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Recently, the Federal Aviation Administration (FAA) and the major airlines

in the U.S. have embraced a new initiative to improve Air Traffic Flow Man-

agement. This initiative, called Collaborative Decision Making (CDM), is based

on the recognition that improved data exchange and communication between

the FAA and the airlines will lead to better decision making. In particular, the

CDM philosophy emphasizes that decisions with a potential economic impact

on airlines should be decentralized and made in collaboration with the airlines

whenever possible. This proposal is motivated by the fairness issues that arise

in the resource allocation procedures that have been introduced under CDM.

While the fair allocation of resources has been and continues to be a major

concern in the procedures that have been developed under CDM, its interpre-

tation is oftentimes left implicit. In this proposal, we introduce and evaluate



several potential approaches to fair allocation, using both multi-objective opti-

mization models and cooperative game theory models. Subsequently we study

how the dynamic nature of flow management impacts fairness, and introduce

methods that may be used to manage the allocation of resources in this envi-

ronment. In addition, we also consider the opportunities for increased airline

control in a CDM-based environment. In particular, we study the potential ben-

efits that can be obtained by the introduction of a framework in which airlines

dynamically trade resources.
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Chapter 1

Introduction

In the last several decades, the growth in air traffic has been dramatic. From a

relatively minor industrial sector, air transportation has evolved into a branch

of the economy which currently accounts for 6% of the Gross Domestic Product

in the United States, and employs approximately 1.5 million people ([Hal99]).

Moreover, there are no signs that this growth is slowing down. Indeed, current

projections expect air traffic to grow at an annual rate of 3% to 5% over the

next 15 years.

Unfortunately, however, the increase in air traffic at the major airports in

the United States has vastly outgrown the increase in airport resources. As a

consequence, the level of congestion has risen consistently, leading to increased

delay during peak periods of travel. These delays result in substantial costs:

in 1995, the FAA estimated that the cost of delays to the airlines was approxi-

mately $2.5 billon in operating expenses ([Hal99]). As such, it is clear that the

imbalance between stagnating capacity and increasing demand has (and will)

have an enormous impact on the performance of the air transportation system.

Not surprisingly, the current level of delays and projected increase in demand
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have led to a number of initiatives that aim to alleviate congestion. These ini-

tiatives are both varied and numerous. Some airports are considering increases

in capacity by adding runways. Other initiatives consider the potential of de-

mand management measures, such as the use of auctions as LaGuardia Airport

and Congressional regulation that would allow airlines to coordinate schedule

reductions at certain airports. In addition, the FAA has implemented (and

is considering) procedural changes during the management of daily operations

which aim to increase flexibility.

So far, these efforts to reduce congestion have perhaps had their biggest im-

pact on the management of daily operations. Until recently the management

of daily operations was largely centralized, in that the FAA would unilaterally

make all relevant decisions and force airlines to operate within narrow guide-

lines. Spurred by a joint government-industry effort known as Collaborative

Decision Making (CDM), however, the last five years have seen a major shift in

this paradigm. The major philosophical components of CDM are: (1) improved

data exchange and communication between the FAA and the airlines will lead

to better decision making in air traffic flow management and (2) that, when-

ever possible, those decisions which have a potential economic impact on airline

operations should be decentralized and made in collaboration with the airlines.

While the CDM paradigm encompasses a wide range of applications in air

traffic flow management, its primary focus so far has been the implementation

and enhancement of Ground Delay Programs, which are used to manage periods

of congestion at an airport. The number of enhancements that have recently been

implemented are numerous: examples include improved data-exchange, better

situational awareness tools, and increased flexibility for the airlines. Without
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a doubt, however, the biggest changes have come through the introduction of

new methods for the allocation of available resources. These procedures have

had a profound impact on the interaction between the FAA and the airlines, in

that they have solidified the FAA’s role as a discoverer of constraints and as an

arbiter of rationed capacity. The resulting allotments of scarce capacity allow

airlines to trade off operating options based on internal business objectives.

1.1 Motivation

This proposal is motivated by the fairness issues that arise in the allocation

procedures that have been introduced under CDM. Fairness concerns have played

an important role throughout the development of the allocation procedures, and

continue to be an essential factor whenever extensions or modifications to these

procedures are proposed.

It is therefore surprising that, oftentimes, it is not clear what is meant by

fairness within the context of the procedures developed under CDM. Because

the notion of fairness is largely left implicit in the procedures, there is no well-

defined set of principles that defines what constitutes a fair distribution of the

resources. Moreover, it is not obvious how the concepts embedded in the different

procedures relate to each other and to the metrics that are used to measure equity

ex-post (for analysis purposes). As such, the absence of an overall set of guiding

principles complicates the extension of CDM to a more general environment

(e.g., the management of en-route resource constraints).

The main purpose of the research in this proposal is the development of

fair resource allocation mechanisms in a collaborative air traffic management
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environment. Our first objective is to analyze potential concepts of fairness that

might be applicable in this environment. A subsequent objective is to show

how these principles can be applied to devise fair allocation mechanisms that

can be used within a context that is characterized by significant dynamics and

uncertainty.

Aside from the issue of fairness, we also consider the opportunities for in-

crease airline control in a CDM-based environment. In particular, we study the

potential benefits that can be obtained by the introduction of a framework in

which airlines dynamically trade resources.

1.2 Overview of Proposal

The remainder of this proposal is organized as follows.

Chapter 2 presents a brief overview of air traffic management, in particular

the management of daily operations. We summarize the flow management initia-

tives employed by the FAA, as well as the airlines’ response to these initiatives.

Chapter 3 discusses the current move towards decentralization of air traffic

management, with a focus on the Collaborative Decision Making paradigm and

the related notion of “Free Flight”. We present an overview of the allocation pro-

cedures introduced under CDM, and discuss their relationship to other potential

approaches.

Chapter 4 investigates concepts of fairness for the allocation of arrival slots

under CDM. The fair allocation of arrival slots poses a number of fundamental

questions. Who are the slots to be assigned to, i.e. who are claimants ? On what

basis do we compare the claimants’ demands ? Given such a basis for comparison,
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what are the resulting allocation mechanisms and how applicable are they within

the context of Ground Delay Programs ? To address these questions, we first

interpret the problem as a cooperative game in which claimants share the delay

imposed by their respective demands. This approach, however, appears to be

less applicable within the context of GDPs. We therefore pursue a more direct

approach, in which we postulate a number of intuitive axioms and characterize

the resulting class of allocation mechanisms. Besides the mechanism currently

used under CDM, this yields a number of potential alternatives. We analyze the

differences between these methods, and compare their allocations using historical

GDP data.

The mechanisms discussed in Chapter 4 define fair shares of the resources for

each airline. In Chapter 5, we propose methods to approximate these shares in

situations where the “ideal” may not be attainable. A practical motivation for

these procedures stems from the dynamic nature of GDPs. We show how these

methods yield a unified approach to the different allocation procedures currently

used under CDM. Moreover, we discuss how these methods may be applied to

reduce certain systematic biases caused by the timing of GDPs.

Chapter 6 explores opportunities for increased coordination during Ground

Delay Programs. In particular, we propose a general framework by which the air-

lines can trade arrival slots, in which the FAA acts as a mediator, and introduce

an optimization model for the mediation problem.

Chapter 7 provides initial conclusions and outlines proposed research.
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Chapter 2

Air Traffic Management

The air transportation system in the U.S. is one of the most complex logistical

systems imaginable. On a daily basis, the system supports approximately 60,000

flights of commercial, military, and general aviation aircraft, and as many as

6,000 aircraft may simultaneously occupy the airspace. Besides the sheer volume,

the air transportation system is further complicated by significant variations in

airspace capacity (due to factors such as fluctuating weather conditions and

equipment outages). It is therefore safe to say that the coordination of air traffic

presents a formidable task, which requires a multitude of processes and involves

a large number of stake holders. The broad term “Air Traffic Management” is

commonly used to represent the overall collection of these processes.

This chapter presents a general overview of Air Traffic Management, with a

particular focus on operational decision and coordination processes. We start

with a high-level classification of Air Traffic Management initiatives, which pri-

marily serves to clarify the context in which operational decisions are made.

Next, we describe the major operational decision processes employed by the

FAA, and review the manner in which airlines respond to these initiatives. To
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Air Traffic Management
              (ATM)

Air Traffic
Control

           (ATC)

Air Traffic
Flow Management
         (ATFM)

Efficient distribution ofAircraft Separation

Air Traffic Demandand Safety

Figure 2.1: ATM Components

conclude, we discuss the (often implicit) decision-making hierarchy and summa-

rize important characteristics of the ATM environment.

2.1 Air Traffic Control vs. Air Traffic Flow

Management

Air Traffic Management (ATM) can be defined as the composite of processes

that support the ultimate goal of safe, efficient, and expeditious aircraft move-

ment. It is common to distinguish two basic ATM components: Air Traffic

Control and Air Traffic Flow Management (see Figure 2.1). Air Traffic Control

(ATC) refers to processes that provide tactical separation services, that is, real-

time separation procedures for collision detection and avoidance. As such, ATC

actions are of a more “microscopic” nature and primarily address immediate

safety concerns of airborne flights. Air Traffic Flow Management (ATFM), on

the other hand, refers to processes of a more “macroscopic” nature. Typically,

ATFM considers strategic procedures, which aim to detect and resolve demand-
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capacity imbalances by adjusting aggregate traffic flows to match scarce capacity

resources. Accordingly, ATFM actions have a greater potential to address system

efficiency.

For the majority of the previous century, the coordination of air traffic pro-

ceeded largely through tactical air traffic control procedures. This was deemed

sufficient, as the demand for air traffic was generally well within the capacity

limits. Periodic congestion was usually resolved by procedural changes or tech-

nologic advances (see [Nol99] for a comprehensive review of the evolution of

ATM). It was not until the aftermath of the air traffic controllers’ strike of 1981

that the FAA first implemented a systematic form a flow management known as

ground holding. Under ground holding, aircraft departures are restricted until

it is determined that sufficient airspace is available for each aircraft1. Initially,

the use of ground holding was primarily instituted to reduce workload for the

inexperienced controllers that were hired in the wake of the mass firings that ac-

companied the strike. However, the continued growth in air traffic that followed

the airline deregulation act of 1978, as well as changes in traffic patterns2, grad-

ually increased the scope of ATFM practices. Over the past two decades, the

levels of congestion in the system have risen consistently(see [Hal99]), which has

resulted in increasing delays during peak periods of travel. The use of ATFM

initiatives has therefore become increasingly important, and will undoubtedly

play an even more important role in the future.

A systematic description of the application of flow management to resolve

air traffic congestion is given by Odoni [Odo87], who classifies ATFM initiatives

1A more detailed description follows in Section 2.2.

2Caused in particular by the so-called “hub and spoke” scheduling practices used by airlines.
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as long-, medium-, or short-term:

• Long-term approaches typically focus on increasing capacity. Examples

include the construction of additional airports (which may take 10 to 15

years), the introduction of new technologies (e.g., satellite-based navigation

tools), and the addition of runways to existing airports. Though effective,

such initiatives are usually very costly and may be difficult to implement3.

• Medium-term approaches are mostly administrative or economic in na-

ture, and try to alleviate congestion by modifying spatial or temporal

traffic patterns. For example, at some airports flight schedules are co-

ordinated bi-annually according to IATA guidelines ([Iat00]). Recently

congress proposed a bill that would allow airlines to coordinate flight sched-

ule reductions at congested airports (The HD1407 bill, [oR01]). Similar

medium-term approaches include the recent use of slot lotteries at La-

Guardia Airport ( [DeC00]), as well as current proposals for slot auctions

and congestion pricing.

• Short-term approaches consider the strategic adjustment of air traffic flows

to match available capacity, and typically span a planning horizon that is

less than 24 hours. These operational ATFM initiatives attempt to miti-

gate the unavoidable congestion that may arise from unforeseen and unpre-

dictable disruptions as efficiently as possible. Such periods of congestion

arise frequently when bad weather causes sudden capacity reductions.

3Airport expansions frequently encounter the resistance of local communities and other

special interest groups, who may be concerned with noise, real estate depreciation and other

factors; Moreover, they are usually subject to strict environmental regulations.
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Throughout this dissertation we focus on strategic, short-term ATFM initia-

tives. It is important to note that these operational processes are a critical and

indispensable part of ATFM: while long- and medium-term initiatives may help

to alleviate congestion, the significant impact of weather conditions on airspace

capacity4 make it unlikely that periodic congestion can ever be eliminated. In

the remainder of this dissertation, we will use the term ATFM to represent only

these short-term initiatives.

2.2 Air Traffic Flow Management Initiatives

In the U.S., the Federal Aviation Administration (FAA) is responsible for the

coordination of air traffic. Its primary task is the enforcement of proper separa-

tion requirements in the controlled airspace. To carry out this function, the FAA

has divided the airspace in the continental United States into 22 areas. Aircraft

separation responsibility within each area belongs to associated Air Route Traf-

fic Control Centers (ARTCCs). Because a single controller cannot handle all

aircraft within an ARTCC’s boundaries, each ARTCC is further divided (both

vertically and horizontally) into 20 to 80 smaller areas called sectors. Air Traffic

Controllers guide aircraft from sector to sector until they arrive within roughly

200 miles of their destination airports, at which point control of the aircraft

is assumed by terminal radar approach control facilities (TRACONs). Finally,

airport towers control aircraft while they taxi to and from runways and during

takeoffs and landings. Accordingly, the ATC functions performed by the FAA

4It is not unusual that occurrences of bad weather reduce airport capacities by a factor of

2 or 3.
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form a highly distributed process. Air traffic controllers (cf. TRACON/control

tower representatives) are only responsible for the movement of aircraft within

their region of airspace, and their decisions are mainly based on local and near

real-time information about the flights entering their sectors. Typically, there is

little coordination in ATC procedures; coordination occurs largely between con-

trollers at adjacent sectors, by handoff procedures that transfer the responsibility

for an aircraft when it passes sector/facility boundaries5.

The (strategic) ATFM functions performed by the FAA, on the other hand,

are primarily coordinated by the FAA’s command center, the Air Traffic Con-

trol Systems Command Center (ATCSCC). The ATCSCC continuously monitors

current and projected demand within the NAS, and identifies system constraints

or other conditions (e.g. weather) that may affect the capacity limits. Whenever

it is predicted that demand will exceed capacity limits within a 15-minute inter-

val, FAA regulation mandates a response. In that case, the ATCSCC generates

and implements strategies to resolve the projected congestion. The short-term

flow management procedures that are used most often are ground delay pro-

grams, metering, and rerouting. These initiatives may be outlined as follows.

• Ground Delay Programs (GDPs) are used in response to periods of airport

congestion. Typically, this is caused by a reduction in the airport’s arrival

capacity due to bad weather (although airport construction, special runway

operations and limited surface capacity may also be possible reasons). In a

GDP, flights bound for congested airports are delayed on the ground, so as

to balance the total arrivals with the reduced capacity at the airport under

5Occasionally though, controllers may also be concerned with downstream effects, so as to

prevent the simultaneous operation of too many aircraft in an area.
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consideration. Ground holding therefore consists of delaying a flight’s take-

off beyond its scheduled arrival time. The underlying motivation is that,

as long as a delay is unavoidable, it is both safer and less costly for the

flight to absorb this delay on the ground before take-off.

GDPs are the most important traffic management procedure used by the

ATCSCC; in spite of the fact that GDPs can only control aircraft destined

for a single airport, they are sometimes even used to help resolve congestion

in other areas of the airspace. Closely related to GDPs are are so-called

Ground Stops, which are implemented when an airport has an unexpected

problem (e.g. a runway closure or a severe snowstorm). Ground stops

allow the ATCSCC to stop all inbound traffic (e.g. delay their departure)

to reduce traffic flows. When ground stops become excessive or delays can

be foreseen, a regular GDP usually follows (see also [GCM98]).

• Metering restrictions control traffic flows in the enroute environment. Me-

tering procedures may be subdivided into (1) time-based metering, which

controls the time at which an aircraft is to pass over a certain geographical

point, and (2) distance-based metering, which places a limit on how closely

aircraft can follow each other. Distance-based metering is better known as

“Miles-In-Trail”, which specifies a minimum separation (in miles) between

aircraft moving in the same direction.

Time-based metering is used primarily when excessively large airborne

holding queues have built up around an airport (i.e., due to severe capacity

reductions or airport closure). In such cases, time-based metering can be

used to control holding patterns precisely, and to efficiently space aircraft
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for final approach. Miles-In-Trail restrictions are commonly used in con-

junction with so-called Enroute Spacing Programs, to manage the (merging

of) traffic streams entering an airport’s terminal area (cf. [GCM98]).

• Rerouting of aircraft occurs primarily when bad weather threatens the

accessibility of certain regions of the airspace. Oftentimes, rerouting is

instituted as part of Severe Weather Avoidance Programs (SWAPs), which

are typically enacted when traffic flows are affected by widespread severe

weather in the airspace. SWAP plans usually have a major impact on air

traffic, and oftentimes include metering restrictions and/or GDPs along

with rerouting.

In addition to these major initiatives, there are also a number of procedures

with a smaller scope. For instance, Low Altitude Arrival and Departure Routes

(LAADR) embodies a set of procedures for the use of low altitude routes to avoid

congested airspace, and Coded Departure Routes (CDR) involves procedures

and a database for the creation, storage, and dissemination of alternate routes

used to avoid airspace blocked by severe weather. Other examples include the

Pacific Track Advisory Program, which is used to allocate a series of tracks for

aircraft to transit the North Pacific from U.S. airports to airports in Asia, and

the National Route Program (NRP), which allows airlines to file flight plans

other than those normally preferred by the FAA ([AOC95]). Typically, such

processes are of a more “local” nature, in that they are not (or only partially)

coordinated by the ATCSCC. The reason for this is that they usually apply

only to certain specific region of airspace and heavily rely on local conditions.

Generally speaking however, we may classify the ATFM actions employed by

the FAA as (1) imposing ground delays, (2) imposing airborne delays, and (3)
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imposing alternate routes.

2.2.1 Airline Response

An airline’s operational objectives are usually markedly different from those that

underly the FAA’s ATFM initiatives: whereas the FAA is concerned with aggre-

gate flows and capacity limits, the ultimate goal of airline operational control is

to preserve its published flight schedule. An airline’s flight schedule represents

its primary product, and often reflects its competitive strategy.

Airlines typically coordinate their daily operations at centralized Airline Op-

erational Control Centers (AOCs), which interact with airport and maintenance

stations and with individual pilots. Schedule preservation needs to consider both

individual flights and schedule interdependencies. Therefore, airline operations

require a level of coordination that is usually much higher than it is for the

FAA, because of the potential cascading effects of flight delays6. This presents

a challenge in particular when airlines face so-called irregular operations, that

is, when they need to respond to ATFM restrictions imposed by the FAA or to

other schedule disruptions .

Important functions that need to be performed by airline operational control

include the following (also see [AOC95] and [GCM98]):

• Schedule Adjustment. On a daily basis, unforeseen events, such as delays

or mechanical problems, may disrupt an airline’s flight schedule. To pre-

vent the cascading effects these disruptions may have, the AOC will make

schedule adjustments that allow a return to a more balanced condition.

6The propagation of delays is of course caused by connections that passengers, flight crews,

and aircraft oftentimes have to make.
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Schedules may be adjusted in several ways. One option is to delay selected

flights. Other possibilities are to reallocate the resources needed to operate

flights (e.g. aircraft, crews, but also airport arrival slots), or even to cancel

flights to reduce the demand on those resources. In addition, airlines may

sometimes create flights to balance the schedule.

It should be noted that balancing the schedule may be interpreted dif-

ferently by individual airlines: For one airline the objective might be the

ability to return to the normal schedule by the next day, while for an-

other it might mean flying as many of its scheduled flights as possible

(cf. [GCM98]).

• Flight Planning and Dispatch. An important aspect of airline operations

is to determine flight routes and payload that minimize costs and meet

the overall airline flight objectives. Winds, aircraft type and restrictions

all affect the choice of route, which involves a complex trade-off between

speed, altitude, payload and fuel load. In addition, flight planning may

have to take into account that regions of airspace may be congested or

temporarily inaccessible.

• Flight Monitoring. This includes monitoring all aspects of flights in progress,

such as ensuring that the flight stays within safe and legal limits, assessing

weather conditions en route and at destination and alternate airports, and

assisting crews in solving problems that may arise. Thus, AOCs are in

constant communication with crews during flights.

Schedule planning is usually performed by dedicated coordinators. Flight plan-

ning, dispatch, and monitoring are performed by flight dispatchers, which are
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licensed personnel responsible for individual flights. By law, the responsibility for

the safety and control of flights is shared between the dispatcher and pilot; thus,

dispatchers at the AOC maintain frequent contact with pilots prior to and dur-

ing the flight. Other tasks of airline operational control include crew scheduling

and tracking, aircraft maintenance operations, and gate management. Typically,

these tasks are performed by separate departments that interact with the AOC.

For instance, airport stations manage gate allocations and other ground-based

resources (e.g. passenger and baggage handling); maintenance stations handle

the coordination of required aircraft maintenance checks (e.g. ensure that air-

craft are routed through the maintenance stations).

