5%, which is a significant difference operationally. We still 

need to understand whether other factors, such as fleet mix, might explain this difference. 

The most visually striking feature of Figure 2 is the presence of many outliers, especially 

on the high side. Considering the large counts summarized in each boxplot (roughly 

6,000 to 12,000), the outliers represent only a small fraction of all flights. However, they 

indicate that ETEs can vary by a factor of two, and such exceptions are important because 

they represent major disruptions in scheduled operations. 

Figure 3 shows how standardized ETE varied by month. Of the first five months 

in 2002, March had the highest mean, median and IQR, while February had the lowest. 

While these differences are highly significant statistically (since they are based on over 

10,000 flights each), they are of little operational significance compared to the 

differences across carriers. (Similar analyses not shown here also established that 

standardized ETE showed little difference by day of the week.) 

Figure 4 shows how standardized ETE varied by hour of the day. The mean and 

median were relatively constant throughout the day. However, the IQR showed some 

larger changes, ranging from a low of 0.0684 at 22 hours to a high of 0.0951 at 13 hours. 

This suggests that the variability in the flight planning process can change substantially 

throughout the day. Together with differences in when the largest outliers occur, it also 

hints that anticipated congestion in the NAS could play an important role in airlines’ 

flight planning. 

Figure 5 shows how standardized ETE varied by equipment, i.e., type of aircraft. 

The mean result for Boeing 747s was quite high, but the small sample size of 20 flights 
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means we should disregard these results. The 1,736 flights for which the aircraft type was 

not recorded had the highest mean of all, leading us to speculate that these were regional 

jets. Among the known types with many flights, the Fokker aircraft had standardized 

ETEs about 5% above average and the Airbus aircraft about 2% low. Not surprisingly, 

then, aircraft type had a large influence on standardized ETE relative to other variables, 

roughly comparable to carrier. However, we suspect that variations in ETE associated 

with aircraft type are primarily reflections of differences in aircraft mix across carriers 

(and differences in routes across carriers). 

Since both carrier and type seemed to be important influences on standardized 

ETE, we wondered whether these variables might be confounded in the dataset, i.e., 

whether different carriers had very different mixes of aircraft. If so, it would be more 

difficult to untangle the separate effects of each factor. Unfortunately, the answer was 

yes. Figure 6 shows the mix of aircraft types by carrier. Consider the Boeing 737: this 

type made up the majority of the fleets of BBB, EEE and FFF, whereas there were few or 

none in the fleets of AAA, CCC and DDD. In general, the carriers varied widely in the 

variety present in their fleets. Variety in nominal data, like fleet mix data, is measured by 

entropy, more entropy indicating greater variety. CCC had the highest equipment entropy 

and FFF the lowest. Flying a randomly chosen flight on FFF, one was very likely to get a 

737; flying CCC, one was quite uncertain what type of aircraft would be used. 

Finally, Figure 7 shows standardized ETE by OD pair. By definition, the mean 

value of this variable was 1.0, but the other statistics were revealing. Even after 

standardizing, there were substantial variations across OD pairs. This conclusion is the 

same as that reached in the discussion of Table 5. The transcontinental SFO:PHL routes 



 

 11

showed the least relative variation, while the relatively short SFO:LAX routes had the 

most extreme outliers in both directions. The two largest IQRs were for EWR:ORD and 

ORD:PHL. We note, however, that some of the variation might be traced to asymmetry 

in the times required to fly the two routes between any given pair of airports, since this 

analysis combines information for flights in both directions.  

3.3 Modeling ETE distributions  

 The preceding analyses have studied the issue of variations in ETEs from a 

macroscopic perspective, examining trends and summary statistics such as the coefficient 

of variation. In this section, we look in detail at selected routes, develop probability 

models for ETE distributions, and use the model parameters to characterize the flight 

planning of carriers competing on those routes. 

 For any given route and carrier, the distribution of ETE values can have a very 

complex shape. In many cases, this is because there is a large number of possible flight 

paths between the origin and destination, making for a multimodal distribution of 

estimated times en route. Even when there is only one flight path filed, there can be many 

different planned ETEs along the same path, corresponding to differences in planned 

airspeed, which can in turn depend on differences in planned altitude and other factors. 

 Examining many ETE distributions, we noticed that some were well described as 

a combination of a main, unimodal distribution of typical ETE values with an attached 

tail of unusually high values. Accordingly, our approach to modeling the distribution of 

ETEs was to use mixture models. Now, when a distribution has many modes, mixture 

models become very difficult to estimate numerically. However, for some routes whose 
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ETE distributions have only a few modes, it is both feasible and instructive to use 

mixture models. 

In certain cases, we can think of the ETE distribution as a combination of two 

components. One component, accounting for most of the data, represents regular 

operations. The second component, accounting for the tail of high values, represents 

irregular operations. We found that both components could be represented with a 

discretized version of the lognormal distribution. The discretization is necessary because 

flight plans are filed in units of one minute. The use of a lognormal rather than normal 

distribution not only fits the data better but guarantees that ETE will be nonnegative. This 

decomposition of the distribution allows us to characterize each airline’s flight plans 

using five parameters: the mean and standard deviation of ETE for regular operations, the 

mean and standard deviation of ETE for irregular operations, and the proportion of 

operations that are regular. 

Mathematically, the mixture model can be described as follows. Let 

X = filed ETE, regarded as a discrete, positive-valued random variable 

g(X | µr, σr) = conditional probability mass function of X for regular operations 

h(X | µi, σi) = conditional probability mass function of X for irregular operations 

f(X) = πg(X) + (1-π)h(X) = probability mass function of X 

where 

π = proportion of filed flight plans representing regular operations 

µr = location parameter of g() 

σr = scale parameter of g() 

µi = location parameter of h() 
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σi = scale parameter of h(). 