2.2.2 Interaction

Both on the side of the FAA and on the side of the airlines, decision-making

responsibilities are shared between a number of stake holders. The actions these

stake holders may perform are of course highly interdependent, and therefore

necessitate a significant degree of coordination. On the FAA’s side, operational

processes are essentially distributed among three organizational levels. At the

first level, we find the ATCSCC. The ATCSCC oversees aggregate traffic flows

and monitors current and projected capacity limits and demands. Major flow

management actions, such as GDPs and SWAPs, are usually initiated by the

ATCSCC. The ATCSCC coordinates these ATFM initiatives with traffic man-

agement units at the various ARTCCs, TRACONs, and Towers, which form the

second organizational level. The entities at this level are responsible for coordi-

nating air traffic in their assigned regions of the airspace. Besides their interac-

tion with the ATCSCC, adjacent centers at this level also interact to coordinate
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Figure 2.2: Operations Level Interactions between FAA and airlines

the air traffic between their regions. ARTCCs, TRACONs, and Towers further

delegate responsibilities to the individual air traffic controllers, which form the

third organizational level. The primary interaction at this level is between con-

trollers at adjacent sectors to transfer control of aircraft. On the airlines’ side, on

the other hand, daily operations are primarily coordinated at centralized AOCs.

Specific tasks, such as gate assignments and maintenance are coordinated with

various stations, and flight dispatch is of course in constant communication with

pilots to monitor and control the progress of individual flights.

The interaction between the FAA and airlines during daily ATFM operations

may be separated according to interactions at the strategic and the tactical level,
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as is shown in Figure 2.2. At the strategic level, interactions occur primarily be-

tween between the ATCSCC and the airlines’ AOCs. When the ATCSCC pre-

dicts a sustained period of congestion, it may respond with an ATFM initiative

(e.g. a GDP or a SWAP plan), which is communicated to the airlines’ AOCs.

Typically, these plans are formulated two to four hours in advance. In turn,

airlines communicate the schedule adjustments they intend to make in response

to these disruptions. It should be noted that this flow of information is highly

important, as the FAA’s decisions are partly based on the information they re-

ceive. At the tactical level, the interactions occur primarily between controller,

pilots (to ensure separation), centers and stations. Typically, these interactions

concern ATC initiatives (e.g. ensuring the separation standards), and other near

real-time initiatives.

2.3 Discussion

The current structure of ATM in the U.S., with its amalgam of flow management

initiatives and variety of stake holders, is the result of an evolutionary process

stretched across a number of decades. When faced with a frequently recurring

problem, the typical response would be a “local” solution, with limited concern

or consideration to the overall system effects. While air space capacity was

readily available, the congestion resulting from disruptions to the system (e.g.,

bad weather) was relatively minor. Traditionally, the FAA would unilaterally

decide how to resolve this congestion, with little or no input from the airlines.

On the whole, airlines could reasonably absorb the resulting flight delays with

limited effects on the integrity of their flight schedules (e.g., by accounting for
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these effects in the flights’ block times [Hal99]).

However, the steady growth in air traffic during the past decade has pushed

this approach to its limits. As demand levels approximate available capacity,

even minor disruptions may have significant ripple effects and lead to sustained

periods of congestion. This became painfully clear in September 2000, when

the relaxation of slot controls mandated by Congress led to a daily reoccurrence

of gridlock at LaGuardia. The resolution of these disruptions necessitates an

increased role for the ATFM initiatives imposed by the ATSCC, in particular

with regard to the possible network effects in the system. At the same time,

the impact of these effects on the integrity of flight schedules has significantly

increased the management responsibilities at the airline side.

As a result, the coordination and cooperation between the FAA and the

airlines has become increasingly important. To implement appropriate ATFM

actions, the FAA needs an accurate picture of flight status and intent. Air-

lines, on the other hand, need the flexibility to adjust their schedules, and can

only provide accurate information if they know the actions planned by the FAA.

Given the relatively short response times, the real-time exchange of information

between the FAA and the airlines is therefore a critical component of ATFM

functionality. In addition, it has become increasingly clear that the ATCSCC

should not be solely responsible for determining the delays, reroutes, etc. re-

quired to resolve congestion. While both the FAA and airlines can possibly

delay or reroute flights, certain actions that may alleviate congestion are only

available to airlines. For example, only an airline can decide to cancel flights

or to reassign passengers, crew, and aircraft. Consequently, any successful at-

tempt at flow management will require a significant input from and role for
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airline decision-making. Such decisions involve economic trade-offs, which the

FAA is not in a position to make. As such, it is not surprising that current

efforts to improve ATM, which are discussed in the next Chapter, envision a

more decentralized system for managing air traffic.
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Chapter 3

Towards Decentralized Air Traffic

Management

Recent studies estimate that air traffic will increase at an annual rate of 3%

to 5% over the next 15 years. Accommodating this increase in air traffic will

likely require significant changes in the structure of ATM functions, especially

in light of the already reoccurring periods of gridlock in the system. The FAA

has responded to this challenge by formulating a comprehensive vision for the

future of ATM, better known as Free Flight. In addition to extensive technology

upgrades, the notion of free flight is characterized by a significant move toward

decentralized decision-making.

This chapter presents an overview of Free Flight and the related concept of

Collaborative Decision-Making (CDM). In addition, we discuss the effect these

ideas have had on the implementation of GDPs. It should be noted that a move

toward decentralization in such a complex environment may bring forth a variety

of issues, such as human factors problems, software development, etc.. However,

this chapter focuses on the issues related to resource allocation problems that

arise in the implementation of these ideas.
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3.1 The Future of Air Traffic Management

The current ATM structure presents a myriad of rules and procedures for airspace

users. Notwithstanding recent initiatives, users are often forced to operate within

narrow and highly restricted guidelines. While this approach provides a high

level of predictability (and therefore safety), it is safe to say that the structure

of the airspace system was simply not designed to deal with the current and pro-

jected volume of traffic. As a result, the FAA has been subject to widespread

criticism. In particular, there is a general consensus among airlines that the

restrictions implemented by the FAA are often overly severe, which results in

unnecessary delays, congestion, and costs for the airlines. In response to these

criticisms, the FAA has formulated a wide-ranging set of plans known as “free

flight”. The first phase of the implementation is currently underway, and started

in 1997 (see [Nol99]).

3.1.1 Free Flight

According to the FAA, the concept of Free Flight represents

“a concept for safe and efficient flight operating capability under

instrument flight rules (IFR) in which the operators have the freedom

to select their path and speed in real-time. Air traffic restrictions

are imposed only to ensure separation, to preclude exceeding airport

capacity, to prevent unauthorized flight through special use airspace,

and to ensure the safety of flight. Restrictions are limited in extent

and duration to correct the identified problem. Any activity that

removes restrictions represents a move toward free flight.”
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The concept of free flight embodies a different philosophy toward ATM functions.

The traditional approach largely followed a central planning paradigm, in which

users had to adhere to ATC decisions (e.g. using ATC-preferred routes). In

contrast, free flight envisions increased collaboration between users and air traffic

managers, greater flexibility for airlines to make decisions to meet their unique

operational goals, and the replacement of broad restrictions with more tailored

responses. In theory, free flight would let pilots assume a significant portion of

the separation responsibilities, and choose routes as they see fit using advanced

technologies. ATC interventions would only occur if flight separation standards

were threatened to be violated.

There are, however, a number of steps that need to be taken before these

ideas can be put into practice. As a first step toward free flight, the FAA

has instituted the National Route Program (NRP), which gives airlines and

pilots greater liberties in choosing their routes. Under this program, certain

flights may proceed unrestricted from origin to destination1. The NRP program

has had considerable success (see [AOC95] and [Nol99]), showing the potential

benefits of free flight. Other efforts currently underway focus on the necessary

technology improvements, such as digital communication systems and satellite-

based navigation technology.

In the previous chapter, we separated ATM functions according to two basic

components, tactical ATC and more strategic ATFM. It should be noted that

with its focus on separation insurance and dynamic conflict probing and resolu-

tion, free flight is perhaps best viewed as the future vision for the ATC functions

1subject to terminal area restrictions within a 200-mile radius of take-off and landing, as

well as certain altitude restrictions
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in the air transportation system.

3.1.2 Collaborative Decision-Making

Collaborative Decision-Making (CDM) is a concept that goes hand in hand with

free flight, in that it may be viewed as the future direction of ATFM functions.

Under CDM, the management of traffic flows and the associated resource allo-

cation decisions are conducted in a way that gives significant decision-making

responsibilities to AOCs. The overall objectives of CDM can be summarized as:

• generating better information, by merging flight data from the airspace

system with information generated by airspace users;

• creating common situational awareness by distributing the same informa-

tion both to traffic managers and to airspace users;

• creating tools and procedures that allow airspace users to respond directly

to congestion and to collaborate with traffic flow managers in the formu-

lation of flow management actions.

CDM was initially conceived in the mid-1990s within the FAA Airline Data Ex-

change (FADE) project, which originally was created as a short-term experiment

to see if up-to-date airline schedule information would result in improved flow

management decisions. The issues revealed during extensive human-in-the-loop

experiments eventually led to the initial implementation of CDM, which pri-

marily focused on the development of new operational procedures and decision

support tools for implementing and managing GDPs.

The initial implementation of CDM, known as GDP enhancements (GDP-E)

began its prototype operations at San Francisco and Newark airports in Jan-
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uary of 1998. In GDPs under CDM, airlines send operational schedules and

changes to schedules to the ATCSCC on a continual basis. The schedule infor-

mation includes flight delay information, cancellations, and newly created flights.

The ATCSCC uses this information to monitor and possibly implement GDPs,

using a newly developed decision support tool called Flight Schedule Monitor

(FSM). It is important to note that this information is shared with all users

(e.g. airlines also have access to FSM), creating a common picture of current

and projected airport conditions. Essential to these procedures is the use of

newly defined resource allocation procedures, which have removed previously

existing disincentives for airlines to provide accurate information. The effects of

these procedures has been significant: it has been stated that since their initial

implementation in January of 1998, over six million minutes of assigned ground

delay have been avoided (cf. [BHHM98]). While one can point to a variety

of concepts and technologies that are fundamental to CDM’s success, probably

the most vital underlying element has been a strong and continuous interaction

among all stake holders. Airline input was sought from the very beginning, and

regular meetings between the various groups involved in CDM have been held

through the life of the CDM project.

The success of these initial CDM efforts has highlighted the potential ben-

efits of increased collaboration in ATFM, and led to a number of projects that

aim to enhance the basic application of CDM to GDPs. Examples include the

incorporation of uncertainty trade-offs during a GDP (e.g., due to weather pre-

dictions, see [HHB+00]) and the possible inclusion of airport departures into the

GDP planning process ([Hal99]). Another example is the current Collaborative

Routing (CR) effort, which intends to improve handling of potential en-route
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congestion; whereas GDPs under CDM give airlines more flexibility in distribut-

ing FAA-assigned delays among its flights, CR would also give airlines greater

input in rerouting flights.

3.2 Decentralized Ground Delay Programs

So far, the efforts of the CDM working group have primarily concentrated on

GDP enhancements. These efforts have led to substantial changes in the pro-

cedures for allocating ground delays, which provide airlines a much greater in-

put. As such, these procedures present a significant move towards decentralized

ATFM. This section introduces the main GDP procedures introduced under

CDM, and contrasts these procedures with traditional decision models for the

allocation for slots.

3.2.1 Models for the Ground Holding Problem

The use of ground holding to resolve air traffic congestion was first described sys-

tematically by Odoni [Odo87]. However, the generic flow management problem

defined by Odoni is extremely general, in that it addresses congestion anywhere

in the network. Therefore, a common assumption (both in theory and, more

implicitly, in practice) is that the only capacitated element in the air traffic net-

work is the arrival airport. Under this assumption, the problem is commonly

known as the Ground Holding Problem (GHP). The basic version of the GHP

(see [Ter90]) requires the following additional assumptions:

I. Discrete Time Horizon: The planning horizon consists of a fixed and fi-

nite time period, which has been discretized into contiguous time periods
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(slots).

II. Deterministic Demand : At the beginning the planning horizon, a complete

list of flights bound to arrive at the congested airport is known. Moreover,

the travel times of these flights are deterministic and known in advance.

III. Deterministic Capacity : At each time period, the airport arrival capacity

in each time period is deterministic and known in advance (Without loss

of generality, we assume each slot can service 1 flight).

Given these assumptions, the GHP can be formulated as an Integer Programming

problem. We represent the flights as a set F and the slots as a set S. We let

oagf denote the scheduled arrival time of a flight f ∈ F , and ts the time of a slot

s ∈ S. The resulting LP formulation is shown in Figure 3.1. It should be noted

Decision variables:

• xfs ∈ {0, 1}, for all f ∈ F , s ∈ S, ts ≥ af .

LP formulation:

Min
∑

f∈F ,s∈S,ts≥af
Cf (ts − oagf )xfs

subject to:
∑

s∈S,ts≥oagf
xfs = 1 for all f ∈ F

∑

i∈F ,ts≥oagf
xfs ≤ 1 for all s ∈ S

xfs ≥ 0

Figure 3.1: Assignment problem formulation of the static, deterministic GHP

that the constant capacity assumption implies that no flight will be allocated

airborne delay (since airborne delay is more expensive than ground delay). Thus,
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this version of the GHP allocates ground delays based on the costs Cf (d), which

are a function of delay.

While the distribution of delays among flights is an important topic, it has

received relatively little attention in literature. Most models that address the

GHP usually assume constant marginal costs of both airborne and ground delay,

2 and instead concentrate on the trade-off between them in the case of stochas-

tic capacity (i.e., by relaxing assumption 3). This version of the GHP was first

studied in [Odo87] and [ARJ87]. More efficient models, as well as several exten-

sions, were proposed in [TO93], [RO93], [Ric95], and more recently [BHOR00].

A systematic review of some of these results may be found in [AOR93]. Other

related work has focused on different aspects of the ground holding problem,

in particular on the effects of delay propagation through the air traffic network

(e.g., [VBO94b], [VBO94a], and [AB98]) and on more general air traffic flow

management problems (see [BP98] and [BP00]).

Generally speaking, one might argue that the focus on aggregate trade-offs

between airborne and ground delays limits the attention that can be given to

airline-specific preferences. Even though airline specific delay costs could, in

principle, be incorporated into the decision problems, the “global optimization”

perspective would likely introduce systematic biases against or in favor of indi-

vidual airlines3. Consequently, the models described here are perhaps primarily

suited for making aggregate decisions (e.g., determining overall flow rates per

2Note that in this case, the previous problem can be simplified further, since a first-come,

first-served ordering will be optimal.

3See [Odo87]. Typically, most ground-holds would be assigned to aircraft with smaller per-

unit delay costs (e.g. regional aircraft), while aircraft with higher delay costs would be given

priority (e.g. wide-body aircraft).
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period, as discussed in [BHOR00]).

3.2.2 Airline Decision-Making during GDPs

Whereas the FAA is primarily concerned with aggregate traffic flows and overall

throughput during periods of airport congestion, the decisions and trade-offs

faced by individual airlines in a GDP are of a different nature. When faced

with a GDP, an airline typically responds to the resulting schedule disruptions

by trading-off flight cancellations and delays. Such decisions are based on a

multitude of factors, such as the disruption of and the cost of crew schedules,

the passenger costs of delay, possible flight connections, etc.

The ground delays imposed by a GDP create severe disruptions of an air-

line’s flight schedule, which not only affect the delayed flights but may also

propagate delays to other flights. To mitigate these disruptions, airlines may

cancel flights and substitute flight-slot assignments. A decision model to support

this slot swapping process was first presented in [VM91], which also describes

its application at American Airlines. Other models for resolving schedule dis-

ruption through slot swapping are proposed in [LY98b], [LY98a], [HKT99], and

in [Niz01]. Another approach, which explicitly considers the connection depen-

dencies of hub operations but leads to less efficient algorithms, is proposed in

[Mil95] and further extended in [Car00]. It should be emphasized that none of

these models fully reflect the complexity of airline decision-making during GDPs.

For instance, none of these models incorporates the decision to cancel a flights,

which is one of the most important decisions during a GDP.

Another family of decision models for resolving schedule disruptions may be

found in [TG84], [TG90], [CK97a], and [CK97b]. Generally speaking, this class
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of models attempts to find an operable, system-balanced flight schedule when

aircraft shortages disrupt an airline’s flight schedule (that is, they consider an

airline’s entire network of flights). The application of these models at United Air-

lines is described in [JYKR93] and [RKY96]. These models, however, typically

do not incorporate arrival slot constraints. Their use is primarily in schedule

recovery after the disruptions from a GDP have occurred.

3.2.3 Ground Delay Programs under CDM

In contrast to the models proposed in the literature, the allocation procedures

instituted under CDM primarily address the distribution of delays among indi-

vidual flights. CDM has its origin in early efforts by the FAA (through the FADE

program4) to acquire up-to-date airline schedule information (cf. [Wam96]).

Though human-in-the-loop experiments with ATFM specialists clearly showed

the benefits of this information, airlines remained highly reluctant to submit this

data. The reason for this was that the GDP procedures used at the time could

actually penalize an airline for providing that information. The main reason

for this problem was that flights were essentially allocated slots on a first-come,

first-served basis according to their most recent estimated arrival times, using

a algorithm called “Grover-Jack”. With this mechanism, a so-called “double

penalty” could occur. For example, if a flight were delayed for 30 minutes due

to mechanical problems and the airline reported this delay during a GDP, the

FAA might another 30 minutes of ground delay (for a total delay of 60 minutes).

However, the GDP-assigned delay would have been absorbed if the airline had

not reported its mechanical delay ! In addition, the Grover-Jack mechanism re-

4FADE: FAA Airline Data Exchange

30



allocated slots that were assigned to cancelled flights, thus preventing an airline

from substituting other flights into those slots.

The resource allocation schemes implemented under CDM have addressed

these issues through a fundamental change in the allocation of capacity. Rather

than an assignment of individual flights to arrival slots, the central paradigm

under CDM is that slots are allocated to airlines. This has led to the intro-

duction of two new allocation mechanisms, RBS and Compression. The RBS

algorithm creates an initial allocation of slots to airlines, based on the consensus

recognition that airlines have claims on the available arrival capacity through the

original flight schedules. Given their slots, airlines are free to reschedule flights

according to their private objectives, through flight substitutions and cancella-

tions. The Compression algorithm is a reallocation procedure that prevents the

underutilization that might be caused by flight cancellations and delays.

Ration-By-Schedule As the first step in a GDP, the RBS procedure rations

the arrival slots among airlines. As in the Grover-Jack procedure, RBS assigns

flights to slots on a first-come, first-served basis. In RBS, however, flights are

ordered according to their original scheduled time of arrival as opposed to the

most recent estimated time of arrival that was used before. Consequently air-

lines will not forfeit a slot by reporting a delay or a cancellation, which is what

happened prior to CDM. Figure 3.2 provides a conceptual overview of the RBS

algorithm. The actual RBS algorithm has to take into account several compli-

cating factors, such as flights being airborne, flights exempted from the GDP,

and the possibility that a GDP was already executed before. (see [HHB+00] for

a discussion of these details).

31



RBS Algorithm:

Step 1. Order the flights in F by increasing scheduled time of arrival.

Go to step 2.

Step 2. Select the first flight in F that has not been assigned a slot.

If no such flight exists, the algorithm is terminated.

Otherwise, the flight is assigned the earliest unassigned slot it can meet.

Figure 3.2: The Ration-By-Schedule Procedure

It should be noted that the resulting flight schedule may be inefficient in its

utilization of arrival capacity. Arrival slots may have been assigned to flights

that have been cancelled or delayed and therefore cannot use their assigned slot.

However, the end result of RBS should not be viewed as an assignment of slots

to flights but rather as an assignment of slots to airlines. After RBS, an airline

can reassign the slots it owns to any of its flights by using the cancellation and

substitution process.

Compression After a round of substitutions and cancellations the utilization

of slots can usually be improved. The reason for this is that an airline’s flight

cancellations and delays may create “holes” in the current schedule, that is, there

will be arrival slots which have no flights assigned to them. The purpose of the

Compression algorithm is to move flights up in the schedule to fill these slots.

The basic idea behind the compression algorithm is that airlines are “paid back”

for the slots they release, so as to encourage airlines to report cancellations. The

extent to which a flight can be moved up will be limited, e.g. a flight cannot

depart before its scheduled departure time. To capture this, each flight has
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Compression Algorithm:

Step 1. Order the flights according to the current schedule. Determine the set

of open slots CS . For each slot c ∈ CS , execute step 2.

Step 2. Determine the owner of slot c, that is, the airline a that owns the

cancelled or delayed flight f that has been assigned to slot c. Try to fill

slot c, according to the following rules:

2.1. Determine the first flight g from airline a (in the current schedule)

that can be assigned to slot c, that is, for which c ∈ {e(g), . . . , I(g)}.

If there is no such flight, go to Step 2.2. Otherwise, go to Step 3.

2.2. Determine the first flight g from any other airline that can be assigned

to slot c. If there is no such flight, go to Step 2.3. Otherwise, go to

Step 3.

2.3. There is no flight that can be assigned to slot c. Return to Step 1

and select the next open slot.

Step 3. Swap the slot assignments of flights f and g, i.e, assign flight g to slot

i, and flight f to slot I(g). Note that airline a is now the owner of open

slot I(g). Next, slot I(g) is made the current slot, and Step 2 is repeated.

Figure 3.3: The Compression Procedure
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an earliest arrival time specified by the mapping e : F → S. Moreover, it is

assumed that a flight cannot be moved down from its position in the current

schedule I. Thus, the set of slots {e(f), . . . , I(f)} defines the window in which

flight f can land. A conceptual overview of the Compression algorithm is shown

in Figure 3.3. It should be noted that there are two ways for an arrival slot to

become open; either the flight assigned to that slot has been cancelled, or it has

been delayed. In either event, the controlling airline will release the slot to the

compression algorithm.