For a lognormal distribution, the location parameter µ and scale parameter σ combine to 

form the mean and standard deviation as follows: 

E[X] = exp{µ + σ2/2} 

S[X] = E[X]√(exp{σ2} – 1). 

We estimated the five parameters by the method of maximum likelihood, programmed as 

a constrained optimization. The constraints were that π, σr, and σi had to be positive and 

µi had to exceed µr. 

 We fitted lognormal mixtures to ETEs for three origin-destination pairs: 

ATL:CLT, SFO:LAX, and EWR:LAX. The first two had the largest range in coefficient 

of variation (see Table 5) and appeared to fit the paradigm of a combination of regular 

and irregular operations. The EWR:LAX route represented the more complex, 

multimoCCC situation one would expect for transcontinental flights. 

3.3.1 Flights from ATL to CLT 

Figure 8 shows the distributions of ETE for flights by FFF and CCC from ATL to 

CLT. Both distributions had a main body and a long tail to the right. 

 We applied the mixture model to these ETE distributions. Figures 9 and 10 show 

the observed and fitted distributions, the estimated parameter values, and the ETE means 

and standard deviations corresponding to the parameter values. The mixture models fitted 

the data for both carriers well. Comparing the two carriers’ results, we see an interesting 

difference. Both carriers filed normal plans 98% of the time, and both carriers’ normal 

plans called for an ETE of 35 minutes with a standard deviation of 1 or 2 minutes. 

However, irregular operations at FFF had an average ETE of 49 minutes, compared to 39 
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minutes for CCC, and a standard deviation of 5 minutes, compared to 2 minutes for CCC. 

Thus, irregular operations at CCC were much “tighter” than those at FFF for flights from 

ATL to CLT. 

3.3.2 Flights from CLT to ATL 

The distributions of ETEs for flights from CLT to ATL are shown in Figure 11. 

These westbound ETEs were longer and more clearly skewed to the right than the 

corresponding eastbound ETEs in Figure 8. 

Figures 12 and 13 show the fits from the two-component mixture model. There 

was a clear difference between the two airlines. CCC had regular operations slightly more 

often than FFF (88% versus 85%), and both its regular and irregular operations had more 

desirable, i.e., smaller, values for the mean and standard deviation. 

3.3.3 Flights from SFO to LAX 

Figure 14 shows the ETEs for flights from SFO to LAX by AAA, CCC and EEE. 

The distributions of the three carriers were clearly different. 

 We also fitted mixture models to these flights. Every flight plan filed by these 

three carriers during the time period studied called for exactly the same route, so any 

differences in ETE must be attributed to expected differences in airspeeds. Figures 15, 

16, and 17 show the observed and fitted distributions, the estimated parameter values, and 

the ETE means and standard deviations corresponding to the parameter values. Again the 

mixture models fitted the data for the carriers well. The EEE flights from SFO to LAX 

followed the same pattern as the CCC and FFF flights from ATL to CLT. That is, there 

was a main body of data that was lognormal and accounted for 98% of the flights, and 

there was a high tail also described by a lognormal distribution. Regular operations had a 
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mean ETE of 52 minutes and a standard deviation of 2 minutes. Irregular operations had 

a mean of 65 minutes and a standard deviation of 3 minutes. There were a relatively 

small number of CCC flights, so it is not surprising that there were no irregular 

operations observed for CCC. Regular operations for CCC had a mean ETE of 53 

minutes and a standard deviation of 1 minute, similar to EEE. Finally, flights by AAA 

defined a new pattern. As shown in Figure 17, the ETE distribution for AAA flights was 

left-skewed, not right-skewed like the others. It appears that there was a minor mode at 

lower rather than higher ETE levels, and it also appears that irregular operations were 

nearly as common as regular operations. Regular operations occurred in only 52% of the 

flights, averaging 59 minutes with a standard deviation of 2 minutes. Irregular operations 

averaged 58 minutes with a standard deviation of 4 minutes. In this case, the distinction 

between regular and irregular operations seems to break down, though the mixture model 

does a good job of fitting the data. 

3.3.4 Flights from LAX to SFO 

Figure 18 shows the ETE distributions for flights from LAX to SFO. These were 

shifted to the right but otherwise similar to the distributions for flights in the opposite 

direction (see Figure 14) in their reflection of differences among AAA, CCC and EEE.  

Figures 19, 20, and 21 show the fits to the ETE distributions. Only the CCC 

distribution fit the pattern of a dominant mode for regular operations at lower ETEs and a 

minor mode for irregular operations at higher ETEs. For both AAA and EEE, the lower 

mode had the smaller probability. The ETE distribution for CCC was the best overall, 

combining low average ETE with greater consistency. 

3.3.5 Flights from EWR to LAX 
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 We have demonstrated that one can model the ETE distribution for some routes as 

a mixture of two lognormal distributions, one corresponding to regular operations and the 

other to irregular operations. Doing so provides a new way to characterize the flight 

planning behavior of various carriers flying the same route. Unfortunately, many routes 

have a much more complex, multimodal distribution of ETEs.  

Figure 22 shows the ETE distributions for westbound flights from EWR to LAX 

by AAA, BBB, and EEE. These distributions had complex shapes: they were multimodal 

and very widely dispersed. 

Figures 23, 24, and 25 show the mixture models fit to these distributions. If one 

wanted to fit every bump in these distributions, the resulting model would probably be 

too complex to be useful. However, we found that we could do an excellent job of 

approximating the ETE distribution using a mixture of either two (AAA) or four (EEE 

and BBB) lognormals. These mixture models provide excellent approximations to the 

cumulative distribution function (CDF), which shows the probability that the ETE will be 

less than or equal to any given number of minutes. 

3.3.6 Flights from LAX to EWR 

Figure 26 shows the ETE distributions for eastbound flights from EWR to LAX 

by AAA, BBB, and EEE. In contrast to the distributions for westbound flights shown in 

Figure 22, the modes in these distributions were much less dominant and the averages 

were, thanks to the jet stream, shifted lower. 

Figure 27, 28, and 29 show the mixture model fits to these ETEs using either 

three or four components. All three carrier’s distributions had one dominant mode, with a 

mean of 266 minutes for BBB and EEE and 272 minutes for AAA. 



 

 17

3.4 Variations in filed flight paths 

  As noted above, some of the variation in ETEs can be traced to differences in 

filed flight paths. To study this phenomenon, we used the POET data mining software 

(Metron Aviation 2002) to identify and plot filed flight paths for flights flown during 

early Fall 2002 .We found some large differences among carriers in their choice of filed 

routes. For instance, Figure 30 contrasts the flight paths filed by BBB and FFF for the 

CLT to IAH route. Whereas BBB filed only one path for all its flights during the period 

studied, FFF filed a multitude of alternatives. The paths actually flown always showed 

more variety than those filed, but large differences in planned routes translated into 

correspondingly large differences in flown routes. Figure 31 illustrates this for the routes 

actually flown from CLT to IAH. 

 POET provides information on the distances of the filed flight paths. We used this 

information to compare the distances in carriers’ flight plans using ANOVA. The data for 

this analysis were from the period 10 September to 7 November 2002. On average, each 

combination of route and carrier involved about 400 flights. 

Table 6 shows the mean flight plan distance by route and carrier. Although the 

differences across carriers were statistically significantly different on many routes, the 

sizes of the differences were negligible.  

Table 7 shows the standard deviation of flight plan distance by route and carrier. 

There are a variety of interesting comparisons in Table 7: 

• For most of the routes, all carriers had the same or nearly the same standard deviation 

(see, e.g., PHL to ORD and LAX to EWR). 
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• For some routes, there were substantial differences across carriers, e.g., ATL to IAH, 

DTW to CLT,  DTW to DEN, and ORD to EWR. 

• For other routes, there was a large difference between the consistency of flight plan 

distances in the two directions of flight. For example, flight plan distances from LAX 

to SFO had a standard deviation of about 17 miles, while plans in the opposite 

direction had a standard deviation of only 0.1 mile.  

• As one might expect, the standard deviation of flight plan distance increased with the 

mean (correlation = +0.85, p < 0.001). 

To standardize for the effect of mean distance on the standard deviation, one can 

shift focus to the coefficient of variation (CV), which is the standard deviation divided by 

the mean. Table 8 shows the CV of flight plan distance by route and carrier. The typical 

CV was about 2.7%, but some routes were noticeably higher: ATL to IAH at 4.8%, DTW 

to ATL at 4.3%, EWR to DTW at 4.6%, and LAX to SFO at 5.6%. The most important 

result in Table 8 comes from comparison with Table 5, which showed the CVs for 

estimated times rather than distances. The CVs were much greater for times, which 

establishes that the variation in flight plan distances does not by itself explain the 

variation in ETEs. 

4. Multivariate Analysis of Standardized ETEs 

Bivariate analyses of the type reported in the previous section are usually helpful 

but can be misleading. This is because our data arose from an observational study, which 

is a relatively weak way to establish links between input factors (e.g., carrier) and a 

response (e.g., ETE). In contrast, a designed experiment creates a complete and balanced 

dataset, so one can aggregate over all other variables to get a meaningful view of how 
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changes in any one factor affect changes in a response variable. Still, even with designed 

experiments, this simplicity requires that there be no significant interactions among 

variables. 

In our observational study, the factors were by no means balanced. Thus, if two 

carriers show substantial differences in their ETEs for a given route, we cannot safely 

conclude that the difference is due to different flight planning philosophies or practices. 

Such a difference might instead be caused by differences in when the planes fly during 

the day or in the types of aircraft used. Ultimately, lacking experimental data, we must 

resort to some form of multivariate statistical model to try to identify, quantify and 

control for the separate influences of all the factors. 

 Another basic issue in data analysis is choice of level of aggregation. It is 

attractive to pool all the data from all the routes. However, this form of data combination 

creates a danger of confounding from multiple factors. For instance, more southern routes 

(e.g., IAH:ATL) might not be as strongly influenced by a change in weather from 

January to May as would more northern routes (e.g., EWR:ORD). While we pooled  both 

directions on each routes in the analyses in Section 3, here we consider flights between 

the same cities but in different directions to be separate routes. 

 As a first attempt at a multivariate analysis, we conducted an analysis of variance 

(ANOVA) on standardized ETE as a response to several factors: equipment, airline, 

month, day of week, hour of day, city pair, and eastward direction of flight. We included 

two-way interactions in the analysis but excluded higher-way interactions because of the 

difficulty of interpreting what they might mean.  



 

 20

 Formal statistical inference of the ANOVA was not possible because the residuals 

did not satisfy the assumptions for inference (they were neither normal nor 

homoscedastic). Nevertheless, we include them because the mean square values are 

useful descriptive statistics to show the relative importance of the factors. Table 9 shows 

the ANOVA results, sorted by size of mean square (equivalently, sorted by F ratio). The 

main conclusions from Table 9 were: 

• All seven factors combined explained only about one quarter of the variation in 

standardized ETE. We conjecture that weather and anticipated congestion accounted 

for more of the variation. 

• The factor with the largest main effect mean square was equipment (type of aircraft). 

• Airline had the next greatest main effect. This confirms our previous findings that 

there are significant differences in ETE across carriers. 

• All other main effects and interactions were much smaller (by about a factor of 10 or 

more). 