The important features of the compression algorithms are that (i) arrival slots

are filled whenever possible, (ii) flights from the airline that owns the current

open slot are considered before all others, (iii) if the controlling airline cannot

use a slot, then it is compensated by receiving control over the slot vacated by

the flight which moves into its slot, and (iv) airlines do not involuntarily lose

slots they own and can use.
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Figure 3.4: Compression Example.

To illustrate the compression algorithm, let us consider the example shown

in Figure 3.4. The leftmost figure represents the flight-slot assignment prior to
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the execution of the compression algorithm. Associated with each flight is an

earliest time of arrival, and each slot has an associated slot time. Note that

there is one canceled flight. The rightmost figure shows the flight schedule after

execution of the compression algorithm: as a first step, the algorithm attempts

to fill AAL’s open slot. Since, there is no flight from AAL that can use the slot,

the slot is allocated to UAL, and the process is repeated with the next open slot.

3.2.4 Context

The success or failure of any new allocation mechanism depends, at least to

a large degree, on the manner in which it takes into account the environment

in which it is to be used. This is no different for the slot allocation procedures

developed under CDM. In fact, one might argue that these procedures have been

successful exactly because they took into account the context in which GDPs

are executed (and, through extensive meetings, the concerns of all the parties

involved). Therefore, it is worthwhile to review some key characteristics of these

allocation procedures, and to investigate how they reflect certain context-specific

factors.

Allocation versus Exchange Perhaps the key characteristic of GDPs un-

der CDM is that slots are allocated initially, using RBS, followed by periodic

inter-airline slot exchanges, using Compression. One may ask why slots would

be allocated and than reallocated, as opposed to a single allocation step. The

use of slot exchange may be explained as a compromise between two opposing

factors. On the one hand, GDPs are executed in a dynamic environment that is

characterized by significant uncertainty. In and of itself, this presence of uncer-
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tainty would suggest a postponement in the allocation of slots (e.g. the allocation

of flights to slots would be postponed as much as possible). On the other hand,

however, airline operations would be severely hampered by such a late alloca-

tion of arrival slots. The impact of GDPs on flight schedules forces airlines to

respond with an oftentimes elaborate set of strategies 5. The time required to

formulate a response (as well as the internal communication of schedule changes)

may be significant, and suggests an early allocation of arrival slots. Specifically,

delays in the allocation would severely limit an airline’s possible responses and

would expose them to the risk of not getting timely slots. The initial allocation

followed by an exchange addresses both these issues: the initial allocation al-

lows airlines ample time to formulate a response, while subsequent reallocations

address dynamic changes in schedule and capacity.

Limited Scope Another factor that has contributed to the success of CDM is

the recognition that GDPs are part of a much larger and more complex air traf-

fic system. Specifically, the GDP processes take into account that determining

airport arrival capacities is just one of the decisions made by the the ATCSCC,

and that arrival slot allocation is part of a much more complex set of decision

processes faced by the airlines. This is reflected in the following two features of

the GDP process. First, the direct interaction in GDPs under CDM primarily

involves the ATCSCC and airline AOCs, and does not incorporate direct com-

munications with or input from other stake holders (e.g. Pilots, Tracons, etc.).

This does not imply that the concerns from other stake holders are not taken into

5To maintain the schedule’s integrity, an airline may cancel or delay flights, and reallocate

resources (e.g. crews, aircraft, etc.).
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account; rather, these intra-FAA and intra-airline decisions are explicitly incor-

porated into the scope of GDP procedures. Second, GDPs can be implemented

with little knowledge or information about airline preferences. The reason for

this is that after the initial allocation, airlines can adjust their schedules using

the substitution/cancellation process. For instance, suppose that flight AL100

is a lightly loaded flight with few connecting passengers and a CTA of 12:00 and

that AL500 is a fully loaded flight with many connecting passengers and a CTA

of 12:45. Since the timely arrival of the first flight is not that crucial, airline

AL might want to cancel AL100 and substitute flight AL500 into the 12:00 time

slot, thus saving AL500 45 minutes of delay. It should be emphasized that an

approach that might require substantial a-priori revelation of airline preferences

could be difficult to implement; airlines may not yet have completed formulating

their response strategies, and it may be difficult for an airline to evaluate all

possibilities. Not only do an airline’s decisions involve an amalgam of factors,

they also may difficult to quantify (e.g., when taking into account factors such as

workload distribution). Moreover, different airlines may have different planning

capabilities. To summarize, the GDP processes implemented under CDM pro-

vide a set of clearly defined roles and responsibilities, with compact interactions

yet substantial flexibility, which can be implemented on a relative stand-alone

basis.

The allocation procedures developed under CDM are markedly different from

the approaches that have so far been proposed in the literature (see [AKMO97],

[Mil95], [Hal99]). In [AKMO97], an evolutionary framework is proposed in which

airlines coordinate their decisions through bargaining and auctions. These ideas
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are further pursued by Milner ([Mil95]) and by Hall ([Hal99]), who proposes a

procedure for allocating slots during GDPs that is closely related to the well-

known Vickrey auction ([Vic61]). To illustrate their differences from the proce-

dures implemented under CDM, it is instructive to classify them according to

the general framework proposed by Moulin ([Mou95b], Ch. 1), who recognizes

three fundamental “modes” of cooperation - direct agreements, decentralization

(by prices), and justice. Under the mode of direct agreements, the coordinator

has no active role. Instead, agents are allowed to engage freely in direct transac-

tions as they see fit. Under the mode of decentralization, the coordinator’s role

is to enforce certain rules of interaction (either explicitly or implicitly, through

the “invisible hand”), The prime example is the model of competitive markets,

in which agents coordinate by responding to price signals. In the justice mode,

the coordinator takes a more active role: resources are allocated according to a

mechanical formula that distributes the resources equitably among the agents.

Based on this classification, the models proposed in [AKMO97], [Mil95], and

[Hal99] correspond to the mode of direct agreements and the mode of decen-

tralization. Interestingly enough, however, the procedures implemented under

CDM fall under the mode of distributive justice. As illustrated in our previous

discussion, there are a number of reasons why the use of procedures based on

concepts of distributive justice (i.e. notions of equity and fairness) may be more

applicable within the context of GDPs.
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3.3 Discussion

The move toward free flight presents a number of dramatic changes in ATM

functions. It should be emphasized, however, that the path toward implementing

these changes is necessarily incremental, consisting of a large number of small

steps. Radical, large-scale modernization efforts by the FAA have had a history

of failure, and the FAA has therefore adopted the more cautious approach of

“build a little, test a little, field a little”. This approach is further motivated

by the vast complexity of the airspace system, in which many of the constraints

and rules are difficult to represent formally. The current free flight efforts and

the initial implementation of CDM are examples of this approach, and for which

the restricted focus has led to considerable success.

The GDP enhancements introduced under CDM, for instance, have had a

profound impact on the interaction between the FAA and airlines. From these

procedures, a general protocol for the interaction between the FAA and airlines

has begun to emerge, which defines each side’s roles and responsibilities. In par-

ticular, CDM has solidified the FAA’s responsibility to monitor the system and

its authority to ensure that demand does not exceed capacity. Furthermore, the

procedures implemented under CDM define the role of the FAA as a discoverer

of constraints and as an arbiter of rationed capacity. The resulting allotments

of scarce capacity allow airlines to trade off operating options based on internal

business objectives. At the same time, airlines are responsible for providing the

FAA with accurate data, especially in light of their possible schedule adjustments

(see also [wg96]).

While the resource allocation schemes developed under CDM are still evolv-

ing, the general interaction protocol - and in particular the notion of resource
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rationing - is often viewed as a blueprint for decentralized decision-making within

ATFM, and seen as the basis for all further efforts. Given the success of CDM

and its acceptance within the airline community, this appears to be a natural

development. As the reach of these efforts expands, however, the need for a set of

guiding principles is becoming more and more apparent. The allocation schemes

implemented under CDM have been developed to address certain specific prob-

lems the airlines and the FAA were dealing with. As a result, many of the overall

concepts that were introduced have largely been left implicit. That is, there has

not been a clear distinction between the algorithms and the principles. Clearly,

this complicates further enhancements, and introduces the danger of creating

another over-constrained system with a myriad of rules and restrictions.
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Chapter 4

Fair Slot Allocation

A primary objective of the FAA’s ATM functions is to provide fair and equi-

table access to the National Air Space1. Traditionally, the FAA has interpreted

fairness as prioritizing flights on a “first-come, first-served” basis. The alloca-

tion procedures introduced under CDM, however, represent a departure from

this paradigm: airlines receive allotments of slots based on their original flight

schedules. Yet in spite of these significant changes, it is often not clear what is

meant by a fair or equitable allocation within the context of GDPs under CDM.

The embodiment of fairness under CDM is largely left implicit in the allocation

procedures (Ration-By-Schedule and Compression), and in fact, different and

even conflicting concepts are sometimes used to describe these procedures. This

not only generates frequent complaints, but also complicates the introduction

of CDM in more complex settings. This Chapter therefore aims to formalize

concepts of fairness for the allocation of slots during GDPs. Using an axiomatic

approach we derive a class of potential allocation procedures, which introduce a

number of potential alternatives to RBS. We discuss the interpretation of these

1see http://www.faa.gov/atpubs (order 7110.65)

41



alternatives, and empirically analyze their difference with RBS.

4.1 Introduction

The allocation procedures instituted under CDM have created a connection be-

tween planned schedules and operational schedules that did not previously exist:

namely, airlines are entitled to a share of the operational resources based on their

planned schedules. In fact, the IATA scheduling guidelines (which are used to

create planned schedules at biannual conferences, see [Iat00]) explicitly state

that

“The Conferences deal with adjustments to planned schedules to fit

in with the slots available at airports. This activity has nothing to do

with adjustments to schedules on the day of operation for air traffic

flow management. The two types of slot allocation are quite different

and unrelated.”

Moreover, at the four airports (Kennedy, LaGuardia, O’Hare, Reagan National)

that fall under the High-Density rule, the slots owned by airlines are often

interpreted as “the right to schedule or advertise a flight at a specific time”

(see [BCT95], [RS91]), which entails no explicit connection to a right on the

day of operation. As such, the Ration-By-Schedule (RBS) procedure introduced

under CDM has implicitly introduced a significant change to ATM practices.

The RBS algorithm is based on the notion of “first-scheduled, first-served”,

and iteratively assigns the next arrival slot to one of the remaining flights with

the earliest scheduled time of arrival (or equivalently, its delay up to that point).

Thus, slots are assigned to flights according to a priority ordering based on their
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respective scheduled times of arrival. While intuitively appealing, the use of

this paradigm introduces a number of questions. The appropriateness of using

of flights, as opposed to airlines, to compare possible allocations poses a first

question. While RBS allocates slots on a flight-basis, equity is measured ex-post

(for analysis purposes) on an airline basis. Moreover, the use of flights as a basis

for allocating delays can further be questioned by the existence of the subsequent

substitution process, which allows an airline to redistribute its assigned delays

in any way it sees fit. Consequently, all the allocation procedure can possibly

achieve is an allocation of the slots or delays among airlines. One important

question is therefore whether airline-based allocation procedures could be more

applicable. A second issue stems from the use of “first-scheduled, first-served” to

compare pairs of flights. In spite of its intuitive appeal, it is by no means clear

that it is the only possibility or even the most desirable possibility. Another

important question is therefore which other standards of comparison might be

applicable within the context of GDPs, and how they compare with RBS.

4.1.1 Model Description

Whenever the FAA implements a GDP, air traffic managers first have to de-

termine the affected flights and the available arrival capacity. In our model we

assume these are given, that is, we let F = {f0, . . . , fm−1} represent the flights

in the GDP, and S = {s0, . . . , sn} the slots available during the GDP. Each slot

sj(0 ≤ j < n) has a capacity cj ∈ {0, 1}, and we assume that the capacity cn of

slot sn is unbounded. In addition, each slot sj has an associated slot time tj, and

we assume that the slots are equally spaced. More specifically, tj+1 − tj = 1 for

all 0 ≤ j < n, and t0 = 0. Each flight fi has an associated originally scheduled
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time of arrival oagi ∈ 0, . . . , n − 1 corresponding to one of the slots. A flight’s

originally scheduled time of arrival represents the earliest time it could possibly

land. In addition, we represent the airlines involved in the GDP by a set A. For

each airline a ∈ A, Fa ⊆ F represents the flights operated by airline a.

4.2 Delay-Based Slot Allocation

The principal output of the RBS procedure is a controlled time of departure for

each flight in the GDP; based on its assigned slot each flight is assigned a certain

amount of ground delay. In this Section, we consider approaches to fair slot

allocation that are based on comparisons of the delay incurred by flights and/or

airlines. We discuss the fundamental principles underlying these methods, and

analyze key properties of the resulting allocation schemes.

4.2.1 Multi-Objective Optimization Methods

As discussed before, the RBS procedure is based on the notion of “first-scheduled,

first-served”. An alternate way to interpret the notion of fairness that is embed-

ded in this allocation procedure is characterized by the following Theorem.

Theorem 4.2.1. The flight-slot assignment obtained by the RBS algorithm lex-

icographically minimizes the maximum delay with respect to the original flight

schedule; that is, let x represent a flight-slot assignment, T represent the maxi-

mum delay under RBS, and define for each k, 0 ≤ k ≤ Dmax, the performance

function dk =| {(i, j) ∈ x : tj − oagi = k} |. Then, the allocation obtained

by RBS lexicographically minimizes the vector d = (dT , . . . , d0) over all possible

flight-slot allocations.
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Proof. We assume w.l.o.g. that all oag times are different. The proof follows by a

sequential exchange argument. Let A1 be a lexicographical min-max assignment

and A2 an assignment generated by RBS. We now will argue that A1 and A2

necessarily assign the same flight to the first slot. Suppose this is not the case

so that flight f occupies the first slot, s1, in A2, but slot sk > s1 in A1, and let

g be the flight assigned to s1 in A1. It follows from the basic properties of RBS

that oagf < oagg, which implies Max{s1−oagf , sk−oagg} <Max{s1−oagg, sk−

oagf}. It then follows that the lexicographical min-max objective function can

be improved for A1 by interchanging f and g. This is a contradiction to the

optimality of A1. Repeating this argument for slots 2, . . . , n yields the desired

result.

In other words, the allocation obtained by RBS is such that any flight’s

allocated delay d cannot be reduced without increasing the delay of another

flight to a value of least d. Thus, each flight is allocated a delay that is “as

close as possible” to the average delay. Under this interpretation, each flight in

the GDP is therefore entitled (or rather, responsible for) an equal share of the

resulting overall delay.

A1:1200
A2:1202
A3:1204
A4:1206
A5:1208
B1:1210
B2:1212
B3:1214
B4:1216
B5:1218

S1200
S1204
S1208
S1212
S1216
S1220
S1224
S1228
S1232
S1236

A1:1200
A2:1202
A3:1204
A4:1206
A5:1208
B1:1210
B2:1212
B3:1214
B4:1216
B5:1218

S1200
S1204
S1208
S1212
S1216
S1220
S1224
S1228
S1232
S1236

RBS Airline Proportional

Avg. Delay:
A:20/5 = 4m

�

B:70/5 = 14m
�

Avg. Delay:
A:44/5 = 8.8m

�

B:46/5 = 9.2m
�

Figure 4.1: Example: Airline-based Delay Allocation
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Based on this principle, one could easily envision airline-based allocation

methods which would lexicographically minimize the maximum airline delay or

the average airline delay. If we were to minimize the maximum airline delay,

the implicit assumption would be that each airline is responsible for an equal

share of the delay. If, on the other hand, we were to minimize the maximum

average airline delay the principle would entail that each airline is responsible for

a proportional share of the overall delay. The potential differences between such

airline-based approaches and the RBS procedure are illustrated in Figure 4.1.

Figure 4.1 shows a simple GDP instance in which one of the airlines has its

flights at the end of the program (one could think of this as banks of flights in a

hub-and-spoke network). Note that the oag times range from 12:00 to 12:18 and

the slot time to be allocated from 12:00 to 12:36. The example shows that under

RBS the second airline would absorb most of the delay, while an airline-based

approach could lead to a more even distribution of the delays.

The potential to reduce the disadvantage for airlines whose schedule tends

towards the end of a GDP indicates the potential attractiveness of an airline-

based approach. At the same time, however, the use of this multi-objective

approach also has disadvantages. In the example, for instance, one could argue

that the first airline is unduly penalized: only airline A can use the first slot,

yet assigning this slot to airline A implies a larger delay for its remaining flights.

Another potential disadvantage is that the multi-objective approach does not

necessarily uniquely define the allocation of slots to airlines: there may be a large

number of “optimal” assignments with significant differences in the distributions

of the flight delays within an airline.
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4.2.2 Cost-Sharing Methods

An alternate approach to the allocation of slots during a GDP follows by in-

terpreting the distribution of delays as a cost-sharing problem. Intuitively, a

cost-sharing problem is perhaps best explained by considering a production tech-

nology that is jointly owned by a given set of users (cf. [Mou95b]). Each of the

users may have certain demands, the sum of which can only be produced at a

certain cost. The resulting problem is how to distribute this cost among the

users. Examples include the allocation of joint overhead costs of a firm among

its divisions ([Shu62]), and setting fees for the use of a communication network

([BH78]). Cost-sharing problems may be categorized according to the structure

of the cost function representing the production technology (see [Mou01]). In

homogeneous cost-sharing problems, the production technology corresponds to a

“one input-one output” model, that is, the technology produces a single type of

good. Each user i demands a quantity qi of the good and the total cost equals

C(
∑

i qi), with C : R+ → R+. Heterogeneous cost-sharing models, on the other

hand, correspond to technologies that may produce multiple types of goods.

An important strand of the literature on cost-sharing problems follows the

“axiomatic” approach ([Mou01]). The axiomatic approach imposes certain nor-

mative criteria, that is, a set of axioms that represent properties desired in a

rationing method. These axioms may represent not only equity concepts, but

also structural invariance and incentive criteria (see [Mou01]). This has led to

a number of different cost-sharing mechanisms, each of which is characterized

by a different set of axioms. One example is the proportional mechanism, in

which cost shares are simply proportional to demands. In the case of hetero-

geneous demands , however, its application is limited, since the different goods
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may not be comparable. Another example is the serial mechanism ([MS92]),

which is similar to the uniform gains rules used in rationing problems. How-

ever, this approach may also be difficult to extend to heterogeneous cost-sharing

problems ([Kol95]). Finally, value mechanisms for cost-sharing are inspired by

the Shapley value used in cooperative games ([Owe95]). These methods rely, in

one way or another, on the incremental or marginal cost imposed by a user’s

demand. Two important cost-sharing methods are the Shapley-Shubik and the

Aumann-Shapley rules (see [Shu62], [BH78], [Mou95a]).

It should be noted that in certain situations a cost-sharing method may yield

a decentralization device, in which users may strategically submit their demands

(i.e. the rule leads to a non-cooperative game). In this case the incentive prop-

erties, in particular the strategy-proofness of the method, become important

(see [MS92], [Mou99]). However, these issues are less of a concern within the

present context: an airline’s claims/demand in a GDP are defined by the planned

flight schedule, which are fixed well before the GDP is executed and cannot be

modified on a daily basis2.

Model Formulation

Here, we interpret the allocation of slots during a GDP as a cost-sharing

problem in which the cost corresponds to the resulting delays. The basic idea

is to interpret the airport as a production technology that is jointly owned by

a set K of agents. The outputs “produced” by the airport are flight arrivals

(arrival slots), which are differentiated by their arrival time. The set of agents

2In theory, an airline could artificially inflate its planned schedule to secure additional slots

during a GDP. This, however, appears to be highly unlikely since there are several detrimental

effects in doing this.
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can be either the individual flights or the airlines, that is, K = F or K = A. In

both cases, each agent k will demand a certain amount q(k) ∈ Nn
+ of the output

(e.g. if q(k)j = 2 agent k demands two arrivals at time j). If the agents are

individual flights (K = F) the demands q(f) will be unit vectors, with q(f)j = 1

if j = oagf and q(f)j = 0 otherwise. If, on the other hand, the agents are airlines

(K = A) the demands q(a) are defined as q(a)j = |{f ∈ Fa : oagf = j}|. The

aggregate demand q ∈ Nn
+ is simply the sum of the individual demands, i.e.

q =
∑

k∈K q(k).

Given the capacities c and an aggregate demand vector q, we have to de-

termine the cost, that is, the delay required to produce the arrivals demanded.

This can be done by introducing a delay vector d(c, q) ∈ Nn
+, in which an element

dj(c, q) represents the delay incurred at slot j. The delay vector can easily be

defined recursively:

d0(c, q) = max(q0 − c0, 0),

dj(c, q) = max(dj−1(c, q) + qj − cj, 0) (1 ≤ j ≤ n− 1).

In other words, the delay at a slot equals the number of flights at that slot

that cannot be assigned to the slot. The total delay D(c, q) is then expressed

straightforwardly as

D(c, q) =
n−1
∑

j=0

dj(c, q).

Under the assumption that the number of slots n and the number of agents K

remain fixed, a cost-sharing problem is then defined as the tuple (c, q(k)k∈K). A

solution to the cost-sharing problem is a vector x ∈ RK
+ specifying a cost(delay)

share for each agent such that

∑

k∈K

xk = D(c, q).

49



More generally, a cost-sharing method can be defined as follows.

Definition 4.2.2. A cost-sharing method is a mapping x : Nn
+ × RK×n

+ → RK
+

that associates with each cost-sharing problem a solution, such that

∑

k∈K

x(c, q(k)k∈K) = D(c,
∑

k∈K

q(k)).