5. Summary and Conclusions 

We investigated the influence of several factors that might be expected to 

influence a flight’s estimated time en route (ETE): origin airport, destination airport, 

month of year, day of week, hour of day, aircraft type, and carrier. Our main interest was 

to see whether the ETEs in filed flight plans differed within and among carriers. We 

found much variation in ETEs.  

• Sustained and significant trends in ETE have occurred for certain origin-destination 

pairs. 
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•  Route, month, hour of day and carrier are all statistically significant influences on 

ETE.  

• Some routes have ETE distributions that are well modeled by a mixture of two or 

more lognormal distributions. In simple cases, these mixture models can be regarded 

as characterizing regular and irregular operations.  

• Some routes show large differences in the number of different flight paths filed. The 

average distances of the filed plans did not vary much across airlines, though the 

standard deviations of the filed distances varied more. The standard deviations 

increased with the mean distances. The coefficients of variation of filed distances 

were smaller than the coefficients of variation for ETEs, so the variations in ETEs 

cannot be explained simply by differences in the distances of filed flight plans. 

Overall, the simple question of how long it should take to fly from point A to point B 

turns out to have an intriguing number of revealing answers. 

 The next phase of this research should investigate two questions. First, is there 

any relationship between ETE and deviation from ETE? If there is a link, then it may not 

be appropriate to study deviations from planned flight times to diagnose problems in the 

NAS, because such a relationship would suggest that carriers are gaming their flight 

plans. Second, is it possible to isolate the effect of winds on ETEs. The multivariate 

analysis in section 4 explained only about one quarter of the variation in ETEs. One 

assumes that the bulk of the variability can be attributed to daily changes in winds aloft, 

but it would be good to confirm this assumption.  
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Table 1: Origin-destination pairs with notable trends in average estimated times en route 

(ETEs) during winter seasons  

 
 City Pair Average Estimated Air Times Annual % Change 

OD Pair # Origin Destination '98-'99 '99-'00 '00-'01 '01-02 1st 2nd 3rd Average 
1 MEM CVG 76 73 66 58 -4.1% -9.5% -11.4% -8.3%
2 MEM IAH 98 85 78 77 -13.5% -7.8% -1.1% -7.5%
3 IAD CLE 72 68 60 57 -5.8% -12.6% -3.8% -7.4%
4 CVG CLT 73 65 63 58 -10.4% -3.6% -7.7% -7.3%
5 CLE IAD 62 58 51 50 -7.3% -12.0% -1.2% -6.8%
6 CLT CVG 80 76 73 66 -4.2% -4.6% -9.2% -6.0%
7 CVG MEM 80 79 76 68 -2.1% -2.6% -11.2% -5.3%
8 JFK BOS 43 41 39 37 -4.4% -5.2% -4.3% -4.6%
9 MEM STL 57 53 51 50 -6.4% -4.0% -2.7% -4.4%
10 PHL DCA 33 32 30 29 -2.4% -7.5% -2.9% -4.3%
11 DCA EWR 43 42 40 37 -1.4% -6.1% -5.3% -4.3%
12 BWI JFK 48 48 44 43 -1.1% -7.4% -3.9% -4.1%
13 DCA PHL 29 28 27 26 -4.5% -3.2% -3.4% -3.7%
14 IAD JFK 53 51 49 47 -3.3% -4.3% -3.2% -3.6%
15 IAH JFK 176 175 173 158 -0.1% -1.5% -8.3% -3.3%
16 BOS PHL 70 65 64 63 -7.3% -1.1% -1.2% -3.2%
17 CVG DTW 43 43 41 40 -1.2% -2.9% -4.3% -2.8%
18 DFW MEM 65 64 60 60 -1.5% -6.3% -0.2% -2.7%
19 EWR SLC 297 280 278 274 -5.7% -0.8% -1.5% -2.7%
20 DTW CLE 26 25 25 24 -3.9% -0.4% -3.5% -2.6%
21 ATL CLT 38 38 37 35 -0.9% -2.8% -4.1% -2.6%
22 EWR DCA 44 43 41 41 -4.2% -3.1% -0.4% -2.6%
23 MCO BWI 107 107 104 99 -0.4% -2.3% -4.8% -2.5%
24 PHL BOS 52 49 49 48 -5.9% -1.2% -0.1% -2.4%
25 TPA BWI 112 112 112 104 -0.1% -0.2% -6.9% -2.4%
26 PHX LAX 65 65 64 61 -0.4% -0.8% -5.7% -2.3%
27 CLE LAX 297 281 279 277 -5.3% -0.9% -0.7% -2.3%
28 MEM DFW 78 76 73 73 -2.8% -3.0% -1.0% -2.3%
29 PHX PIT 208 202 198 195 -2.8% -1.8% -1.8% -2.1%
30 PHX CLT 201 194 191 189 -3.6% -1.5% -1.2% -2.1%
31 DTW CVG 46 45 44 43 -2.2% -1.9% -2.0% -2.0%
32 PHL MSP 157 154 151 147 -1.9% -1.4% -2.8% -2.0%
33 DEN BWI 174 172 166 163 -1.1% -3.1% -1.9% -2.0%
    

34 PHL IAD 41 43 43 44 5.6% 0.1% 3.1% 2.9%
35 PHL EWR 23 24 25 26 4.5% 2.1% 4.0% 3.5%
36 DFW IAH 41 42 42 46 3.1% 0.4% 7.8% 3.7%
37 CLE PIT 31 31 34 39 2.6% 9.0% 15.4% 9.0%
38 PIT CLE 34 34 40 45 1.9% 16.6% 13.4% 10.6%
39 BWI LGA 36 42 51 52 14.8% 22.4% 2.3% 13.2%
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Table 2: Counts of flights by city pair and carrier 
 