�

In other words, a cost-sharing method associates with each instance of a

GDP an allocation of delays. A simple method would be to divide the costs

equally. This, however, violates a basic principle that cost shares should reflect

the agents’ contribution to the delay. This idea is taken into account in the

well-known Shapley Value, which has its origins in cooperative game theory.

The Shapley Value

The Shapley value is based on imposing certain minimum requirements on the

possible cost-sharing methods, the so-called dummy, impartiality, and additivity

axioms. For a general cost function C : 2K → R+ which associates a cost with

each group of agents in K, these properties may be defined as follows. For any

l ∈ K and L ⊆ K, we define δi(C, L) = C(L + {i})− C(L).

Definition 4.2.3. A cost sharing method x(C) satisfies the dummy property if

δi(C, L) = 0 for all L ⊆ K ⇒ x(C)i = 0 for all i ∈ K.

�

Definition 4.2.4. A cost sharing method x(C)) is impartial if, for any i1, i2 ∈

K,

δi1(C, L) = δi2(C,L) for all L s.t. i1, i2 6∈ L

⇒ x(C)i1 = x(C)i2 .
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�

Definition 4.2.5. Let C1, C2 : 2K → R+ be two cost functions such that C =

C1 + C2. Then, a cost sharing method x(C) is additive if

xi(C) = xi(C1) + xi(C2) for all i ∈ K.

�

Informally, the dummy property states that players who do not contribute to

the cost are not charged any cost. The impartiality property implies that players

who enter the cost function symmetrically are charged the same amount. The

additivity property states that if cost function can be decomposed, the resulting

cost allocation can also be decomposed. Observe that the additivity property

directly applies to the allocation of slots in a GDP, as the cost function D(c, q)

is expressed as the sum of the delays incurred at each slot.

The Shapley value is the unique method that satisfies these three axioms,

and can be characterized as follows

Definition 4.2.6. The Shapley value x(C) is defined as

x(C)i =
∑

0≤s<n

s!(n− s− 1)!
n!

∑

S⊆N−{i}:|S|=s

δi(C, S),

for 0 ≤ i < N . �

Intuitively, the Shapley value can be interpreted as a (random) priority

method. For a given priority ordering of the players N , a priority method al-

locates to each player its incremental cost, i.e., the additional cost incurred by

its addition to the coalition (after all players with a higher priority have been

added). The Shapley value assigns each agent his average incremental cost over
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all priority orderings, that is, a priority ordering is chosen randomly. As such, the

Shapley value is related to the RBS algorithm. Consider, for example, the case

in which slots are allocated to individual flights. If the ordering corresponded

to the ordering of the flights by OAG times, the priority method would equal

the RBS algorithm. Thus, the Shapley value differs from RBS in that a priority

ordering is chosen randomly. If, on the other hand, slots are allocated to air-

lines, the Shapley value randomly prioritizes airlines (i.e. under any particular

ordering the airline with the highest priority would receive the “best” slots for

its flights, etc.).

4.2.3 Issues

The Shapley value is a well-known solution concept, and is commonly applied in

cost-sharing problems (cf. [Mou01]). When applied within the current context of

allocating slots during GDPs, however, the use of the Shapley value introduces

a number of questions. These issues can be explained using the example shown

in Figure 4.2.

GDP Instance:

s0 s1 s2

fa

fb fc

Figure 4.2: Example: Shapley value

Figure 4.2 shows a simple GDP instance, in which flights fa, fb and fc have to

be assigned to slots s0, s1 and s2. Each slot has capacity 1, and oaga = oagb = 0,

oagc = 1. Alternatively, we can also say that one unit of delay is to be assigned
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at slot s0 and one unit at slot s1. The Shapley value can be calculated by

determining, for each group of flights, the resulting delay if only its members

were present (i.e. the characteristic function):

• D({a}), D({b}), D({c}), D({a, c}), D({b, c}) = 0;

D({a, b}) = 1;

D({a, b, c}) = 2;

Alternatively, we can use the additivity property to decompose D into two cost

functions D0 and D1. D0 can be associated with the first unit of delay, and D1

with the second unit of delay. The resulting characteristic functions are defined

as

• D0({a}), D0({b}), D0({c}), D0({a, c}), D0({b, c}) = 0;

D0({a, b}), D0({a, b, c}) = 1;

• D1({a}), D1({b}), D1({c}), D1({a, c}), D1({b, c}), D1({a, b}) = 0;

D1({a, b, c}) = 1.

The delay distributions d0 and d1 that correspond to the Shapley value of these

games are easily determined:

• d0(a) = d0(b) = 1
2 ; d0(c) = 0;

• d1(a) = d1(b) = d1(c) = 1
3 ;

Corresponding to this allocation of delays there is an overall slot allocation, i.e.

• s0(a) = s0(b) = 1
2 , s0(c) = 0;

• s1(a) = s1(b) = 1
6 , s1(c) = 2

3 ;

53



• s2(a) = s2(b) = 1
3 , s2(c) = 1

3 ;

Note that these values may be interpreted as the probability of being assigned

a slot (i.e., s0(a) represents the probability that fa is assigned to slot s0).

As discussed before, the Shapley value is the unique allocation that satisfied

the dummy, impartiality, and additivity properties. The questions that arise

from using the Shapley value in this case, however, lie in some intuitive properties

the allocation does not have. For instance, a basic fairness principle states that

allocation is fair only when every subgroup believes it be so; that is, every

subgroup should be satisfied that they share the slots assigned to them in a fair

way (cf. [You94], p.170). This concept is also known as the consistency principle,

and plays an important role in a variety of allocation problems. While different

definitions of the consistency principle may exist, the basic idea is always that an

allocation rule should be invariant when restricted to subgroups of agents (e.g.,

the removal of an agent and its share should not affect the allocation of the

remaining agents). Let us now illustrate how the notion of consistency might be

interpreted within the current context, by considering the slot shares of fb and

fc in the example above. We saw that, under the Shapley value, flight fa will

be assigned slot s0 with probability 1
2 . Thus, with probability 1

2 , fb and fc (as a

group) will be assigned slots s1 and s2. Similarly, with probability 1
6 fb and fc

(again as a group) will be assigned slots s0 and s2, and with probability 1
6 they

will be assigned slots s0 and s1. In each of these three cases, we could assign the

remaining slots to fb and fc according to the Shapley value. The resulting delay

distributions for each situation are shown in Figure 4.3.

This approach, however, would yield an allocation that is different from the

one we obtained by applying the Shapley value to the overall problem in Fig-
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Subproblems:

s0 : fa s1 s2

fb fc

s0 s1 : fa s2

fb fc

s0 s1 s2 : fa

fb fc

a assigned to 0
w.p. 1

2

a assigned to 1
w.p. 1

6

a assigned to 2
w.p. 1

3

Shapley value associate with each subproblem:

• a assigned to 0: d0(b) = 1, d1(b) = 1
2 ; d0(c) = 0, d1(c) = 1

2 ;

• a assigned to 1: d0(b) = 0, d1(b) = 0; d0(c) = 0, d1(c) = 1;

• a assigned to 2: d0(b) = 0, d1(b) = 0; d0(c) = 0, d1(c) = 0.

Figure 4.3: Example: Shapley value, Consistency

ure 4.2. Consider for instance the delay of flight fb. In the overall problem, we

have d1(b) = 1
3 . However, taking the weighted average over its delay shares in

the subproblems will yield d1(b) = 1
2

1
2 = 1

4 . The same holds for flight fc. Thus,

the Shapley value does not obey this notion of consistency3.

Another issue that arises with the use of the Shapley value stems from the

so-called Composition principle ([You94], [Mou01]). Informally, the composition

principle states that the allocation can be decomposed into stages. To illustrate

this, consider again the example in Figure 4.2. Suppose now that at first we

only want to ration the first slot (a practical reason for doing so is weather

3An alternative consistency axiom can be used to characterize the Shapley value

(see [You94]). However, this axiom deals with the removal of agents in a way that cannot

be viewed as a fixed assignment to a slot (see [Mou01] for a more detailed discussion).
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Subproblems:

s0 : fa s1 s2

fb fc

s0 : fb s1 s2

fa fc

a assigned to 0
w.p. 1

2

b assigned to 0
w.p. 1

2

Shapley value associate with each subproblem:

• a assigned to 0: d0(b) = 1, d1(b) = 1
2 ; d0(c) = 0, d1(c) = 1

2 ;

• b assigned to 0: d0(a) = 1, d1(a) = 1
2 ; d0(c) = 0, d1(c) = 1

2 ;

Figure 4.4: Example: Shapley value, Composition

uncertainty). Subsequently, we may have to ration the remaining slots among

the remaining flights. The composition principle states that this should not

affect the overall allocation. That is, the (expected) slot shares should be the

same whether we allocate in stages or not. Unfortunately, the Shapley value

does not satisfy this concept. To see this, suppose we were to first assign flight

fa or fb to slot s0 in the example above. This would lead to two possible cases,

which are shown in Figure 4.4. In each of these cases, we could as before apply

the Shapley value to determine the resulting delays. Again, this would yield an

allocation that is different from the one we obtained by applying the Shapley

value to the overall problem.

At the heart of these issues is the interpretation of the airport as a “pro-

duction technology” that is jointly owned by the airlines. This implies that all

flights have equal claims to all the slots, even if the flight cannot use the slot
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(for instance, in the example flight fc would have a claim to one-third of slot

s0). As a result, the allocation problem will introduce a bargaining situation

in which flights will trade claims on earlier slots they cannot use for shares of

later slots. The allocation in the example, for instance, may be explained as the

result of a trade in which flight fc trades its claim on slot s0 for part of the other

flights’ share of slot s1. While the notion that flights have equal claims to all

the slots could potentially be a valid approach, our discussion illustrated that its

use raises some practical difficulties. Moreover, the idea that claims are traded

also raises questions, since it is public knowledge that an airline or flight cannot

use the capacity (e.g. the OAG times are known well in advance).

4.3 Axiomatic Slot Allocation

The previous discussion leads us to ask which methods do satisfy these proper-

ties, and what principle underlie a flight’s claim to the slots. To answer these

questions, we formulate the GDP problem as a general allocation problem. We

postulate a set of axioms that are more applicable within the context of GDPs

and determine the (class of) allocation methods that satisfy these axioms. In

other words, whereas the use of the Shapley value assumes a given distribution

of slot shares, our objective is to determine a distribution of the shares. It should

be noted that the models and axioms we introduce are closely related to those

proposed in [Mou00] and [MS01], which consider probabilistic methods for the

allocation of homogeneous goods. Here, however, the different arrival times of

flights introduce heterogeneous demands.
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Allocating Slots to Flights

As a first step, we consider the situation in which the agents correspond to the

individual flights. To define the allocation problem we let F , the set of flights,

be the claimants and assume a given capacity vector c ∈ {0, 1}n. As before, we

assume the existence of a final slot sn with unbounded capacity. Associated with

each flight is its type τf which equals its oag time, that is, τf = oagf . We let

τ ∈ NF+ represent the vector of all flight types, and τF ∈ NF
+ the vector of types

for any subset F ∈ F .

Associated with each set of flights F and capacities c is a set of feasible and

efficient allocations

P (F, c) = {x ∈ {0, 1}F×n :
∑

f∈F

xf,j = cj for all 0 ≤ j < n,

n
∑

j=τf

xf,j = 1 for all f ∈ F}.

Observe that the first constraint implies that all available slots are used, which

in general might not be possible. However, for any combination of capacities and

flights, an efficient (delay-minimizing) solution will always occupy the same set

of slots (see [VB]). Consequently, without loss of generality it is always possible

to adjust the capacities c such that the constraint will hold.

An allocation problem consists of a tuple (τF , P ), where τf represents the

types for a given set of flights F and P ⊆ P (F, c) for some capacity profile c.

We note that the inclusion of subsets of the feasible set P (F, c) will become clear

in the definition of the axioms. A probabilistic allocation rule X associates with

each allocation problem (τF , P ) a random selection of allocations in the feasible

set P . Thus, any allocation can also be represented as a convex combination of
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the possible assignments, i.e.

X(τF , P ) =
∑

k

λkx(k), λk ≥ 0,
∑

k

λk = 1.

where x(k) ∈ P represents a possible assignment of flights to slots. In other

words, the allocation rule X(τF , P ) selects each assignment x(k) with probability

λk. Observe that X(τF , P )f,j may be interpreted as the probability that that f

is assigned to slot j.

Two fundamental principles of equity are impartiality and consistency. Im-

partiality defines the notion that equals should be treated equally, and can be

defined as follows (cf. [You94]).

Definition 4.3.1. A probabilistic allocation rule X is impartial if for any allo-

cation problem (τF , P ) and any permutation π of F ,

X(τF ◦ π, P ◦ π) = X(τF , P ) ◦ π,

where we view τF as a function from F to N+, an allocation x ∈ P as a function

from F to Nn+1
+ , and X(τF , P ) as a function from F to Rn+1

+ . �

This property states that the allocation rule is independent of the indexing

of the flights: if two flights are indistinguishable in type and in the feasible set,

they will receive the same slot shares.

The consistency concept was discussed informally in the previous Section.

To formalize this concept, we define for a given feasible set P , any f ∈ F , and

any slot index j : 0 ≤ j ≤ n the reduced feasible set P (f, j)

P (f, j) = {x ∈ P : xf,j = 1},
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which represents a set of feasible and efficient allocations for the flights in F−{f}

with slot sj unavailable. The formal definition is as follows (a similar definition

is given in [MS01]).

Definition 4.3.2. A probabilistic allocation rule X is consistent if for any allo-

cation problem (τF , P ) and any f ∈ F ,

X(τF , P )f ′,j′ =
n

∑

j=0

X(τF , P )f,jX(τF−{f}, P (f, j))f ′,j′

for all f ′ ∈ F − {f}, 0 ≤ j′ < n. �

In other words, the consistency property states that the expected slot shares

should be independent of the order in which flights are assigned to slots. While

imposing impartiality and consistency has a significant impact on the poten-

tial allocation rules, the class of rules that satisfy these axioms is still complex

and not easily characterizable. Nevertheless, their impact can be illustrated by

considering the case where exactly one slot is available.

Proposition 4.3.3. Let X be a consistent, impartial allocation rule, let ej rep-

resent a unit capacity vector whose capacity at slot j equals 1, and let τF be any

demand profile. Then, there exists a set of weights λj
i (0 ≤ i ≤ j) and a weak

ordering4 �j over the OAG times 0 ≤ i ≤ j such that

X(τF , P (F, ej))f,j =
λj

τf
∑

g∈F λj
τg

if τf �j τf ′ for all f ′ ∈ F , and

X(τF , P (F, ej))f,j = 0 otherwise.

Proof. See Appendix �

4a weak ordering or preordering is an ordering relation �P that is connected (i.e. j �P j′

or j′ �P j or both) and transitive.
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Figure 4.5: Interpretation of Decomposition Axiom

In other words, the flights arriving at slot j are partitioned into priority

classes based on OAG times. Within each priority class, the slot is assigned

according to a probability based on the weights λj
i . Note that by definition of

consistency, an impartial and consistent allocation rule can be characterized by

a collection of weights and weak orderings (λj
i ,�j)0≤j≤n. It is an open question

whether the reverse also holds.

Whereas consistency represents a certain invariance under changes in the

number of flights, the composition principle states an invariance under changes

in the capacity over time. Informally, the idea is that the allocation can be

decomposed into stages without affecting the overall assignments. The formal

definition is as follows.

Definition 4.3.4. For any capacity vector c and any period t : (0 ≤ t < n),

define ct = (c0, . . . , ct, 0, . . . , 0). Then, a probabilistic allocation rule X satisfies

the composition property if for any vector of types τF , any capacity profile c and

any time period t,

x(τF , P (F, c)) =
∑

k

λkx(τF , Rt(F, c, x(k))),
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where x(τF , P (F, ct)) =
∑

k λkx(k) and

Rt(F, c, x(k)) = {x ∈ P (F, c) : xf,j = x(k)
f,j for all f ∈ F, 0 ≤ j ≤ t}.

�

In other words, composition states the expected slot shares do not change if

we first allocate the slots up to period t, and subsequently assign the remaining

slots. A consequence of decomposition and consistency is that the allocation

problem can be divided into a sequence of allocation problems as shown in Fig-

ure 4.5. That is, each slot may be viewed as a station which assigns its available

capacity among the incoming flights and sends the remaining flights to the sub-

sequent station.

The final axiom we impose defines a certain regularity on the manner in

which each station allocates its capacity. Specifically, the idea is that is that cost-

sharing methods should be time-independent, that is, if identical (and feasible)

demand profiles were to arrive at two different stations (slots), the capacities

should be allocated in the same way.

Definition 4.3.5. Let ej represent the unit capacity vector whose capacity at

slot j equals 1. Let j1, j2 be two slots such that 0 ≤ j1 < j2 < n− 1, and let τF

represent a set of types such that τf ≤ j1 for all f ∈ F . Then, a probabilistic

allocation rule X is time independent if

X(τF , P (F, ej1))f,j1 = X(τF , P (F, ej2))f,j2 .

�

The combination of the above mentioned axioms restricts the allocation rules

that can be used to allocate slots to flights during a GDP. To characterize the
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allocation rules that satisfy the combination of these axioms, we let Q represent

a priority standard, that is, a weak ordering of the OAG times 0, . . . , n − 1. In

other words, a priority standard imposes an ordering on flights that arrive at

different times, which can be used to allocate slots to flights. We note that a

priority standard is not necessarily equal to the natural ordering imposed by

OAG times, e.g. the priority of a flight arriving at time 4 could be less than,

equal to, or greater than the priority of a flight arriving at time 6. Intuitively,

a priority method assigns slots according to a priority standard Q. That is, a

priority method sequentially assigns the slots and, at each step, the current slot

is randomly assigned to one of the remaining eligible flights that has the highest

priority according to its type τf under P . To formalize this notion, we introduce

the following two definitions.

Definition 4.3.6. For any capacity profile c and set of flights F , a solution

x ∈ P (F, C) is equitable with respect to a priority standard Q if for any two

flights f, f ′ ∈ F such that xf,j = 1, xf ′,j′ = 1 and j < j′, then τf �Q τf ′ or

τf ′ > j. �

Definition 4.3.7. For any capacity profile c and set of flights F , the priority

method Q(F,c) based on Q consists of all solutions x ∈ P (F, c) that are equitable

with respect to Q. �

These definitions allow us to state the following Theorem.

Theorem 4.3.8. Let c be any capacity profile and F be any set of flights. Then,

for any probabilistic allocation rule X that is impartial, consistent, time inde-

pendent, and satisfies composition, there is a priority standard Q such that

X(τF , P (F, c)) =
∑

x∈Q(F,c)

1
|Q(F, c)|

x.
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Proof. See Appendix. �

In other words, a probabilistic allocation rule randomly selects one of the

allocations in a priority method. Thus, the combination of a local decomposi-

tion in stations (which allocate slots in the same way) together with a global

consistency property leads to allocation rules that are priority methods.

Allocating Slots to Airlines

Theorem 4.3.8 characterizes allocation rules in which slots are assigned to

individual flights. To generalize the result to the case where slots are assigned

to airlines we define, for each airline a ∈ A, a type vector τa ∈ Nn
+ such that

τa,j = |{f ∈ Fa : oagf = j}|. Again, we associate with each set of airlines A and

capacity profile c a set of feasible and efficient allocations

P (A, c) = {x ∈ {0, 1}A×n :
∑

a∈A

xa,j = cj for all 0 ≤ j < n,

j
∑

k=0

xa,j ≤
j

∑

k=0

τa,j for all a ∈ A, 0 ≤ j < n}

n
∑

k=0

xa,j =
n

∑

k=0

τa,j for all a ∈ A}.

Now, a probabilistic allocation rule X associates with each allocation problem

(τA, P ) a random allocation of slots to airlines in the feasible set.

The previously defined axioms readily generalize to the case in which slots

are assigned to airlines. Impartiality can be restated by requiring that if two

flights are indistinguishable in type and in the feasible set, they will receive the

same slot shares. The consistency axiom can be generalized by requiring that all

slot shares should remain invariant after assigning an airline its (random) share.

Similarly, the composition and time independence axioms can be adjusted by

framing the requirements in terms of allocations to airlines.
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In addition to these axioms we also impose collusion-proofness, which may

be defined as follows.

Definition 4.3.9. Let c represent any demand profile, and let A ⊆ A any set

of airlines. For any airline a ∈ A, define a1, a2 and their respective types τa1 , τa2

such that τa1 + τa2 = τa, and let A′ = A − {a} + {a1, a2}. Then, a probabilistic

allocation rule is collusion-proof if

X(τA, P (A, c))a,j = X(τA′ , P (A′, c))a1,j + X(τA′ , P (A′, c))a2,j,

for all 0 ≤ j < n. �

Informally, the idea behind the collusion-proofness property is that no airline

or group of airlines should have an advantage or disadvantage from grouping

its flights. While our model assumes all airlines and demands are known well

in advance of the GDP, the underlying idea still has some appeal within the

context of GDPs: in many cases an large carrier will manage operations for

one or several smaller carriers, and it would be undesirable if this affected their

overall allocation.

The following theorem immediately follows from Theorem 4.3.8 and the def-

inition of collusion-proofness.

Theorem 4.3.10. Let c be any capacity profile, and A ⊆ A be any set of air-

lines. Then, for any probabilistic allocation rule X that is impartial, consistent,

time independent, collusion-proof and satisfies composition, there is a priority

standard Q such that

X(A,P (A, c))a,j =
∑

f∈Fa

∑

x∈Q(F,c)

1
|Q(F, c)|

xf,j.