  Carrier  

OD pair AAA BBB CCC DDD EEE FFF Range/Average 
ATL ORD 1666  3129  1995  65% 
EWR LAX 897 1566   896  60% 
EWR ORD 2578 1876   3240  53% 
SFO LAX 2253  242  6268  206% 
ORD PHL 2520    3096 1638 60% 
DTW CLT    1121  1191 6% 
MIA ATL 1398  2557    59% 
IAH ATL  1964 1767    11% 
DTW EWR  1030  2122   69% 
DTW ATL   2060 2241   8% 
ATL CLT   2030   1733 16% 
DTW DEN    936 606  43% 
SFO PHL     599 949 45% 
IAH CLT  257    1032 120% 

 

Note: Cells with small counts were excluded from the analysis.
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Table 3: Average ETE (minutes) by OD pair and carrier 
 
  Carrier  

OD pair AAA BBB CCC DDD EEE FFF Range/Average
ATL ORD 93  87  88  7%
EWR LAX 302 300   297  2%
EWR ORD 106 104   102  4%
SFO LAX 58  53  55  10%
ORD PHL 102    98 99 4%
DTW CLT    77  75 3%
MIA ATL 87  83    4%
IAH ATL  96 94    2%
DTW EWR  75  75   1%
DTW ATL   85 89   4%
ATL CLT   37   39 5%
DTW DEN    146 148  1%
SFO PHL     310 306 1%
IAH CLT  127    123 3%
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Table 4: Standard deviation of ETE (minutes) by OD pair and carrier 
 
 
  Carrier  

OD pair AAA BBB CCC DDD EEE FFF Range/Average
ATL ORD 8  7  9  27%
EWR LAX 33 37   33  13%
EWR ORD 16 18   16  9%
SFO LAX 4  2  5  70%
ORD PHL 14    14 15 10%
DTW CLT    4  5 17%
MIA ATL 6  4    39%
IAH ATL  10 9    9%
DTW EWR  12  12   1%
DTW ATL   5 7   22%
ATL CLT   4   6 48%
DTW DEN    18 15  20%
SFO PHL     36 35 2%
IAH CLT  16    16 4%
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Table 5: Coefficient of variation of ETE by OD pair and carrier 
 
  Carrier  

OD pair AAA BBB CCC DDD EEE FFF Range 
ATL ORD 9%  8%  10%  2%
EWR LAX 11% 12%   11%  2%
EWR ORD 15% 17%   16%  2%
SFO LAX 7%  4%  8%  4%
ORD PHL 14%    14% 15% 2%
DTW CLT    6%  7% 1%
MIA ATL 7%  5%    2%
IAH ATL  10% 9%    1%
DTW EWR  16%  16%   0%
DTW ATL   6% 8%   1%
ATL CLT   10%   15% 5%
DTW DEN    12% 10%  2%
SFO PHL     12% 11% 0%
IAH CLT  12%    13% 1%

 
Note: Results rounded to nearest whole percentage 
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Table 6: Average planned distance by route and carrier  
 

 Carrier 
OD pair AAA BBB CCC DDD EEE FFF All 

ATL CLT  205.0  205.3 205.2
ATL DTW  542.7 542.5   542.6
ATL IAH  610.2 604.6   607.4
ATL MIA 548.8 543.8   546.3
ATL ORD 563.7 562.0 563.6  563.1
CLT ATL  212.3  205.0 208.7
CLT DTW  452.3  452.4 452.4
CLT IAH   823.3 823.3
DEN DTW  1018.0 1029.8  1023.9
DTW ATL  548.0 539.8   543.9
DTW CLT  467.7  464.0 465.8
DTW DEN  1002.8 1004.2  1003.5
DTW EWR  427.0 427.0   427.0
EWR DTW  465.9 466.0   466.0
EWR LAX 2167.1 2169.4 2178.8  2171.8
EWR ORD 653.2 653.0 652.9  653.0
IAH ATL  627.7 623.2   625.4
IAH CLT   838.2 838.2
LAX EWR 2170.0 2167.5 2168.7  2168.7
LAX SFO 314.1 314.0  314.1
MIA ATL 535.0 532.4   533.7
ORD ATL 551.7 550.8 546.2  549.6
ORD EWR 625.6 626.8 625.4  625.9
ORD PHL 605.1 604.2 601.0 603.4
PHL ORD 613.4 613.5 613.8 613.6
PHL SFO  2232.7 2231.1 2231.9
SFO LAX 311.0 311.0  311.0
SFO PHL  2208.1 2211.5 2209.8

 All 804.9 968.4 492.5 657.7 1070.5 864.6 827.4
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Table 7: Standard deviation of planned distance by route and carrier 
 

  Carrier  
OD pair AAA BBB CCC DDD EEE FFF All 

ATL CLT   0.0   5.1 2.6
ATL DTW   6.6 5.8   6.2
ATL IAH  37.4 20.9    29.2
ATL MIA 9.3  5.9    7.6
ATL ORD 14.8  0.0  14.3  9.7
CLT ATL   16.7   0.0 8.4
CLT DTW    4.5  5.0 4.8
CLT IAH      41.2 41.2
DEN DTW    31.9 32.1  32.0
DTW ATL   23.4 23.2   23.3
DTW CLT    7.7  0.0 3.9
DTW DEN    15.8 22.7  19.3
DTW EWR  0.0  0.0   0.0
EWR DTW  21.6  21.6   21.6
EWR LAX 46.6 46.6   46.7  46.6
EWR ORD 25.6 25.6   25.6  25.6
IAH ATL  25.1 25.0    25.1
IAH CLT      24.0 24.0
LAX EWR 46.6 46.6   46.6  46.6
LAX SFO 17.7    17.7  17.7
MIA ATL 23.1  23.1    23.1
ORD ATL 15.4  12.3  15.9  14.5
ORD EWR 10.9 19.0   9.6  13.2
ORD PHL 24.6    24.6 24.5 24.6
PHL ORD 24.8    24.8 24.8 24.8
PHL SFO     47.3 47.2 47.3
SFO LAX 0.2    0.0  0.1
SFO PHL     47.0 47.0 47.0