�
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In other words, each airline will receive the sum of the shares its flights would

obtain under a priority method. The resulting allocation rules may be viewed

as a certain proportional scheme: whereas for flights a slot is randomly assigned

to one the flights of highest priority, in the case of airlines a slot is assigned to

an airline with a probability that is proportional to the number of its remaining

flights in the highest priority class.

Interpretation

Theorems 4.3.8 and 4.3.10 strongly suggest the use of priority methods to

allocate slots, given their appealing structural properties within the context of

GDPs. As such, the results of this Section provide a strong foundation for the

RBS procedure, which corresponds to a priority standard Q where i �Q j iff

0 ≤ i < j < n. At the same time, however, the Theorems state that any priority

standard yields these structural properties which could indicate a number of

alternate possibilities. One possibility in particular would be to give give all

flights equal priority, that is, a priority method with the standard Q in which

i �P j for all 0 ≤ i, j < n. This is in some sense the “opposite” of RBS, as there

are no strict priorities. In this case, the resulting allocation method corresponds

to the proportional random assignment scheme shown in Figure 4.6. The use of

this priority standard is actually similar to the principle underlying the Shapley

value, in which each flight was entitled an equal share of each slot. The difference

is that in the proportional random assignment method, each flight is entitled to

an equal share of each slot it can use (i.e. that is later than its scheduled arrival

time).

In the beginning of this Chapter we discussed how CDM has initiated a
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Initialization Let F ′
a := {fi ∈ Fa : oagi = 0} and j := 0;

While j < n do :

I. If cj = 0, do nothing. Otherwise, randomly select an airline a′ with

probability proportional to |F ′
a|;

II. Assign the earliest flight f ′ ∈ F ′
a to sj;

Let F ′
a := F ′

a − {f ′};

III. Let j := j + 1;

IV. Let F ′
a := F ′

a + {fi ∈ Fa : oagi = j};

Figure 4.6: Proportional Random Assignment Mechanism

relationship between an airline’s scheduled demand and its rights to airport

capacity at the day of operation; that is, an airline’s flight schedule could be

interpreted as a claim on the arrival capacity available during a GDP. Under

RBS, for instance, a scheduled arrival may be interpreted as a service priority.

Consequently, the flight schedule defines for each airline a priority list, which it

can associate with the actual flights during the day of operation. The underlying

idea here is that a period of time is allocated to carry out activities and that

the time required for each activity may vary. However, the implicit assumption

is that it will always be possible to carry out all the activities even when all

activities require their maximum time. Another interpretation, however, could

be that a period of time (at the airport) is allocated to carry out activities and

that participants have access to portions of that time based on the extent of their

planned activities. Now suppose that the extent of the time available varies so
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that it is not possible for all participants to carry out all of their activities. This

corresponds to the proportional random assignment mechanism above, in that

time is assigned in proportion to an airline’s (remaining) demands. A such,

under the preordering in which all arrival times have equal priority, the claim

associated with each arrival corresponds to the right to land a flight at a time

greater than or equal to the OAG arrival time. Thus, based on that flight the

airline has equal rights to all slots available after that time.

4.4 Empirical Analysis

In this Section, we empirically analyze the distribution of slots and delays among

airlines during GDPs, using historical data from actual GDPs. Our analysis con-

siders the difference in delays between Ration-By-Schedule and the Proportional

Random Assignment Mechanism.

Ration-By-Schedule vs. Proportional Random Assignment

We studied the difference between the delays airlines would incur in the ration-

by-schedule and in the proportional random assignment mechanism. For differ-

ent airports, we considered a number of actual GDPs during the period January-

May 2001. For each of these GDPs we determined the delay each flight would

be assigned under RBS, and the average delay each flight would be assigned

under the proportional random assignment mechanism. Subsequently, we cal-

culated the average delay for each airline. The empirical results are shown in

Figures 4.7, 4.8, and 4.9. The graphs in these Figures represent, for a selected

number of airlines, the difference between an airline’s average delay under the

proportional random assignment mechanism and under RBS (a negative number
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DAL(46.8) 70.9 71.6

USA(65.3) 72 72.4

NWA(7.7) 75.9 78.4

UAL(18.2) 72.3 74.4

MDW(2.2) 71.7 69.1

AWE(3.2) 63.3 68.0

Figure 4.7: Delay Comparison : Logan Airport, Boston
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USA(90.2) 64.4 63.6

UAL(20.1) 63.5 66

NWA(9.1) 65 68.3

MEP(2.7) 65 68.6
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Figure 4.8: Delay Comparison : LaGuardia Airport, New York
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Figure 4.9: Delay Comparison : Logan Airport, Boston
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means the airline would have been allocated less delay under the proportional

random assignment mechanism). The adjacent table in each Figure shows the

average delay per flight for each airline, aggregated over all GDPs.

The results indicate that, on the aggregate, there is surprisingly little differ-

ence in the delays incurred by airlines under the proportional random assignment

mechanism and under RBS. While substantial differences may occur during any

GDP there appear to be no systematic biases, and generally speaking these

differences decrease when an airline’s flights during a GDP increase.

4.5 Discussion

This Chapter introduced a formal approach to the allocation of arrival slots

during GDPs. The basis for our analysis was the CDM-initiated notion that slots

are assigned to airlines based on claims derived from the original flight schedules.

As a first step, we introduced both multi-objective optimization methods and

methods based on concepts from cooperative game theory, e.g. the Shapley

value. Undesirable structural properties, however, led us to pursue a more direct

approach. We postulated a set of intuitively desirable properties within the

context of GDPs, and derived the class of allocation methods that satisfied them,

e.g. those that are characterized by a preordering of the arrival times.

Within this class, we identified two methods: Ration-By-Schedule and the

so-called proportional assignment method. While these methods appear to give

surprisingly similar results in actual GDPs, their underlying philosophies are

fundamentally different.
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Chapter 5

Fair Slot Allocation: Equity As Near

May Be

The previous Chapter introduced probabilistic methods for the allocation of slots

during a GDP. These methods specified fair slot shares for each airline, based

on claims derived from the original flight schedules. This Chapter considers

methods that aim to approximate these shares in situations where the “ideal”

may not be attainable. The motivation for using such methods is twofold. First,

we could use these methods when the probabilistic allocation method would have

an unacceptably high level of variance (e.g. if we wanted to use the proportional

random assignment method). A second and more important reason in practice,

however, is due to the dynamic nature of GDPs. For example, flight cancellations

and delays may make it impossible to achieve the ideal share (e.g. we may view

the Compression algorithm as approximating fair slot shares).

The organization of this Chapter is as follows. First, we discuss well-known

methods for minimizing the deviation from an ideal share, and relate them to

the actual situation during a GDP. Subsequently, we discuss how these methods

can be used to manage the various dynamic changes during a GDP.
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5.1 Background

The problem of approximating a given fair or “ideal” share arises in a number

of situations, most notably perhaps in apportionment and balanced just-in-time

scheduling problems. This Section provides an overview of these problems, in-

troduces methods used to solve these problems, and discusses their relationship

to the allocation of slots during a GDP. Subsequently, we outline the issues that

arise when applying these methods to GDPs under CDM.

5.1.1 Apportionment Problems

Apportionment problems arise in situations where a set of homogeneous indi-

visible objects must be assigned to a group of claimants in proportion to their

respective claims. Because the objects are indivisible, it is generally impossible

to give each claimant his exact proportional share (his “quota”). Therefore, the

question is how to distribute the objects such that each claimant’s share is “as

close as possible” to his quota. The classical application is the distribution of

legislative seats, e.g. when seats in the U.S. House of Representatives are to be

distributed among states in accordance with the proportions of their respective

populations (see [BY82]).

Within the context of GDPs, apportionment problems are analogous with

a coarse-grained approach to the allocation of slots. This is illustrated in Fig-

ure 5.1, which depicts a single-period GDP (e.g. one hour) in which C available

slots (“seats”) are to be distributed among airlines (“states”) in accordance to

their respective demands (“populations”) in the flight schedule. The problem

can be formalized as follows: given a set of airlines A, their respective numbers
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Airlines Flights

a fa,1, . . . , fa,na

b fb,1, . . . , fb,nb
...

...
Period Capacity: C

Delayed: n− C

Figure 5.1: Slot allocation by apportionment

of flights na with n =
∑

a∈A na and a capacity C, we have to find an allocation

x ∈ NA+ such that
∑

a∈A xa = C and the differences between all the allocations

xa and their quota qa = Cna/n are as small as possible. The key, of course, is

the measure of deviation.

One common approach, known as Hamilton’s method, operates by first as-

signing each airline bqac slots (its lower quota) and the remaining slots in de-

scending order of the fractional parts qa − bqac. Solutions obtained by this

method optimize the objective function min maxa∈A |xa − qa|, as well as other

objectives (see [You94]). A desirable property of the solutions, which follows by

construction, is that they satisfy quota, i.e. bqac ≤ xa ≤ dqae for all a ∈ A. An

undesirable property, however, is that the procedure is not monotone, e.g. an

increase in the capacity C could lead to a decrease in the slots assigned to an

airline (this is also known as the famous “Alabama paradox”, cf. [You94]).

This questionable feature has led to a number of other approaches, the most

prominent being the so-called divisor methods. In a divisor method, slots are

allocated iteratively to airlines: at each iteration a slot is assigned to the air-

line whose value of the quotient na/d(xa) is the highest, where xa is the num-

ber of slots already assigned to a and xa ≤ d(xa) ≤ xa + 1. A particularly
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attractive procedure results from letting d(xa) = xa + 1
2 , this is called Web-

ster’s Method. Solutions obtained by Webster’s method minimize the function
∑

a∈A(xa − qa)2/na. Moreover, in addition to the monotonicity property, this

method also has a number of other desirable features, such as consistency and

unbiasedness (see [You94] for a discussion of these properties).

5.1.2 Balanced Just-In-Time Scheduling Problems

A closely related, but somewhat finer-grained approach to the allocation of slots

during a GDP, can be obtained by an analogy with the so-called Product Rate

Variation (PRV) problem . The PRV problem arises in the determination of the

sequence schedule for producing different products on a mixed-model assembly

line, and has been studied extensively ([Mil89], [KS91], [SY93], [Kub93],[BCC96],

[BS98]). In certain just-in-time production systems, it is desirable that the quan-

tity of each part used in the assembly process per unit time is kept as constant

as possible; this is called levelling or balancing the schedule. Under certain as-

sumptions (see [Mil89]), this may be achieved by minimizing the variation in the

rate at which successive units (“flights”) of different product types (“airlines”)

are produced in the line.

An instance of the PRV problem is given by a set A of different product

types (“airlines), and a vector na(a ∈ A) which represents the demand for each

product type (“flights”). The production of each unit requires one unit of time.

Given the total demand n =
∑

a∈A na, an “ideal” production rate for product

type a can be defined as ra = na/n. The idea behind the ideal production rate

is that at each instant we would like the production of a to be in proportion

to ra, which would yield a perfectly levelled schedule. Such a schedule, how-
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IP formulation:

Min G(x, r)

subject to:
∑

a∈A xa,k = k for all k ∈ 1, . . . , D

xa,k ≤ xa,k+1 for all k ∈ 1, . . . , n− 1, a ∈ A

xa,n = na for all a ∈ A

xa,k ≥ 0(integer)

Figure 5.2: IP formulation of the PRV problem

ever, is never attainable, and the objective of the PRV problem is to keep the

actual production of each product somehow “as close as possible” to the ideal

rate. Clearly, the PRV problem is closely related to the apportionment problem;

however, whereas the apportionment allocates a fixed quantity C, the PRV prob-

lem seeks an apportionment for all quantities C between 1 and n (see [BCC96],

[BS98] for a discussion of their relationship). In particular, monotone methods of

apportionment could also be used for the PRV problem (i.e., if we used a mono-

tone method to solve the apportionment problems for all quantities between 1

and n, the resulting allocations would define a feasible production schedule).

The PRV problem can be formulated as an integer programming problem, as

shown in Figure 5.2. In this formulation, xi,k represents the number of items of

product i produced by time k. Consequently, the first constraint states that k

units have to be produced during the first k periods, and the second constraint

states that a product’s cumulative production cannot decrease. The third con-

straint states that all demands should be satisfied after the final period. Obvi-
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ously, the key to the formulation lies in the specification of the objective function

G(x, d), which measures the aggregate deviation from the ideal production rates.

As in the case of the apportionment problem, however, a number of different

possible measures have been proposed. One possibility is to minimize the total

deviation ([Mil89], [KS91]), which could be achieved using the objective function

G(x, r) =
∑

a,k(xa,k − kra)2. Another possibility is to minimize the maximum

deviation from the ideal production rates ([SY93]), using the objective function

G(x, r) = maxa,k |xa,k − kra|. With either objective, the resulting optimization

problem will be a non-linear integer program; in general, however, these can be

solved efficiently (this will be discussed later).

A somewhat different approach to the PRV problem ([IB91]) worth mention-

ing is based the notion of an ideal position (or due date) pa,k for the k-th unit

of product type a, which is defined as pa,k = (k − 1
2)/ra. Under this approach

the objective is to minimize the deviations between the ideal position pa,k and

the actual position ta,k at which the the k-th unit of a is produced. This can

be done (see [IB91]) by applying the earliest due date rule, taking pa,k as the

due dates. It is interesting to note that this method is actually equivalent to

Webster’s method of apportionment (see [BCC96]).

5.1.3 Approach

The apportionment problem and in particular the PRV problem are closely re-

lated to the allocation of slots during a GDP. The primary difference, however,

is that during a GDP not all flights are present initially; in other words, the

demands associated with each airline may have release times. This is illustrated

in Figure 5.3, where the thick line may be interpreted as the cumulative demand

76



Ideal shares qa,k

Cumulative allocation xa,k

by flight schedule

Release times defined

no.
flights

0 n slots

Figure 5.3: Share deviation in GDPs

of an airline at each time instance.

As a result, the proportional rates/shares used in the apportionment and

PRV problems may no longer be applicable. This, however, may be addressed

using approaches based on the results from the previous Chapter, where we

derived fair slot shares under the assumption that slots were divisible (e.g. by

allowing random assignments). This corresponds to the definition of quota in the

apportionment and PRV problems, which were similarly based on relaxing the

indivisibility assumption. Thus, given an allocation rule X (e.g. corresponding

to RBS or the proportional random assignment), we could define quota as qa,k =
∑k

j=0 Xa,j.

At first sight, the approximation of fair shares therefore appears to be appli-

cable primarily if proportional random assignment is used to define fair shares,

since RBS already yields an assignment that (nearly) corresponds to the fair

shares. However, an important reason for studying this model is due to the

dynamic nature of GDPs: during the course of a GDP, flights may cancelled,

delayed, etc. These changes impose additional constraints on the possible allo-
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cations, and make achievement of ideal shares impossible even under RBS. In

the remainder of this Chapter, we discuss how the approximation approach may

be used to deal with these dynamic changes.

5.2 Managing Flight Cancellations and Delays

During the course of a GDP flights are frequently cancelled and/or delayed,

leading to suboptimal utilization of the airport’s arrival capacity. This Section

describes an approach that deals with flight cancellations and delays based on the

idea of approximating fair airline shares. As such, the procedure we introduce

may be viewed as an alternative to the Compression algorithm that is currently

used under CDM. However, whereas Compression is based on the notion of an

inter-airline slot exchange, the procedure discussed here may simply be viewed

as a form of rerationing. Consequently, the procedure developed here unifies

both RBS and Compression, leading to a single resource allocation mechanism

to be used during GDPs.

The general concept assumes we have defined fair shares qa,k for each air-

line that are independent of the actual allocation and remain constant for the

duration of the program. In the remainder of this Chapter, we assume these

shares are obtained using the first-scheduled, first-served principle (as in RBS).

Whereas fair shares remain constant, dynamic changes may occur to each air-

line’s input data. An airline’s input data can be represented by (1) the set of

cancelled flights FC and (2) for each flight f an earliest arrival time ef . We note

that ef in general can be equal to or later than the flight’s oag time, due to

upstream delays, crew or mechanical problems, etc. Together, these parameters
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Demand Profile:
initial situation

Demand Profile:
2-nd flight cancelled

Demand Profile:
2-nd flight delayed

Ea,k

Ea,k

Ea,k

slots

Figure 5.4: Demand changes from flight cancellations and delays

can be used to define each airline’s cumulative demand (or release time) profile

Ea,k, that is,

Ea,k = |{f ∈ Fa/FC : ef ≤ k}|.

Thus, any change in an airline’s input data can be interpreted as a change to

its cumulative demand profile. This is illustrated in Figure 5.4, which shows the

effects of flight cancellations and flight delays.

Generally speaking, the GDP process would operate as follows: the FAA

continuously monitors airline updates and adjusts each airline’s demand profile

accordingly. If, based on these demand profiles, the current allocation were

infeasible or suboptimal, the rationing procedure described in the next Section

would be executed. The procedure would also be used to initiate the GDP (this

would be analogous to first executing RBS followed by Compression, which is

common practice currently).
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IP formulation:

Min
∑

a,j(xa,j − qa,j)2 or maxa,j |xa,j − qa,j|

subject to:
∑

a∈A sa,j = cj for all j ∈ 0, . . . , n− 1

xa,0 = sa,0 for all a ∈ A

xa,j+1 = sa,j+1 + xa,j for all a ∈ A, j ∈ 0, . . . , n− 1

xa,j ≤ Ea,j for all a ∈ A, j ∈ 0, . . . , n− 1

xa,j, sa,j ≥ 0(integer)

Figure 5.5: IP formulation of the slot allocation problem

5.2.1 Model Formulation

The resulting allocation problem is similar to the PRV problem, with the only

added complication coming from the bounds imposed by the cumulative demand

profiles. As such, we can use any approaches for the PRV problem to allocate

slots during a GDP. One possibility is to maximize the total or maximum devi-

ation. This leads to the formulation shown in Figure 5.5, where the cumulative

demand profile bounds are incorporated by additional constraints.

Here, qa,j and Ea,j are as defined before, and c represents the capacity vector.

Observe that, as in Chapter 4, we assume that the capacities are such that all

available slots will be used (i.e. the first constraint is posed as an equality). The

variable sa,j equals 1 if slot j is assigned to airline a, and 0 otherwise. Again,

xa,j represents the cumulative number of slots assigned to a by time j.

With either objective, the formulation in Figure 5.5 results in a non-linear

integer program. Both cases, however, can be solved efficiently. With the total
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deviation objective function, the resulting model can be reformulated as a net-

work flow problem (for a similar approach, see [KS91], [Kub93]). To illustrate

this, we redefine xa,j as

xa,j = qa,j −
qa,j−1
∑

l=0

ua,j,l +
Ea,j
∑

qa,j+1

oa,j,l,

where 0 ≤ ua,j,l, oa,j,l ≤ 1. Under this formulation ua,j,l = 1 iff at most l slots

are assigned to a by time j, and oa,j,l = 1 iff at least l slots are assigned to a

by time j. Observe that if xa,j is substituted out, this reformulation preserves

the underlying network structure of the constraints. A linear objective function

can now be obtained by introducing appropriate coefficients for the variables

ua,j,l and oa,j,l. With each variable ua,j,l, we associate a coefficient va,j,l, which is

defined as

va,j,l = (l − ka,j)2 − (l + 1− ka,j)2.

Observe that va,j,l > 0, and that va,j,l−1 > va,j,l. With each variable oa,j,l, we

associate a coefficient wa,j,l, which is defined as

wa,j,l = (l − ka,j)2 − (l − 1− ka,j)2.

Again, va,j,l > 0, and va,j,l+1 > va,j,l. The resulting objective function will

therefore be

G(x, d) =
∑

a,j

ka,j−1
∑

l=0

va,j,lua,j,l +
∑

a,j

Qa,j
∑

ka,j+1

wa,j,loa,j,l,

and it is easy to see that the resulting network flow problem yields optimal

solutions that are also optimal for the original problem.

In case of the maximum deviation objective, the problem can be solved by

a sequence of network flow problems (see also [SY93]). To illustrate this, let
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us consider the question of deciding whether there exists a solution x to the

constraints in Figure 5.5 for which

G(x, i) = max
a,j

|xa,j − qa,j| ≤ B.

Of course, a solution x will only satisfy this condition iff

max
a,j

|xa,j − qa,j| ≤ B for all a ∈ A, j ∈ 0, . . . , n− 1.

This, however, is equivalent to the conditions

xa,j ≤ bqa,j + Bc, xa,j ≥ dqa,j −Be for all a ∈ A, j ∈ 0, . . . , n− 1. (5.1)

Consequently, a solution for which G(x, i) ≤ B exists iff it satisfies both the

constraints in Figure 5.5 and the constraints in 5.1. Thus, the decision problem

reduces to the problem of finding a feasible flow, which can be done efficiently.

In fact, the special structure of the constraint set can be exploited to achieve

a highly efficient procedure (see [SY93]). Given such a procedure, the overall

problem can be solved by performing a bisection search procedure over B.