 All 21.6 27.7 13.4 14.0 26.5 21.9 21.2
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Table 8: Coefficient of variation of planned distance by route and carrier 
 

  Carrier 
OD pair AAA BBB CCC DDD EEE FFF All 

ATL CLT   0.0%   2.5% 1.2%
ATL DTW   1.2% 1.1%   1.1%
ATL IAH  6.1% 3.5%    4.8%
ATL MIA 1.7%  1.1%    1.4%
ATL ORD 2.6%  0.0%  2.5%  1.7%
CLT ATL   7.9%   0.0% 3.9%
CLT DTW    1.0%  1.1% 1.1%
CLT IAH      5.0% 5.0%
DEN DTW    3.1% 3.1%  3.1%
DTW ATL   4.3% 4.3%   4.3%
DTW CLT    1.6%  0.0% 0.8%
DTW DEN    1.6% 2.3%  1.9%
DTW EWR  0.0%  0.0%   0.0%
EWR DTW  4.6%  4.6%   4.6%
EWR LAX 2.2% 2.1%   2.1%  2.1%
EWR ORD 3.9% 3.9%   3.9%  3.9%
IAH ATL  4.0% 4.0%    4.0%
IAH CLT      2.9% 2.9%
LAX EWR 2.1% 2.1%   2.1%  2.1%
LAX SFO 5.6%    5.6%  5.6%
MIA ATL 4.3%  4.3%    4.3%
ORD ATL 2.8%  2.2%  2.9%  2.6%
ORD EWR 1.7% 3.0%   1.5%  2.1%
ORD PHL 4.1%    4.1% 4.1% 4.1%
PHL ORD 4.0%    4.0% 4.0% 4.0%
PHL SFO     2.1% 2.1% 2.1%
SFO LAX 0.1%    0.0%  0.0%
SFO PHL     2.1% 2.1% 2.1%

 All 2.9% 3.3% 2.8% 2.1% 2.7% 2.4% 2.7%
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Table 9: Analysis of variance of standardized ETE 
 

R-Square 
Coeff 
of Var 

Root 
MSE 

S_ETE 
Mean   

      
0.25 6.68 0.067 1.00   

      
      

Source DF 
Type I 

SS 
Mean 

Square 
F 

Value Pr > F(a) 
      

Eqpt 9 35.11 3.90 873.40 <.0001 
Airline 5 10.32 2.06 462.11 <.0001 

Citypair 13 3.81 0.29 65.57 <.0001 
Hour 16 3.39 0.21 47.50 <.0001 

Eqpt*Airline 21 3.71 0.18 39.54 <.0001 
Month 4 0.64 0.16 35.79 <.0001 

Eqpt*Citypair 58 5.22 0.09 20.17 <.0001 
Day 6 0.43 0.07 15.97 <.0001 

Eqpt*Hour 129 6.02 0.05 10.45 <.0001 
Eastward(Citypair) 14 0.59 0.04 9.47 <.0001 

Airline*Hour 78 3.27 0.04 9.39 <.0001 
Airline*Month 20 0.79 0.04 8.86 <.0001 
Month*Day 24 0.85 0.04 7.94 <.0001 

Hour*Citypair 173 5.82 0.03 7.53 <.0001 
Eqpt*Month 35 1.15 0.03 7.34 <.0001 

Airline*Citypair 16 0.40 0.02 5.57 <.0001 
Month*Hour 64 1.47 0.02 5.13 <.0001 

Month*Citypair 52 0.79 0.02 3.40 <.0001 
Eqpt*Day 53 0.70 0.01 2.96 <.0001 

Day*Citypair 78 0.85 0.01 2.45 <.0001 
Airline*Day 30 0.24 0.01 1.78 0.0053 
Day*Hour 96 0.66 0.01 1.53 0.0006 

 

(a) p-values not trustworthy because residuals do not satisfy assumptions for inference
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Figure 1: Routes used in this study 
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 Figure 2: Standardized ETE by carrier 

 

 

 

 

 

 