Another possibility is to use an approach that is based on the notion of an

ideal position for the k-th flight of each airline a (that is, the approach discussed

in [IB91]). In this case, the objective is to minimize the deviation between an

(appropriately defined) ideal position pa,k for the k-th flight of airline a and the

actual position of a’s k-th flight. If the underlying fair shares are based on the

RBS procedure, the ideal positions pa,k can be defined as follows

pa,k = min
j≥0:qa,j≥k

j,

that is, the ideal position for airline a’s k-th flight corresponds to its k-th slot in

the RBS schedule. Note that by definition of the RBS shares, each flight’s ideal
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IP formulation:

Min
∑

a,k,j(j − pa,k)2xa,k,j

subject to:
∑

a∈A,k:ea,k≤j xa,k,j = cj for all j ∈ 0, . . . , n− 1
∑

j:ea,j≤j≤n xa,k,j = 1 for all a ∈ A, k ∈ 1, . . . , Ea,n

xa,k,j ≥ 0(integer)

Figure 5.6: Alternative IP formulation of slot allocation problem

position will be unique. Given the current demand profiles Ea,k for each airline,

we can furthermore define the earliest arrival time ea,k of the k-th flight as

ea,k = min
j≥0:Ea,j≥k

j.

The resulting IP formulation is shown in Figure 5.6, where xa,k,j = 1 if a’s k-th

flight is assigned to slot j, and 0 otherwise.

The formulation in Figure 5.6 corresponds to an assignment problem, and

can therefore be solved efficiently. However, a simpler procedure (similar to the

earliest due date algorithm) that finds optimal solutions exists, and is shown

in Figure 5.7. In this procedure, each airline is assigned a set of (remaining)

priorities corresponding to its ideal positions. The procedure repeatedly assigns

the next available slot to the airline which has the highest remaining priority

among all airlines that can use the slot. The correctness of the procedure is

insured by the following theorem.

Theorem 5.2.1. A solution x obtained by the greedy algorithm shown in Fig-

ure 5.7 is an optimal solution for the IP formulation shown in Figure 5.6.

Proof. See Appendix. �
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Init :

Let Pa :=
⋃Ea,n

k=1 {pa,k} for all a ∈ A

Let xa,k,j := 0, ka := 1 for all a ∈ A, j ∈ 0, . . . , n− 1

For j ∈ 0, . . . , n− 1 : cj = 1 Do

Let A′ := {a ∈ A :
∑j−1

k=1

∑j−1
l=1 xa,k,l < Ea,j}

Let pa := minp∈Pa p

Let a′ := arg mina∈A′ pa

Let xa′,ka,j := 1, Pa′ := Pa′ − {pa′}, ka := ka + 1

Od

Figure 5.7: Greedy Algorithm for slot allocation problem

5.2.2 Comparison

The “total deviation” model and the “ideal position” model define two possible

approaches to the management of flights cancellations and delays during a GDP.

These procedures could be executed periodically, whenever changes in airline

demand profiles (due to cancellations and delays) cause the current schedule to

be infeasible or suboptimal. In this Section, we illustrate their differences, and

discuss and compare those methods with the Compression procedure.

Total Deviation vs. Ideal Position

Intuitively, the difference between the total deviation approach and the model

using ideal positions can be illustrated by the example shown in Figure 5.8.

The example shows an initial schedule in which all flights are assigned their

ideal position, but where the first three flights are subsequently delayed. Under

the total (or maximum) deviation model, slot 3 would be assigned to airline b,
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0 1 2 3 4 5

fa,1 fb,1 fb,2 fc,1 fc,2 fc,3

Initial Assignment:

Demand profile changes:

ea,1, eb,1, eb,2 = 3

0 1 2 3 4 5

fc,1 fc,2 fc,3 fb,1 fa,1 fb,2

Total Deviation Model Assignment:

0 1 2 3 4 5

fc,1 fc,2 fc,3 fa,1 fb,1 fb,2

Ideal Position Model Assignment:

Figure 5.8: Comparison: Ideal Position vs. Total Deviation

whereas the ideal position model would allocate slot 3 to airline a. Intuitively,

the reason is that the total deviation model favors the airline with the highest

number of flights that can use the slot, while the ideal position model favors the

airline with the earliest flight that can use the slot.

A more general difference between the methods stems from the so-called

monotonicity condition. The monotonicity condition states that if an allocation

x is optimal with respect to the first k slots, there exists a solution y that is

optimal with respect to the first k + 1 slots such that y ≥ x. It can be shown

(see [BCC96]) that the total and maximum deviation models need not the satisfy

the monotonicity condition; the model based on ideal positions, however, is

monotone by construction.

Overall, it appears therefore that the model based on ideal positions may be
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a more applicable approach within the context of allocating slots. Allocations

can be obtained using a basic greedy procedure, and the general approach is

analogous to the priorities that were the basis for determining the fair shares.

Relationship to Compression Procedure

The total deviation model and the ideal position model provide alternatives

to the compression procedure. The greedy procedure associated with the ideal

position model, in particular, is closely related to the compression algorithm:

both procedures repeatedly assign slots according to a priority ordering. Yet in

spite of their similarities, there are also a number of key differences. The first

difference is in the basis for the priorities (ideal positions). Under compression,

these are based on the current assignment, whereas under the greedy procedure

they remain constant (based on the original schedule) throughout the duration of

the GDP. Another difference is the order in which slots are assigned to flights: the

greedy procedure assign the slots in sequence, while the compression algorithm

repeatedly assigns the slot that has been vacated by a flight movement. The

impact of this difference is illustrated in the example in Figure 5.9.

The example starts with an initial schedule in which all flights are assigned

their ideal position, but where the first two flights have been cancelled. The

Compression algorithm will first move up flight fc,1 to time 0 and flight fa,2

to time 2. Subsequently, flight fb,2 will be moved up to time 1 and flight fd,1

to time 3. The greedy procedure, on the other hand, will allocate the four

slots sequentially, leading to a different assignment. A final difference between

these procedures is that the compression algorithm only moves up flights (that

is, it insures that flights do not lose their current positions). In contrast, the
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0 1 2 3 4 5

fc,1 fa,2 fb,2 fd,1

0 1 2 3 4 5

fc,1 fb,2 fa,2 fd,1

0 1 2 3 4 5

fa,1(cnx) fb,1(cnx) fc,1(0) fb,2(1) fd,1(2) fa,2(1)

Initial Assignment:

Compression Assignment:

Greedy Procedure:

Figure 5.9: Comparison: Compression vs. Greedy Procedure

greedy procedure does not explicitly take the current assignment into account.

This, however, is only an apparent difference, caused by peculiarities in the

implementation of the compression algorithm. Specifically, in cases where a flight

is delayed and the slot it has been assigned to cannot be used, the compression

algorithm may maintain an infeasible solution by creating a new “slot” for the

delayed flight.

We compared the greedy procedure with the Compression algorithm using

four scenarios derived from real-world GDPs. Three of the data sets that were

used represented GDPs at Newark International Airport (EWR), while one of

the data sets considered a GDP at Los Angeles International Airport (LAX). The

data gathered for each compression scenario consisted of the flights and slots in

the GDP, the initial assignment of flights to slots, the earliest arrival times for

each flight, and the set of flights that were cancelled. The four scenarios are

summarized in Table 5.1. For each of the scenarios we ran both the greedy
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Table 5.1: Problem Characteristics
EWR EWR EWR LAX

01/01/96(1) 01/01/96(2) 01/02/96 01/01/97
Number of Flights 73 94 54 62

Number of Cancellations 12 21 6 10

procedure and the Compression algorithm. The results are shown in Tables 5.2

through 5.5. The tables show for both procedures the absolute and the relative

delay savings for each airline (delay savings are measured in minutes).

In addition, the tables show for each airline the baseline savings, that is,

the reduction in delay each airline would have been able to achieve by itself.

Baseline savings provide a convenient basis for comparison of delay reduction on

an airline-by-airline basis.

Table 5.2: Delay reduction for Scenario EWR, 01/01/96(1)
Airlines Comp Comp Opt Opt Baseline Baseline

Absolute Relative Absolute Relative Absolute Relative

COA 402 46.53 406 46.99 281 57.00
UAL 200 23.15 195 22.57 142 28.80
TWA 17 1.97 17 1.97 0 0.0
AAL 123 14.24 126 14.58 70 14.20
ACA 2 0.23 0 0.00 0 0.0
USA 38 4.40 38 4.40 0 0.0
BSK 2 0.23 2 0.23 0 0.0
NWA 19 2.20 19 2.20 0 0.0
AWE 14 1.62 14 1.62 0 0.0
DAL 19 2.20 19 2.20 0 0.0
KMR 3 0.35 3 0.35 0 0.0
CAA 0 0.0 0 0.00 0 0.0
LOT 2 0.23 2 0.23 0 0.0
SJI 10 1.16 10 1.16 0 0.0

COM 13 1.50 13 1.50 0 0.0

TOTAL 864 100.00 864 100.00 0 0.0
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Table 5.3: Delay reduction for Scenario EWR, 01/01/96(2)
Airlines Comp Comp Opt Opt Baseline Baseline

Absolute Relative Absolute Relative Absolute Relative

FDX 0 0.0 0 0.00 0 0.0
COA 521 50.63 524 50.92 420 75.0
NWA 79 7.68 77 7.48 0 0.0
ACA 4 0.39 4 0.39 0 0.0
UAL 171 16.62 168 16.33 68 12.14
AAL 81 7.87 81 7.87 72 12.86
USA 84 8.16 87 8.45 0 0.0
DAL 29 2.82 29 2.82 0 0.0
DLH 0 0.0 0 0.00 0 0.0
TWA 2 0.19 2 0.19 0 0.0
BSK 6 0.58 5 0.49 0 0.0
AWE 6 0.58 6 0.58 0 0.0
BAW 6 0.58 6 0.58 0 0.0
KMR 16 1.55 16 1.55 0 0.0
LOT 24 2.33 24 2.33 0 0.0

TOTAL 1029 100.00 1029 100.00 560 100.00

Table 5.4: Delay reduction for Scenario EWR, 01/02/96
Airlines Comp Comp Opt Opt Baseline Baseline

Absolute Relative Absolute Relative Absolute Relative

COA 231 64.71 270 75.63 167 85.20
ACA 40 11.20 10 2.80 0 0.0
SJI 3 0.84 3 0.84 0 0.0

COM 2 0.56 2 0.56 0 0.0
N4I 2 0.56 2 0.56 0 0.0
UAL 60 16.81 60 16.81 29 14.80
MXA 2 0.56 0 0.00 0 0.0
NWA 5 1.40 0 0.00 0 0.0
VIR 3 0.84 3 0.84 0 0.0
TWA 3 0.84 3 0.84 0 0.0
PAL 2 0.56 0 0.00 0 0.0
AJM 1 0.28 1 0.28 0 0.0
USA 1 0.28 1 0.28 0 0.0
AAL 1 0.28 1 0.28 0 0.0
CAA 1 0.28 1 0.28 0 0.0

TOTAL 357 100.00 357 100.00 196 100.0
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Table 5.5: Delay reduction for Scenario LAX, 01/01/97
Airlines Comp Comp Opt Opt Baseline Baseline

Absolute Relative Absolute Relative Absolute Relative

UAL 153 42.62 142 39.55 127 53.59
AAL 72 20.06 66 18.38 70 29.54
SWA 25 6.96 32 8.91 18 7.59
TWA 38 10.58 38 10.58 0 0.0
ASA 6 1.67 6 1.67 0 0.0
SER 0 0.0 0 0.00 0 0.0
DAL 8 2.23 8 2.23 0 0.0
FDX 4 1.11 4 1.11 0 0.0
RKT 2 0.56 4 1.11 0 0.0
ROA 9 2.51 9 2.51 0 0.0
AMX 2 0.56 8 2.23 0 0.0
ANZ 2 0.56 4 1.11 0 0.0
AWE 0 0.0 0 0.00 0 0.0
USA 24 6.69 24 6.69 22 9.28
COA 2 0.56 2 0.56 0 0.0
NWA 6 1.67 6 1.67 0 0.0
FFT 6 1.67 6 1.67 0 0.0

TOTAL 359 100.00 359 100.00 237 100.00

An airline will always achieve this amount of delay savings, and the fact that

more total savings are possible is exactly due to inter-airline reallocation of

slots. The results in Tables 5.2 through 5.5 indicate that the greedy procedure

results in flight-slot assignments that are very similar to those obtained by the

Compression algorithm.

5.3 Managing Flight Exemptions

In addition to flight cancellations and delays, the numerous flight exemptions

that may occur during actual GDPs may also have a significant impact on the
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allocation of slots. Flights may be exempted during a GDP for various reasons:

a flight may have departed already, in which case it cannot be assigned ground

delay, and in some cases flights from certain departure airports (or centers) are

explicitly exempted. Typically, this is done for long-haul flights, so as to prevent

potentially unrecoverable delays that might be caused by the uncertainty in the

weather predictions. Currently, flight exemptions are managed on a somewhat

ad-hoc basis: essentially exempted flights are assigned slots first, followed by

the allocation of the remaining slots to the non-exempted flights. The manner

in which exemptions are managed, however, can have a significant impact on

the distribution of delays among airlines. To illustrate this, we analyzed the

impact of flight exemptions using historical data. For a number of GDPs, we

determined the delays for each airline with and without the exemptions that
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Figure 5.10: Exemption Impact : Logan Airport, Boston

occurred during that day. The results are shown in Figures 5.10, 5.11, and 5.12.

The graphs in these Figures represent, for a selected number of airlines, the

difference between an airline’s average delay under RBS without exemptions

and under RBS with exemptions included (a negative number means the airline
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Figure 5.11: Exemption Impact: San Francisco Airport
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Figure 5.12: Exemption Impact: O’Hare Airport, Chicago

would have been allocated less delay if exemptions were not taken into account).

The adjacent table in each Figure shows the average delay per flight for each

airline, aggregated over all GDPs.

The results clearly show that exemptions may have a significant impact on

the distribution of delays. Moreover, they illustrate that exemptions may intro-

duce a systematic bias in favor or against certain airlines. At Boston airport, for

example, USA and UCA (a small commuter airline) appear to have a systematic
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disadvantage; the reason for this likely is that most of their flights are short-haul

(these flights are rarely exempted). Similar results also hold for San Francisco

airport. At Chicago airport, the difference are less pronounced; here, however,

it appears that the larger airlines are at a systematic disadvantage. In the re-

mainder of this Section, we discuss approaches to the allocation that incorporate

flight exemptions. We extend the models proposed in the previous Section, and

analyze their impact on the overall distributions of the delays among airlines.

5.3.1 Model Formulation

To incorporate exempted flights, we assume as before that the capacities c are

given, and that the quota qa,k and demand profiles Ea,k are known. In addition,

however, we now have a set F e ⊆ F of exempted flights. Each of these flights has

a current estimated time of arrival etaf . Since exempted flights may be airborne,

each flight will have to be assigned to the slot corresponding to its estimated

time of arrival. In the remainder of this Section we assume that this is always

possible, that is, |{f ∈ F e : etaf = j}| ≤ 1 for all periods j.

Under current procedures, exempted flights are assigned first, and RBS is

used to assign the remaining flights to the remaining slots. Here, we take a

different approach: we minimize, as before, the overall deviation from the ideal

airline shares, but take into exemptions by imposing the additional constraints

that each airline is assigned the slots corresponding to its exempted flights. As

such, exempted flights no longer have a strict priority. For the total deviation

model, this can be done by adding the additional constraints

sa,etaf = 1 for all a ∈ A, f ∈ Fa ∩ F e
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to the formulation shown in Figure 5.5. We note that this will preserve the

network structure of the resulting formulation, since we only fix the values of

certain variables.

In case of the formulation corresponding to the approach based on ideal

positions, shown in Figure 5.6, exempted flights may be incorporated by adding

the constraints

Ea,n
∑

k=0

xa,k,etaf = 1 for all a ∈ A, f ∈ Fa ∩ F e. (5.2)

This constraint states that one of airline a’s flights (i.e. its first flight, second

flight, etc.) should be assigned to the slots corresponding its exempted flights.

It is important to note, however, that with the added constraints the greedy

procedure used in the previous Section to solve the ideal position model (or a

variant thereof) does no longer necessarily give an optimal solution anymore.

Nevertheless, the use of a greedy procedure has an intuitive appeal within the

context of GDPs, and in the remainder of this Section we outline a possible

allocation procedure that accounts for exempted flights.

To motivate this procedure, we first consider a model in which the constraints

imposed by the exempted flights are relaxed. This would allow us to use the

same approach as in the previous Section: where the cumulative demand profiles

imposed upper bounds on the slots assigned to an airline by a period, flight

exemptions would impose lower bounds. Formally, we define these lower bounds

as

La,j = |{f ∈ Fa ∩ F e : etaf ≤ j}| for all a ∈ A, j ∈ 0, . . . , n− 1.

In other words, La,j represents the number of flights that should have been as-

signed to a by time j. It is fairly straightforward to incorporate these lower
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Init :

Let Pa :=
⋃Ea,n

k=1 {pa,k} for all a ∈ A

Let xa,k,j := 0, ka := 1 for all a ∈ A, j ∈ 0, . . . , n− 1

For j ∈ 0, . . . , n− 1 Do

Let A′ := {a ∈ A :
∑j−1

k=1 sa,j < Ea,j}

Let pa := minp∈Pa p

if k′a < La′,j for some a′ ∈ A then

Let xa′,ka,j := 1, Pa′ := Pa′ − pa′ , ka := ka + 1

else

Let a′ := arg mina∈A′ pa

Let xa′,ka,j := 1, Pa′ := Pa′ − pa′ , ka := ka + 1

Od

Figure 5.13: Modified Greedy Algorithm

bounds into the models proposed in the previous Section. In case of the formu-

lation corresponding to the approach based on ideal positions, which is shown

in Figure 5.6, we would add the constraints

xa,k,j = 0 for all a, k, j such that La,j > k. (5.3)

The resulting optimization model can be solve using the modified greedy proce-

dure shown in Figure 5.13. Intuitively, the greedy procedure proceeds as before,

except when a flight is due: in that case, the slot is assigned to the corresponding

airline. The correctness of the procedure is shown by the following theorem.

Theorem 5.3.1. A solution x obtained by the greedy algorithm shown in Fig-

ure 5.7 is an optimal solution for the IP formulation shown in Figure 5.6 with
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constraints 5.3 added.

Proof. See Appendix. �

Given that we relaxed the constraints imposed by the exempted flights, the

use of lower bounds may not always yield feasible solutions. To illustrate this,

consider an airline which has two flights f1 and f2 with associated earliest arrival

times e1 = 0 and e2 = 4. Flight f2 has been exempted and has eta2 = 5. Thus,

we have Ea,j = 1 if j < 4 and Ea,j = 2 otherwise. Similarly, we have La,j = 0 if

j < 5 and La,j = 1 otherwise. According to these bounds, it would be possible

that a was assigned its first flight at time 3 and its second flight at time 6,

which not be feasible for flight f2. In other words, the lower bounds are flight

dependent.

Nevertheless, the procedure indicates an potential alternative approach: we

proceed with the greedy procedure as before, except when an exempted flight

needs to be assigned (as opposed to a flight that is due). In that case, the slot

is assigned to the corresponding airline.

5.3.2 Comparison

The empirical analysis in the beginning of this Section indicated that the current

procedures for managing exemptions may introduce systematic biases against

some carriers. Here, we analyze the extent to which the optimization models are

able to mitigate these biases. For the same cases as before, we compared the

delay obtained under RBS and the delay that would have been obtained using

the optimization model based on ideal positions (with the constraints in equa-

tion 5.2 incorporated). The results for Logan airport are shown in Figure 5.14.
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Figure 5.14: Optimization Model results : Logan Airport, Boston

Figure 5.14 represents, for a selected number of airlines, the difference between

an airline’s average delay under RBS without exemptions and under the opti-

mization model (a negative number means the airline would have been allocated

less delay if exemptions were not taken into account). It is instructive to compare

Figure 5.14 with Figure 5.10, which shows the difference in delay between RBS

and the current procedures. Clearly, the optimization model has a significant

impact and is able to reduce the biases substantially. This is further illustrated

in the table shown in Figure 5.14, which shows the differences in delay for both

the current procedures and for the optimization model.

In addition, we also analyzed the distribution of delays that would have

been obtained using the modified greedy procedure. While, as we discussed,

this procedure will not necessarily achieve optimal solutions (i.e. minimize the

deviation from optimal position), we still believe that the simple and intuitive

nature of the procedure might make it a potentially attractive alternative.

The table and graph in Figure 5.15 show the delay differences that would have

been obtained using the greedy procedure as opposed to the optimization model,
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Figure 5.15: Greedy Procedure results : Logan Airport, Boston

using the same data from GDPs at Logan airport. As expected, the results

are not as pronounced as those using the optimization model. Nevertheless,

the greedy procedure still yields allocations that are substantially closer to the

ideal RBS share than those that would have been obtained using the current

procedures.

5.4 Discussion

This Chapter introduced methods to approximate fair slot shares in situations

where the “ideal” allocation might not be attainable. Within the context of

GDPs, these methods were primarily motivated by the impact of program dy-

namics (e.g. flight cancellations/delays and flight exemptions). First, we ad-

dressed the impact of flight cancellation and delays, and proposed optimiza-

tion procedures based on closely related models used in apportionment and jit

scheduling problems. The resulting models yielded an intuitive greedy procedure,

which we showed is very similar to the Compression algorithm that is currently
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used. Subsequently, we discussed how these methods could be extended to man-

age flight exemptions. While the greedy procedure might no longer be applicable

in this case, empirical results clearly showed the potential to reduce systematic

biases inherent in the current procedures.
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Chapter 6

Slot Trading during Ground Delay

Programs

The previous Chapters describe an approach to the allocation of slots during

a GDP that is based on priorities, and where essentially a single allocation

scheme is executed periodically in response to dynamic changes that may occur.

Under this interpretation, the role of the airlines in the (re)allocation process is

limited to the provision of schedule updates (e.g. flight cancellations and delays).

Consequently, changes in airline preferences are only considered internally by

flight substitutions and/or cancellations (which, under this interpretation, may

be viewed as an internal reassignment of priorities to flights).

This Chapter, in contrast, follows an approach in which airlines “own” a given

set of slots (as opposed to priorities), which is closer to the currently established

interpretation under CDM. We study the potential benefits of a more active

airline involvement in the allocation process, by considering a system in which

airlines can actively pursue schedule improvements by proposing trades. Under

this approach, the FAA acts as a mediator coordinating the resulting exchange

of slots. The organization of this Chapter is as follows. First, we give a brief
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Figure 6.1: Airline GDP behavior at O’Hare Airport, July 2000

motivation of our approach and discuss the relationship to current CDM efforts.

Subsequently, we discuss potential slot trading mechanisms, and analyze their

benefits under different models of airline decision-making.

6.1 Introduction

From an airline standpoint, the ability to substitute flight-slot assignments is

clearly the single most important aspect of a GDP. As discussed in Chapters 2

and 3, this allows an airline to mitigate the disruptions to its flight schedule,

and in particular to address the potential downstream effects of ground delays.

A clear indication of their importance follows by considering Figure 6.1, which

shows flight substitution and cancellation patterns using empirical results from

actual GDPs at O’Hare airport during July 2000.

The leftmost graph in Figure 6.1 represents the cumulative number of flights

(as a percentage of the total number of flights that have been allocated a slot)

that are substituted during the course of a GDP day (note that percentages can

be greater then 100 since a single flight can be involved in multiple substitutions)
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. Time 0 corresponds to the first time instance at which each flight was first

allocated a slot, and each curve corresponds to one GDP day. It should be noted

that flight substitutions due to the Compression algorithm or GDP revisions

were not included; substitutions of cancelled flights were not included either.

Similarly, the rightmost graph in Figure 6.1 represents the cumulative percentage

of flights that have been cancelled during the course of a GDP. The graphs in

Figure 6.1 show first that airlines perform a large number of flight substitutions,

and second that airlines perform flight substitutions throughout the course of

GDP.

Given the sheer volume of flight substitutions, in particular, it is not difficult

to imagine that potential benefits could be obtained by allowing the exchange

of slots between different airlines. More specifically, by coordinating their flight

schedule adjustments airlines might be able to achieve mutual benefits that air-

lines would not be able to achieve by themselves. This, of course, is already

inherent in the Compression procedure: slots that an airline cannot use (i.e.

due to flight cancellations) are exchanged in such a way that all parties involved

will receive a reduction in their flight delays. Using the Compression procedure

and its reported benefits as a starting point, one could however also envision

more general exchange mechanisms. In fact, a basic form of such a slot exchange

functionality, known as “Slot Credit Substitutions”, is currently under consider-

ation in the CDM working group ([How01]). Under this proposal, airlines would

be able submit what amounts to conditional cancellations: essentially, airlines

would be able to submit requests of the form “I am willing to cancel flight f1

(and release its currently assigned slot s1) if I can move flight f2 up into (a later)

slot s1′”. The FAA would monitor such requests on a continuous basis, and if
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possible implement the exchange(s) of slots required to satisfy the request.

The introduction of slot trading during the course of a GDP introduces a

wide range of possibilities, in that a number of schemes could potentially be

used to coordinate the exchange of slots. One approach, for instance, could be

a market-based mechanism in which airlines would be able to buy and sell slots.

Another approach could be a system where airline would bargain amongst them-

selves (see [AKMO97] for an classification of potential approaches). As discussed

in Chapter 3, however, it is difficult to envision the use of such highly decentral-

ized mechanisms within the context of GDPs. Among others, the high level of

uncertainty, the very dynamic environment, and the potential impact on other

ATFM initiatives all present significant barriers1. In this Chapter, we therefore

consider more modest generalizations of the slot-credit substitution framework.

Under this framework, airlines may submit offers to exchange slots (which could

be more general than those allowed under the slot-credit substitution proposal).

The FAA, on the other hand, would act as a mediator who evaluates and se-

lects possible trades. To illustrate this general concept, we first discuss how the

Compression procedure might be interpreted as a form of mediated bartering.

Subsequently, we give a general model representation of the resulting framework.

6.1.1 Compression as Mediated Bartering

In Chapter 5 we discussed how the Compression procedure may be viewed as a

form of (re)rationing, instigated by flight cancellations and delays. An alternate

interpretation, however, is to view the inter-airline exchange of slots as a form

1In addition, it is significant to note that antitrust regulation prohibits direct negotiations

between airlines.
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Figure 6.3: Offer associated with cancelled or delayed flights

of bartering, in which the FAA acts as a broker matching offers proposed by the

airlines. To illustrate this interpretation, we first observe that all slot exchanges

are instigated by a slot that is made available through a cancelled or a delayed

flight. Such a slot leads to a series of slot exchanges, in which flights are re-

peatedly moved up in a way that maximizes the return for the releasing airline.

The resulting exchange process is driven by a set of offers made by each airline.

There are two generic types of offers, which are depicted in Figures 6.2 and 6.3.

The default offers depicted in Figure 6.2 simply state that an airline would

be willing to offer a slot currently occupied by one of its flights in return for an
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earlier slot, as long as the new slot is not earlier than the earliest time of arrival

for the flight. The offers shown in Figure 6.3, on the other hand, apply when

a flight is cancelled or delayed. Here, the releasing airline is willing to give up

the slot in return for a reduction in the delay of a subsequent designated flight.

A single cancellation can lead to multiple offers of this type to effect a set of

progressive moves for a single airline’s flights.

Given the resulting set of offers, the FAA (in its role as mediator) has to

determine which offers to select and execute. In the case of Compression, all ex-

changes are one-for-one (i.e., a single slot owned by one airline is exchanged for a

single slot owned by another airline). As a result, the problem of finding a feasible

set of exchange sequences is equivalent to a finding a set of non-intersecting trade

cycles, which correspond to the solutions of an assignment problem (see [VB] for

a detailed discussion). Several criteria could be used to select the actual trades

that are executed: one possibility is to use a bilevel programming approach in

which offers to move down are given priority (see [VB]). This approach yields

solutions that are similar to the Compression algorithm.

6.1.2 Model Description

Under the interpretation of Compression as slot trading, only one-for-one trades

are allowed. Here, we describe a more general slot trading model. As in the

previous Chapters, we let F = {f0, . . . , fn−1} represent the flights in the GDP,

and S = {s0, . . . , sn−1} the slots available during the GDP. The airlines are

represented by a set A, and for each airline a ∈ A, Fa ⊆ F represents the

flights operated by airline a. At the start of a period of trading, all flights

have been assigned a slot; we assume that flight fi is assigned to slot si for all
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ua(p(B)) = Max
∑

f∈Fa,s∈S wfsxfs +
∑

f∈Fa
cfyf

subject to:
∑

s∈S xfs + yf = 1 for all f ∈ Fa

∑

f∈Fa
xfs ≤ p(B)s for all s ∈ S

xfs, yf ≥ 0

Figure 6.4: Airline preferences

i ∈ 0, . . . , n− 1. This assignment specifies each airline’s allotment of slots, that

is, Sa = {si ∈ S : fi ∈ Fa} is the set of slots owned by airline a.

Given these initial allotments, we can associate with each airline a a set of

offers Ta ⊆ 2Sa × 2S−Sa . That is, each offer ta = (Oa,t, Ra,t) ∈ Ta specifies that

airline a would be willing offer slots in Oa,t in return for the slots in Ra,t. Airline

preferences over these offers are implied by a value wt,a for each offer ta ∈ Ta.

In the remainder of this Chapter, we assume that an airline’s preferences can

be expressed by an assignment model as shown in Figure 6.4. Here, p(B) ∈ Rn
+

with p(B)j = 1 if j ∈ B and 0 otherwise. Thus, an airline’s value for the bundle

of slots S is obtained by solving as assignment model, where wfs represents the

value of assigning flight f to slot s, and cf represents the cost of cancelling flight

f . As such, an airline’s value wa,t for an offer ta = (Oa,t, Ra,t) can be defined as

wa,t = ua(p(Sa −Oa,t + Ra,t)).

6.2 Background

The implementation of this general framework poses a number of issues. First,

we have to specify which offers to allow and (potentially) how airlines may sub-
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mit their preferences over different offers. Given this information, the framework

requires a criterion or mechanism for determining which offers to accept, which

may involve a number of criteria. One common criterion could be the (pareto)

efficiency of the resulting allocation. Another desirable aspect could be the sta-

bility of the resulting allocation, which may involve equity considerations. An

additional concern is introduced by the incentives the mechanism may generate,

that is, the possibility that airlines may strategically misrepresent their prefer-

ences. In this Section, we outline two potential allocation criteria, and illustrate

their limitations within the context of slot trading during GDPs.

Cooperative Games without Side Payments

Let us assume, for now, that the mediator has complete knowledge of each

airline’s preferences. Thus, our only concern is the criterion for determining

trades. One possibility is to represent the model as a cooperative game without

side payments. A cooperative game without side payments can be defined as

follows (see [OR94]).

Definition 6.2.1. A Cooperative Game without Side Payments is defined as a

tuple 〈N,X, V, (�i)i∈N〉, where N represents the set of players, X represents the

set of possible outcomes, V : 2N → 2X is a function that associates with each

coalition G a set of outcomes V (G), and �i is a preference relation over X for

all i ∈ N . �

The core of a cooperative game without side payments is defined as follows.

Definition 6.2.2. The core of the cooperative game 〈N,X, V, (�i)i∈N〉 is the set

of all x ∈ V (N) for which there is no coalition G and y ∈ V (G) such that y �i x

for all i ∈ G. �
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It is relatively straightforward to represent the slot trading model as a co-

operative game without side payments in which the players correspond to the

airlines. X can be defined as the set of all possible allocations of slots to airlines.

For any coalition G, we can define V (G) as the subset of those allocations in

which the airlines in G have been assigned slots in
⋃

a∈G Sa. Thus, V (G) rep-

resent the allocations that can be achieved if the airlines in G trade amongst

themselves. Finally, the preference relationships �a are defined by the utility

functions ua. Intuitively, therefore, the core represents the set of allocations

which are such that no group of airlines could each improve by trading amongst

themselves.

In the special case that each airline owns exactly one flight, the resulting

cooperative game corresponds to the well-known “housing” market proposed by

Shapley and Scarf ([SS74], [Mou95b]). It is well-known that in this case the core

is non-empty, and that under certain restrictions on the preference relations

the core consists of a single allocation. Moreover, an intuitive procedure (the so-

called “top-trading cycles” algorithm) can be used to determine core allocations.

Unfortunately, however, these nice results do not extend to the more general

case in which airlines may have more than one flight. In this case the core

may be empty; that is, no stable allocations may exist. This is illustrated in

the counterexample shown in Figure 6.5, which is a slight adaptation from the

example given by Konishi et al. ([KQW01]). Figure 6.5 contains a simple GDP

instance, in which there are six flights and slots owned by four airlines. Among

all the possible allocations of slots to the airlines, there are only four that are

individually rational (that is, allocations in which no airline is worse off than it

was in the initial allocation):
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• A = {a, b, c, d}, F = {f1, . . . , f6}, S = {s1, . . . , s6};

• Fa = {f1, f2}, Sa = {s1, s2}, Fb = {f3} and Sb = {s3},

Fc = {f4}, Sc = {s4}, Fd = {f5, f6}, Sd = {s5, s6};

• wfs equals

wfs s1 s2 s3 s4 s5 s6

f1 0.01 10 6 0.1 0.01 5
f2 0.01 10 6 0.1 0.01 5
f3 0.01 0.1 1 3 2 0.01
f4 0.01 0.1 2 1 0.01 3
f5 0.01 20 0.1 6 10 5
f6 0.01 20 0.1 6 10 5

Figure 6.5: Counterexample Data

• X1 : X1,a = {s1, s2}, X1,b = {s3}, X1,c = {s4}, X1,d = {s5, s6},

• X2 : X2,a = {s1, s2}, X2,b = {s4}, X2,c = {s3}, X2,d = {s5, s6},

• X3 : X3,a = {s1, s2}, X3,b = {s3}, X3,c = {s6}, X3,d = {s4, s5},

• X4 : X4,a = {s3, s6}, X4,b = {s5}, X4,c = {s4}, X4,d = {s1, s2}.

However, allocation X1 is blocked by allocation X2 through {b, c} (that is, airlines

b and c would be better off by trading amongst themselves). Similarly, allocation

X2 is blocked by allocation X3 through {c, d}. Allocation X3 is blocked by

allocation S4 through {a, b, d}. Finally, allocation X4 is blocked by allocation

X2 through {b, c}. Consequently, the core of the corresponding cooperative game

without side payments must be empty.

Randomized Slot Trading

Since the core may be empty, we cannot expect to use it as a criterion for
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trading slots. As such, we cannot expect to apply a procedure like the top-

trading cycle algorithm to implement our slot trading framework. A potential

remedy to this problem would be to allow, as was done in Chapter 4, slots

to be divisible. This would induce a form of randomized trading, similar to

the procedure proposed by Hylland and Zeckhauser ([HZ79]) for the allocation

of students to dorms. To formalize this idea, we represent the slot trading

framework as an exchange economy. An exchange economy can be defined as

follows.

Definition 6.2.3. An Exchange Economy is defined as a tuple 〈N,n, (ωi)i∈N , (�i

)i∈N〉, where N represents the set of players, n represents the number of com-

modities, and �i is a preference relation over the bundles in Rn
+ for all i ∈ N .�

Again, it is relatively straightforward to represent the slot trading model as

an exchange economy: the players corresponds to the airlines, the commodities to

the slots, the initial endowments to the slots owned by each airline (i.e. ωa,j = 1

if j ∈ Sa and 0 otherwise), and airline preferences are represented by the utility

function ua. Feasible allocations to the resulting model are given by the set

X = {x ∈ RA×n
+ :

∑

a∈A

xa,j =
∑

a∈A

ωa,j},

which generalizes the previous model in that fractional allocations of slots to

airlines are allowed. A fractional assignment x can be interpreted as a “lottery”

over integral allocations, which follows by representing x as a convex combination

of the extreme points of X. It is important to note, however, that this approach

requires the assumption that airlines are risk-neutral. In other words, an airline’s

utility for a fractional assignment equals its expected utility in the lottery over
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integral allocations.

An important concept in exchange economies is the notion of a competitive

equilibrium, which is defined as follows.

Definition 6.2.4. A Competitive Equilibrium is an allocation-price pair (x, p)

where x ∈ X, p ∈ Rn
+ and for all a ∈ A, y ∈ Rn

+,

ua(y) > ua(x) ⇒
n−1
∑

j=0

pjyj >
n−1
∑

j=0

pjωa,j.

�

It is well-known (see [Owe95]) that if (x, p) is a competitive equilibrium, the

allocation x will be in the core of the corresponding cooperative game without

side payments (in which fractional assignments are allowed). Moreover, it can

be shown that if the utility functions ua are continuous, concave and monotone

non-decreasing in each variable, a competitive equilibrium exists (see [Owe95]).

Thus, since the utility functions shown in Figure 6.4 are piecewise linear and

concave (see [NW88]), the core will be non-empty under this representation of

the slot trading model.

As such, the interpretation as an exchange economy presents a possible ap-

proach to the design of slot trading mechanism: given each airline’s preferences,

the mediator could determine a competitive equilibrium, resolve the resulting

lottery (such a procedure is discussed in [HZ79]), and implement the final allo-

cation. Of course, a critical issue still to be resolved would be a scheme that

would induce airlines to reveal their preferences. Aside even from this issue,

however, it is unlikely that such a form of randomized trading would yield a

satisfactory approach. In particular, the critical assumption that airlines are

risk-neutral is unlikely to hold within the context of GDPs. For example, it is
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difficult to envision that an airline would cancel or even delay one of its flights

in return for a probability that another flight’s delay is reduced.

6.3 Approach

In light of the results discussed in the previous Section, the remainder of this

Chapter sets out a somewhat simpler approach. Instead of using the core or

competitive equilibria as the allocation criterion, we consider a system in which

the mediator simply aims to maximize the number of possible trades, or optimizes

some objective function that embodies certain system-wide performance goals.

The resulting slot trading framework can be summarized as follows:

• Periodically (say every 15 or 30 minutes), the airlines submit a list of trade

offers they would desire.

• Subsequently, the mediator (FAA) will either maximize the number of

trades that can be executed, or sequentially execute as many feasible trades

as possible.

Note that the airline-provided information does not include any information

about its relative value for these trades. We assume, implicitly, that each offer

specifies how each flight would be assigned to the slots traded for; this would be

necessary to maintain a feasible allocation of slots to flights. In addition to the

offers, Ta , proactively provided by the airlines, we also assume the availability

of default offers, which specify that an airline would always be willing the reduce

the delay of any of its flights, i.e.

D = {(si, sj) : 0 ≤ j, i ≤ n− 1, ei ≤ j ≤ i}.

112



Max
∑

a∈A,ta∈Ta
ya,t

subject to:
∑

(si,sj)∈D xi,j +
∑

a∈A,ta∈Ta:si∈Oa,t
ya,t = 1 for all si ∈ S

∑

(si,sj)∈D xi,j +
∑

a∈A,ta∈Ta:sj∈Ra,t
ya,t = 1 for all sj ∈ S

xi,j, ya,t ∈ {0, 1}

Figure 6.6: IP formulation for Mediation Problem

Given these offers, the mediator’s task is to find the maximum number of de-

sirable offers that are compatible. This problem can be formulated as a set-

partitioning problem, as shown in Figure 6.6. In this formulation, the variables

ya,t are associated with the trade offers ta ∈ Ta, that is, ya,t = 1 if and only if

offer ta is selected. The variables xi,j correspond to the default offers (si, sj) ∈ D,

and xi,j = 1 if and only if slot si is exchanged for slot sj (or equivalently, flight

fi is assigned to slot sj). The first constraint states that each slot is assigned

to an offer (default or airline provided) that proposes to give up the slot. The

second constraint states that each slot is assigned to an offer that requires the

slot in return (note that the situation where slot si is not traded corresponds to

selecting the default offer (si, si)).

Offer Structure

In principle, the set-partitioning formulation can be used to accommodate

any offer an airline might find desirable. Here, however, we consider a more

restricted approach, in which airlines are allowed to propose only “two-for-two”

trade offers (i.e., an offer consists of an exchange of two slots for two other slots).

The motivation for introducing this restriction is the reduction in complexity of
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the resulting framework. This reduction in complexity not only applies to the

mediator’s problem, but also to the evaluation and generation of potential offers

by each individual airline. While this may be a complex problem in general, it

is relatively straightforward to evaluate these pairwise offers.

Even though these restrictions limit the potential exchanges during the course

of a GDP, the oftentimes specific nature of airline objectives indicates that two-

for-two trades may still be of substantial use. Before discussing this further,

however, it is worthwhile to first look at the structure of two-for-two trades. Any

two-for-two trade offers involves two flights, whose assigned slots are offered for

two other slots. As such, these offers can be separated into three classes: (1)

the offer expresses a trade for two earlier slots (e.g. both flights are moved up),

(2) the offer expresses a trade for two later slots (e.g. both flights are moved

down), or (3) the offer expresses a trade for one earlier slot and one later slot

(e.g. one flight is moved up while the other is moved down). It is safe to dismiss

the first two classes: the first class is subsumed by the default offers while it is

hard imagine why an airline would submit an offer in the second class. As such,

we can safely interpret (a class of) two-for-two trades as an “at-least,at-most”

offer which indicates that an airline demands a certain minimum delay reduction

on one flight in return for a maximum amount of additional delay imposed on

another flight.

Thus, two-for-two trades could allow airlines to make local adjustments to

their flight schedule by trading off the marginal delay costs between pairs of

flights. For instance, an airline could offer to delay a flight with few passengers

in return for delay reduction on a more heavily loaded flight that would allow

its passengers to make their connections. More generally, a flight’s delay costs
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Minutes of Delay

1-15 Minutes
On-time performance

15 Minutes and more
Bags misconnect

�

25 Minutes and more
Passengers misconnect

�

45 Minutes and more
�

Crews misconnect

Figure 6.7: Delay Cost Structure

are oftentimes reasonably approximated by a staircase structure as shown in

Figure 6.7 ([Bre01],[Hof00]). This structure is motivated by operationally sig-

nificant delay levels within each carrier. For instance, the industry standard for

an on-time arrival is 0 to 15 minutes delay beyond scheduled arrival time. Thus,

the difference between 4 and 9 minutes of delay is not nearly as significant as

the difference between 14 and 19 minutes of delay. Similarly, between 15 and 25

minutes, the rate of missed baggage connections begins to increase, and between

25 and 45 minutes of delay, passengers begin to miss connections. With delays

over 45 minutes, crews begin to miss connections. Of course, the exact times

and significance of these classes may differ on a flight to flight basis. Yet these

examples illustrate that, in general, there may be substantial differences in the

marginal delay costs for different flights, which motivates the potential use of

pairwise trade-offs.

Model Formulation

While the formulation as a set-partitioning problem could also be used to find

compatible trades in the case of “at-least,at-most” offers, the large number of

variables would likely make this approach intractable for all but the smallest

cases. When only two-for-two trades are allowed, however, the resulting set of

offers can be defined more succinctly. Specifically, each trade t ∈ T can be
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Figure 6.8: Flight Assignment Structure

characterized by a tuple (dt, mt, ut, lt), which states that the airline is willing

to move down flight fdt to a slot no later than mt in return for moving up

flight fut to a slot that is no later than lt. In the remainder of this Section we

therefore discuss an alternate formulation of the mediation problem, which takes

into account the underlying offer structure.