Airline AAA BBB CCC DDD EEE FFF 
Mean 1.0302 1.0027 0.9804 1.0098 0.9869 1.0042 
SE of Mean 0.0008 0.0009 0.0005 0.0010 0.0006 0.0011 
75%Quantile 1.0775 1.0349 1.0094 1.0405 1.0202 1.0352 
50%Quantile 1.0227 0.9958 0.9754 0.9996 0.9752 0.9906 
25%Quantile 0.9777 0.9555 0.9417 0.9639 0.9394 0.9537 
IQR 0.0998 0.0795 0.0677 0.0765 0.0808 0.0814 
n 11313 6693 11785 6432 16700 6543 
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Figure 3: Standardized ETE by month 
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Month 200201 200202 200203 200204 200205 
Mean 0.9981 0.9950 1.0126 0.9974 0.9966 
SE of Mean 0.0007 0.0007 0.0007 0.0007 0.0007 
75%Quantile 1.0395 1.0288 1.0470 1.0311 1.0278 
50%Quantile 0.9870 0.9862 0.9981 0.9878 0.9859 
25%Quantile 0.9496 0.9498 0.9629 0.9489 0.9472 
IQR 0.0899 0.0790 0.0841 0.0822 0.0807 
n 11600 10759 12025 12328 12754 
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Figure 4: Standardized ETE by hour of the day 
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Hour 6 7 8 9 10 11 12 13 14 
Mean 0.9976 0.9895 1.0030 0.9966 0.9938 0.9997 0.9942 1.0117 0.9932
SE of Mean 0.0013 0.0011 0.0010 0.0012 0.0012 0.0012 0.0009 0.0014 0.0013
75%Quantile 1.0334 1.0227 1.0384 1.0336 1.0304 1.0380 1.0311 1.0486 1.0218
50%Quantile 0.9875 0.9862 0.9919 0.9864 0.9868 0.9928 0.9875 0.9962 0.9864
25%Quantile 0.9498 0.9425 0.9537 0.9496 0.9489 0.9524 0.9498 0.9535 0.9501
IQR 0.0836 0.0802 0.0847 0.0840 0.0815 0.0856 0.0813 0.0951 0.0718
n 3342 3669 5291 3540 3351 3497 4441 4073 2834
Hour 15 16 17 18 19 20 21 22 
Mean 1.0028 1.0075 1.0060 1.0117 1.0052 0.9849 0.9913 0.9804
SE of Mean 0.0011 0.0016 0.0011 0.0014 0.0014 0.0013 0.0020 0.0016
75%Quantile 1.0348 1.0421 1.0395 1.0468 1.0446 1.0151 1.0229 1.0134
50%Quantile 0.9898 0.9880 0.9913 0.9913 0.9888 0.9777 0.9859 0.9787
25%Quantile 0.9532 0.9498 0.9536 0.9530 0.9496 0.9431 0.9496 0.9450
IQR 0.0816 0.0923 0.0860 0.0938 0.0949 0.0720 0.0732 0.0684
n 4738 3266 5191 3956 3392 2803 1146 936
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Figure 5: Standardized ETE by equipment 
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Aircraft Type A3XX B72X B73X B74X B75X B76X DC9X FXXX MD8X Not Rec’d 
Mean  0.9791 0.9995 0.9943 1.0716 0.9795 0.9851 1.0161 1.0546 1.0069 1.1065 
SE of Mean 0.0007 0.0012 0.0006 0.0620 0.0007 0.0009 0.0011 0.0016 0.0007 0.0021 
75%Quantile 1.0110 1.0288 1.0251 1.0267 1.0082 1.0104 1.0458 1.1013 1.0486 1.1455 
50%Quantile 0.9721 0.9966 0.9843 0.9525 0.9747 0.9784 1.0050 1.0470 0.9962 1.0927 
25%Quantile 0.9394 0.9645 0.9437 0.9131 0.9415 0.9539 0.9725 1.0023 0.9537 1.0446 
IQR 0.0716 0.0643 0.0814 0.1136 0.0667 0.0565 0.0733 0.0990 0.0949 0.1009 
n 7417 1868 19449 20 7176 2794 4298 2056 12652 1736 
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Figure 6: Aircraft type by carrier 

 

 

Equipment AAA BBB CCC DDD EEE FFF 
A3XX    22% 32% 10% 
B72X 3%  12% 2%   
B73X 2% 74% 3%  51% 82% 
B74X    0% 0%  
B75X 7% 10% 28% 7% 10% 5% 
B76X 3% 0% 20%  0%  
DC9X    67%   
FXXX 18%     0% 
MD8X 65% 14% 35%   2% 

Not Avail 1% 2% 2% 2% 6% 1% 
n 11313 6693 11785 6432 16700 6543 

ENTROPY 1.61 1.05 2.05 1.25 1.37 0.92 
 

 

AIRCRAFT TYPE

0%

20%

40%

60%

80%

100%

AAA BBB CCC DDD EEE FFF
AIRLINE

PERCENTAGE 

MD8X
FXXX
DC9X
B76X
B75X
B74X
B73X
B72X
A3XX
Not Avail

 



 

 37

Figure 7: Standardized ETE by OD pair 
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Aircraft Type ATL:CLT ATL:ORD DTW:ATL DTW:CLT DTW:DEN DTW:EWR EWR:LAX
Mean 1 1 1 1 1 1 1 

SE of Mean 0.00158 0.00094 0.00110 0.00135 0.00154 0.00161 0.00091 
75%Quantile 1.01889 1.03336 1.03448 1.03211 1.03926 1.02864 1.03055 
50%Quantile 0.99059 0.98593 0.98799 0.99190 0.99702 0.98427 0.99707 
25%Quantile 0.93887 0.95116 0.95312 0.96279 0.95963 0.94588 0.96731 

IQR 0.08002 0.08220 0.08136 0.06932 0.07962 0.08276 0.06325 
n 3765 6790 4301 2312 1542 3153 3360 
 EWR:ORD IAH:ATL IAH:CLT MIA:ATL ORD:PHL SFO:LAX SFO:PHL

Mean 1 1 1 1 1 1 1 
SE of Mean 0.00100 0.00101 0.00190 0.00082 0.00097 0.00085 0.00112 
75%Quantile 1.04209 1.03213 1.03968 1.02731 1.04455 1.04095 1.03032 
50%Quantile 0.98278 0.99585 0.99487 0.99062 0.98778 0.98617 0.99812 
25%Quantile 0.93503 0.95680 0.95615 0.96616 0.94237 0.94373 0.96996 

IQR 0.10706 0.07533 0.08353 0.06115 0.10218 0.09722 0.06036 
n 7694 3731 1289 3955 7256 8770 1548 
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Figure 8: ETE for flights from ATL to CLT 
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Figure 9: Mixture model fit to ETE for FFF flights from ATL to CLT 
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 Estimated parameter values 
p 0.977919
sigma1 0.051967
mu1 3.555017
sd 1.82193

regular avg 35.03569
sigma2 0.106622
mu2 3.881981
sd 5.217626

irregular avg 48.79682
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Figure 10: Mixture model fit to ETE for CCC flights from ATL to CLT 
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 Estimated parameter values 
p 0.984316
sigma1 0.026725
mu1 3.554761
sd 0.935329

regular avg 34.99195
sigma2 0.075
mu2 3.65318
sd 2.907031

irregular avg 38.70592
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Figure 11: ETE for flights from CLT to ATL  
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Figure 12: Mixture model fit to ETE for FFF flights from CLT to ATL 
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 Estimated parameter values 

p 0.884321
sigma1 0.060155
mu1 3.743005
sd 2.546939

regular avg 42.30115
sigma2 0.142474
mu2 3.971521
sd 7.676461

irregular avg 53.60651
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Figure 13: Mixture model fit to ETEs for CCC flights from CLT to ATL  
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 Estimated parameter values 

p 0.849703
sigma1 0.035661
mu1 3.649076
sd 1.372091

regular avg 38.46358
sigma2 0.11366
mu2 3.818118
sd 5.224031

irregular avg 45.81343
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Figure 14: ETE for flights from SFO to LAX  
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Figure 15: Mixture model fit to ETEs for EEE flights from SFO to LAX 
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 Estimated parameter values 
p 0.975083
sigma1 0.039406
mu1 3.954885
sd 2.058993

regular avg 52.23023
sigma2 0.049261
mu2 4.179384
sd 3.223841

irregular avg 65.40491
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Figure 16: Mixture model fit to ETE for CCC flights from SFO to LAX 
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 Estimated parameter values 
p 1
sigma1 0.023844
mu1 3.97554
sd 1.270924

regular avg 53.29403
sigma2 - 
mu2 - 
sd - 

irregular avg - 
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Figure 17: Mixture model fit to ETE for AAA flights from SFO to LAX  
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 Estimated parameter values 
p 0.519542
sigma1 3.61E-02
mu1 4.084797
sd 2.145401

regular avg 59.46853
sigma2 7.62E-02
mu2 4.049128
sd 4.391197

irregular avg 57.51433
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Figure 18: ETE for flights from LAX to SFO  
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Figure 19: Mixture model fit to ETE for EEE flights from LAX to SFO 
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 Estimated parameter values 
p 0.42076
sigma1 0.03522
mu1 4.003817
sd 1.932078

regular avg 54.84095
sigma2 0.063813
mu2 4.066244
sd 3.734061

irregular avg 58.45633
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Figure 20: Mixture model fit to ETE for CCC flights from LAX to SFO  
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 Estimated parameter values 
p 0.96748
sigma1 0.028305
mu1 3.952133
sd 1.474049

regular avg 52.06712
sigma2 0.00813
mu2 4.119003
sd 0.500017

irregular avg 61.49993
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Figure 21: Mixture model fit to ETE for AAA flights from LAX to SFO 
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 Estimated parameter values 
p 0.214213
sigma1 0.031191
mu1 4.059798
sd 1.80923

regular avg 57.9908
sigma2 0.083817
mu2 4.062672
sd 4.897999

irregular avg 58.33397
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Figure 22: ETE for flights from EWR to LAX 
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Figure 23: Mixture model fit to ETE for EEE flights from EWR to LAX  
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p1 0.140897   
mu1 5.784989 avg 325.3802
sigma1 0.003289 sd 1.070205
p2 0.05122   
mu2 5.837123 avg 342.7928
sigma2 0.002567 sd 0.880079
p3 0.117079   
mu3 5.737888 avg 310.4095
sigma3 0.00295 sd 0.915777
p4 0.690804   
mu4 5.791812 avg 328.0344
sigma4 0.051114 sd 16.77823
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 Figure 24: Mixture model fit to ETE for AAA flights from EWR to LAX  
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p1 0.612634   
mu1 5.811181 avg 334.1115
sigma1 0.02424 sd 8.099922
p2 0.387366   
mu2 5.793632 avg 328.6552
sigma2 0.052481 sd 17.26015
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Figure 25: Mixture model fit to ETE for BBB flights from EWR to LAX  
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p1 0.108153   
mu1 5.7652 avg 319.0157
sigma1 0.008986 sd 2.866591
p2 0.058124   
mu2 5.833866 avg 341.6903
sigma2 0.008806 sd 3.008818
p3 0.262608   
mu3 5.79943 avg 330.126
sigma3 0.00943 sd 3.113105
p4 0.571115   
mu4 5.819215 avg 337.3975
sigma4 0.063981 sd 21.60927
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Figure 26: ETE for flights from LAX to EWR 
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Figure 27: Mixture model fit to ETE for BBB flights from LAX to EWR  
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Figure 28: Mixture model fit to ETE for AAA flights from LAX to EWR  
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p1 0.041667   
mu1 5.610755 avg 273.3627
sigma1 0.009417 sd 2.574185
p2 0.098247   
mu2 5.645708 avg 283.0824
sigma2 0.007743 sd 2.192073
p3 0.860087   
mu3 5.602402 avg 271.5053
sigma3 0.05621 sd 15.27332
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Figure 29: Mixture model fit to ETE for EEE flights from LAX to EWR  
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p1 0.075668   
mu1 5.619449 avg 275.7419
sigma1 0.005698 sd 1.571082
p2 0.027824   
mu2 5.647111 avg 283.4738
sigma2 0.004162 sd 1.179857
p3 0.092602   
mu3 5.590088 avg 267.7707
sigma3 0.009287 sd 2.486738
p4 0.803907   
mu4 5.583569 avg 266.4667
sigma4 0.057971 sd 15.46021
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Figure 30: Filed flight paths from CLT to IAH by BBB and FFF 
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Figure 31: Flight paths actually flown from CLT to IAH by BBB and FFF 
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