This formulation may be viewed as a network flow problem with side con-

straints. The general idea is that each flight is assigned to a class, which rep-

resents the amount of delay or delay reduction that each flight receives (i.e. at

least d units reduction in delay, at most d units additional delay). The side

constraints are needed to ensure that only assignments corresponding to pro-

posed offers are selected. To illustrate this idea, we first consider a single flight

fi and examine all the offers it occurs in. These offers determine a sequence

ei(0) < ei(1) < · · · < ei(ki), where ei(0) = etai (that is, the current estimated

time of arrival for flight fi). Thus, if ei(k) < i there is an offer which contains

a demand of at least ei(k) for slot i. Similarly, if ei(k) > i there is an offer to

move down fi to at most position ei(k). In addition, we assume that there is one

k : 0 ≤ k ≤ ki such that ei(k) = i. Intuitively, each of the elements in this se-

quence represent classes that flight fi can be assigned to, as shown in Figure 6.8.
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Max
∑

(i,k,u,l)∈T xi,k

subject to:
∑ki

k=1 xi,k = 1 for all i ∈ S

xi,1 + zi,1 =
∑ei(1)

s=ei(0) yi,s for all i ∈ S

xi,k + zi,k − zi,k−1 =
∑ei(k)

s=ei(k−1)+1 yi,s for all i ∈ S, k ∈ 2, . . . , ki

∑ei(ki)
s=ei(0) yi,s = 1 for all s ∈ S

xi,k ≤
∑

u,l∈S:(i,k,u,l)∈T xu,l for all i ∈ S, k : ei(k) > i

xi,k, yi,k, zi,s ∈ {0, 1}

Figure 6.9: IP formulation for Restricted Mediation Problem

Figure 6.8 also shows that once a flight is assigned to a class, it will subsequently

be assigned a slot according to the bounds implied by the class. The resulting

IP formulation is shown in Figure 6.9. The variables in this formulation can be

interpreted as follows.

• The variables xi,k represent the assignment of a flight to a class, that is,

xi,k = 1 iff fi is assigned at least slot ei(k) for i ∈ F , 1 ≤ k ≤ ki.

• The variables yi,s represent the actual assignment of a flight to a slot, i.e.

yi,s = 1 iff fi is assigned to slots s for i ∈ F , s ∈ S.

• The variables zi,k are used to complete the assignment of flights to classes,

i.e. zi,k = 1 iff fi has been assigned to a class lower than k but receives at

least slot ei(k).

The first constraint in the IP formulation represents the assignment of flights to

classes. The second and third constraints represent the subsequent assignment of
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classes to slots, and the fourth constraint represents the restriction that each slot

is assigned exactly once. The final constraint ensures that the resulting trades

only include offers proposed by the airlines. Specifically, the constraint states

that a flight is moved down only if another flight is moved up, in accordance

with one of the proposed trades.

6.4 Discussion

The purpose of this Chapter is to analyze the potential benefits that could be

obtained by the introduction of slot trading during GDPs. Motivated by prac-

tical concerns, we consider a mediated bartering framework in which the FAA

acts as a broker matching offers proposed by the airlines. Given that economic

approaches do not appear to be applicable, we develop an optimization model for

the mediation problem faced by the FAA for the case where airlines can specify

“at least, at most” offers.

Preliminary experimental results have shown considerable promise. Under

a basic model of airline decision-making, in which each airline’s objective is to

maximize its on-time performance, slot trading may yield significant benefits.

Moreover, the experiments indicate that the IP formulation is highly efficient.

The proposed research is to complete and extend these experiments. This is

discussed in more detail in the next Chapter.
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Chapter 7

Conclusions and Proposed Research

This proposal has been motivated by the fairness considerations that arise in

a collaborative air traffic management environment. With the advent of CDM,

the equitable allocation of airspace capacity has become increasingly important,

and a key concern in procedural modifications and enhancements. The objectives

of this proposal have been threefold: (1) to formalize and to analyze potential

fairness concepts that may apply during GDPs, (2) to study the impact of pro-

gram dynamics and propose methods to manage them, and (3) to consider the

potential benefits of increased airline control by the introduction of slot trading

mechanisms. The remainder of this Chapter summarizes the conclusions for each

of these topics, and provides an overview of proposed research.

Fair Slot Allocation Concepts

Chapter 4 discussed potential approaches to the fair allocation of arrival slots

during a GDP, based on the CDM introduced notion that airlines are entitled

to shares of the capacity based on their original flight schedules. First, we con-

sidered approaches that rely on the equitable distribution of delays, using both

multi-objective optimization methods and cost-sharing methods (i.e. the Shap-
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ley value). While equity is commonly measured in terms of the resulting delays,

we saw that methods that are explicitly based on the assignment of delays ap-

peared to have several drawbacks. In particular, such allocation schemes are not

invariant if the allocation is decomposed into stages, which often occurs during

GDPs because of weather uncertainty. In light of these drawbacks, we studied an

axiomatic approach to the allocation of slots, in which we posed certain desirable

properties as axioms that an allocation rule would have to satisfy. We showed

that, under certain intuitive axioms, any such rule can be characterized by an un-

derlying priority standard over the scheduled arrival times. While this provides

a strong basis for the RBS procedure, the result also indicates other possibilities.

In particular, we identified the so-called proportional random assignment mech-

anism as a potential alternative. We argued that RBS and proportional random

assignment are based on fundamentally different interpretations of the entitle-

ment airlines derive from their flight schedules, and that proportional random

assignment might be more applicable in situations where significant numbers of

flights are bound to be cancelled. Surprisingly enough, however, empirical re-

sults do not appear to indicate major differences between RBS and proportional

random assignment. While significant differences in the delay may occur at any

given day, on the aggregate there appear to be no systematic biases.

The nature of these differences, however, merits further analysis and defines

the first area of proposed research. Two aspects in particular we intend to

analyze are the distribution of the delays incurred and the differences in delay

incurred over the entire GDP. An analysis of the distribution difference could

provide a more accurate picture of an airline’s disadvantage, in that it shows the

number of flights with excessive delays. Measuring the delays over an entire day
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can show the impact of GDP revisions and extensions (the analysis is Chapter

4 only considered the initial GDP). A related question would be whether there

are specific conditions that cause significant differences.

Fair Slot Allocation: Equity as near may be

Chapter 5 considers methods that can be used to approximate fair shares in

situations where the ideal may not be attainable. While these methods could

also be used when the allocation schemes proposed in Chapter 4 lead to an un-

acceptably high level of variance, the focus of Chapter 5 was the management of

program dynamics, that is, the flight cancellations and delays that occur during

the course of a GDP and the timing of GDPs (which leads to flight exemp-

tions. Based on similarities with apportionment and balanced jit scheduling

problems, we first discuss optimization models that can be used to reallocate

slots when flight cancellations and delays cause the current schedules to be in-

feasible and/or suboptimal. One approach in particular, which minimizes the

deviations from predefine ideal positions in the schedule, provides a potentially

attractive alternative to the Compression algorithm. The resulting procedure

can be interpreted as a form of rerationing according to given sets of airline pri-

orities and, as such, unifies both RBS and Compression. Subsequently, we show

that the time at which a GDP is implemented can have a significant impact on

the distribution of delays. Adjustments of the previously described approaches

introduce a potentially attractive alternative method to manage flight exemp-

tions; empirical results show that the resulting optimization models significantly

reduce the systematic biases that exist under current procedures.

As for Chapter 4, these results merit further analysis. The second proposed
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topic is therefore to study how the incorporation of flight exemption changes

the distributions of the delays for individual airlines. In addition, we intend

to analyze the the application of these models with alternative definitions of

the ideal shares, In particular, we plan to use (1) the ideal shares that follow

from the proportional random assignment scheme and (2) the “standard” pro-

portional shares used in balanced jit problems. Note that the second definition

corresponds to the same notion of entitlement that underlies the Shapley value.

An important issue in the analysis of the resulting methods will be the impact of

GDP extensions, since neither definition of the ideal shares will yield a method

that is invariant under the decomposition into stages.

Slot Trading during GDPs

Finally, the purpose of Chapter 6 is to explore the potential benefits of in-

creased coordination during GDPs. To do this, we introduce a general bartering

framework in which airlines may submit offers to trade slots to the FAA, which

acts as the central coordinator. Given the apparent limitations of economic ap-

proaches that were discussed, we further propose an optimization model for the

FAA’s mediation problem. This model generalizes current (and proposed) slot

exchange procedures in that it allows airlines to submit so-called “at-least, at-

most” offers, which may be viewed as tradeoffs between pairs of flights and that

are motivated by operationally significant delay levels.

The final proposed research topic is to analyze and potentially extend this

optimization model. Specifically, the objective is to study the IP formulation

under a number of different models of airline decision-making; the models we

intend to study are the case in which an airline’s objective is to maximize on-time
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performance, the case in which an airline’s objective is to minimize passenger

delays, and the case in which an airline’s objective incorporates the downstream

delays (i.e. the departure delays for connecting flights). For each of these cases,

the first objective is to analyze the potential gains from the trading process and

the computational efficiency of the optimization model. In addition, however,

the analysis will also have to include other factors: important considerations

include the “mass” of proposed offers needed to make the trading process viable,

and the relative improvement over the slot credit substitution framework that is

currently being considered.
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Appendix A

Appendix

A.1 Proof of Proposition 4.3.3

A probabilistic allocation rule X associates with every possible combination of

capacities c ∈ {0, 1} and set of flights F ⊆ F a random allocation X(τf , P (F, c))

that is both feasible and efficient. In principle, X could be specified by enu-

meration, associating an allocation with each possible combination (F, c). If we

impose impartiality and consistency, however, the allocation rules can be char-

acterized succinctly. To prove this, we first analyze the case where the capacity

equals a unit vector ej and consider for any allocation rule X the allocation

X(τF , P (F , ej)). By the feasibility requirement, we have

X(τF , P (F , ej))f,j′ = 0 for j 6= j′ and X(τF , P (F , ej))f,j = 0 if τf > j,

and impartiality implies that

X(τF , P (F , ej))f,j = X(τF , P (F , ej))f ′,j if τf = τf ′ .

Suppose now that each eligible flight receives a positive share of slot j, that is,

X(τF , P (F , ej))f,j > 0 if τf ≤ j. Then, consistency implies that X(τF , P (F , ej))
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completely specifies the allocation for all F ⊆ F .

Lemma A.1.1. Let X be any impartial, consistent allocation rule, and let ej

represent a unit capacity vector. Let X(τF , P (F , ej))f,j = λj
i when τf = i, such

that λj
i > 0 if i ≤ j and λj

i = 0 if i > j. Then, for every F ⊆ F we have

X(τF , P (F, ej))f,j =
λj

τf
∑

f∈F λj
τf

. (A.1)

Proof. The proof follows by induction on the number of flights. Clearly, equal-

ity A.1 holds if F = F . Suppose now A.1 holds for a given set of flights F

and consider the set F − {f} that results from removing flight f . Then, by

consistency we have

X(τF , P (F, ej))f ′,j = (1−
λj

τf
∑

f∈F λj
τf

)X(tauF−{f}, P (F − {f}, ej))f ′,j

for all f ′ ∈ F − {f}, and therefore

X(τF−{f}, P (F−{f}, ej))f ′,j =

∑

f∈F λj
τf

∑

f∈F−{f} λj
τf

X(τF , P (F, ej))f ′,j =
λj

τf ′
∑

f∈F−{f} λj
τf

for all f ′ ∈ F − {f}.

Thus, if (1) we restrict the possible capacity profiles to unit vectors and (2)

the possible allocation rules to those that assign each eligible flight a positive

share, a consistent and impartial allocation rule can can be characterized by a set

of weights λj
i (0,≤ i, j < n). Intuitively, these weights assign a relative priority

to each of the flights: for instance, if λj
i/λ

j
i′ = k then a flight whose oag equals

i will always get a share of slot j that is k times the share of a flight whose oag

is i′.

Proposition 4.3.3 considers the possibility that not every eligible flight is

assigned a positive share. In this case, an impartial and consistent allocation
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rule can be characterized by the combination of a set of weights and a preordering

�j over the OAG times .

Proposition A.1.2. Let X be a consistent, impartial allocation rule, let ej

represent a unit capacity vector whose capacity at slot j equals 1, and let τF be

any demand profile. Then, there exists a set of weights λj
i (0 ≤ i ≤ j) and a weak

ordering1 �j over the OAG times 0 ≤ i ≤ j such that

X(τF , P (F, ej))f,j =
λj

τf
∑

g∈F λj
τg

if τf �j τf ′ for all f ′ ∈ F , and

X(τF , P (F, ej))f,j = 0 otherwise.

Proof. Consider again the set of flightsF , and suppose as before that X(τF , P (F , ej))f,j =

λj
τf

. Now we can partition the eligible oag times into two classes: S+ = {i : 0 ≤

i ≤ j, λj
i > 0} and S0 = {i : 0 ≤ i ≤ j, λj

i = 0}. Thus, flights whose oag is in S+

receive a positive share of slot j while flights whose oag is in S0 do not.

Observe that for any set of flights F ⊆ F which contains at least one flight

whose oag is in S+, we can still apply Lemma A.1.1. Therefore, X(τF , P (F, ej))f,j =

0 if τf ∈ S0 and

X(τF , P (F, ej))f,j =
λj

τf
∑

f∈F :τ∈S+ λj
τf

if τf ∈ S+. Consequently, flights whose oag is in S+ will always have absolute

priority over flights whose oag is in S0. Consequently, we can partially specify

the set of weights λj
i for all i ∈ S+ and the preordering �j as i �j i′ for all

i ∈ S+, i′ ∈ S0 and i �j i′, i′ �j i for all i, i′ ∈ S+.

To fully characterize the allocation rule, we still have to consider the sets of

flight F in which no flights whose oag is in S+ are present. But this can be done

1a weak ordering or preordering is an ordering relation �P that is connected (i.e. j �P j′

or j′ �P j or both) and transitive.
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by considering the set in which all flights are present expect those whose oag is

in S+. Thus, repeating this process until all flights have been assigned a weight

will eventually give the desired result.

Thus, if capacity profiles are restricted to unit vectors the allocation rules

that are impartial and consistent can be characterized by a preordering which

partitions the oag times into priority classes, and a set of weights which specifies

the relative priorities within each class. Furthermore, since the allocations under

more general capacity profiles can be determined by reducing the recursion in

the consistency axiom to the unit capacity case, the following corollary follows.

Corollary A.1.3. A probabilistic allocation rule that is consistent and satisfies

equal treatment of equals is characterized by the n sets of weight λj
i and preorder-

ings �j, which define the allocation when the capacity profile is a unit vector. �

It is an open question whether the reverse also holds.

A.2 Proof of Theorem 4.3.8

Proposition 4.3.3 shows that impartial, consistent allocation rules can be charac-

terized by a set of weights and preorderings, which specify how the rule allocates

each individual slot. As such, a flight f1 could have priority over flight f2 at slot

j, but f2 could have priority over f1 at slot j +1. The consequence of time inde-

pendence is that the weights and preorderings are identical at each slot. Thus,

an impartial, consistent, and time independent allocation rule is characterized

by a single set of weights λi ∈ Rn
+ and a preordering �Q.
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The following lemma shows that the addition of the composition axiom forces

the weights of any two flights that are in the same priority class to be equal.

Lemma A.2.1. Let X be any impartial, consistent, and time independent alloca-

tion rule, which is characterized by the set of weights λi ∈ Rn
+ and the preordering

�Q. If X satisfies composition, then

λi = λj for all i, j such that i �Q j and j �Q i.

Proof. Assume without loss of generality that i < j. The proof follows by

considering a set of three flights F = {f1, f2, f3} with τf1 = τf2 = i and τf3 = j,

and a capacity profile c = ej + ej+1. For this situation, we can calculate the

resulting allocations both by applying the consistency axiom and by applying

the composition axiom.

First, we calculate the slot shares X(τF , P (F, c)) by applying the consistency

axiom. Applying the consistency axiom by first assigning flight f1 to a slot yields

X(τF , P (F, c))f ′,j′

= X(τF , P (F, c))f1,jX(τ{f2,f3}, P ({f2, f3}, ej+1))f ′,j′

+ X(τF , P (F, c))f1,j+1X(τ{f2,f3}, P ({f2, f3}, ej))f ′,j′

+ (1−X(τF , P (F, c))f1,j −X(τF , P (F, c))f1,j)X(τ{f2,f3}, P ({f2, f3}, c))f ′,j′ ,

for f ′ = f1, f2, j′ = j, j + 1. Solving these equations (using the previous results)

leads to the following slot share values

X(τF , P (F, c))f1,j, X(τF , P (F, c))f2,j =
λi

2λi + λj
,

X(τF , P (F, c))f3,j =
λj

2λi + λj
,

X(τF , P (F, c))f1,j+1, X(τF , P (F, c))f2,j+1 =
λi + λj

λi + 2λj

λi

2λi + λj
+

λj

λi + 2λj
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X(τF , P (F, c))f3,j+1 =
λi + λj

λi + 2λj

λj

2λi + λj
+

λj

λi + 2λj
.

Alternatively, the allocation X(τF , P (F, c)) can also be obtained by applying the

composition axiom,e.g.

X(τF , P (F, c)) = X(τF , P (F, ej))

+ X(τF , P (F, ej))f1,jX(τ{f2,f3}, P ({f2, f3}, ej+1))

+ X(τF , P (F, ej))f2,jX(τ{f1,f3}, P ({f1, f3}, ej+1))

+ X(τF , P (F, ej))f3,jX(τ{f1,f2}, P ({f1, f2}, ej+1)).

Solving these equations gives the following slot shares

X(τF , P (F, c))f1,j+1 =
λi

λi + λj
X(τF , P (F, c))f2,j +

1
2
X(τF , P (F, c))f3,j,

X(τF , P (F, c))f2,j+1 =
λi

λi + λj
X(τF , P (F, c))f1,j +

1
2
X(τF , P (F, c))f3,j,

X(τF , P (F, c))f3,j+1 =
λj

λi + λj
(X(τF , P (F, c))f1,j + X(τF , P (F, c))f2,j).

Clearly, a probabilistic allocation rule that satisfies both consistency and compo-

sition should yield identical shares under both derivations. Thus, the following

equality should hold for methods that satisfy both axioms.

λi + λj

λi + 2λj

λi

2λi + λj
+

λj

λi + 2λj

=

λi

λi + λj

λi

2λi + λj
+

1
2

λj

2λi + λj
.

This equation can be rewritten as

λi

λi + λj
(

λi

λi + λj
− 1)(

λi

λi + λj
− 1

2
) = 0.

Since λi, λj > 0 (because i, j are in the same priority class), it follows that

λi
λi+λj

= 1
2 and therefore that λi = λj.
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Theorem 4.3.8 follows almost immediately from Proposition 4.3.3 and Lemma A.2.1.

Theorem A.2.2. Let c be any capacity profile and F be any set of flights.

Then, for any probabilistic allocation rule X that is impartial, consistent, time

independent, and satisfies composition, there is a priority standard Q such that

X(τF , P (F, c)) =
∑

x∈Q(F,c)

1
|Q(F, c)|

x.

Proof. By Proposition 4.3.3, an impartial, consistent allocation rule can be char-

acterized by a set of weights and preorderings, which specify how the rule allo-

cates each individual slot. Time independence further implies that an allocation

rule can be specified by a single set of weights λi ∈ Rn
+ and a preordering �Q. By

Lemma A.2.1, we furthermore have that within each priority class the weights

λi are equal.

Consequently, a probabilistic allocation rule that satisfies all axioms assigns

each each slot according to the preordering �Q. Since the allocation can be

decomposed into stages, it follows that the possible allocations correspond to

the priority method based on Q. Finally, since flights within a priority class

are selected with equal probability, we have that each of these allocations is

equiprobable. �

A.3 Proof of Theorem 5.2.1

Theorem A.3.1. A solution x obtained by the greedy algorithm shown in Fig-

ure 5.7 is an optimal solution for the IP formulation shown in Figure 5.6.

Proof. The proof follows using an interchange argument. Suppose x is not an

optimal solution to the IP formulation. Then, there exist another solution y
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which is optimal and differs from x in at least one position. Let j1 be the

first position at which the allocations differ, and let a1, a2, k1, k2 be such that

xa2,k2,j1 = 1 and ya1,k1,j1 = 1. By construction of the greedy algorithm, we know

that pa2,k2 < pa1,k1 (note that the strict inequality is due to the fact that all

ideal positions are different). Moreover, we also know that ya2,k2,j2 = 1 for some

j2 > j1.

As a consequence, we can separate the following six cases, which are de-

picted graphically below. In each of these cases, the solid lines represent the

differences between the ideal position and the actual assignment in the optimal

solution y, and the dotted lines represent the differences that would result from

an interchange of the assignments (that is, if we let ya1,k1,j2 = 1 and ya2,k2,j1 = 1).

• pa2,k2 < pa1,k1 ≤ j1 < j2,

pa2,k2 pa1,k1 j1 j2

• pa2,k2 ≤ j1 < pa1,k1 ≤ j2,

pa2,k2 j1 pa1,k1 j2

• pa2,k2 ≤ j1 < j2 < pa1,k1 ,

• j1 ≤ pa2,k2 < pa1,k1 ≤ j2,

• j1 ≤ pa2,k2 ≤ j2 < pa1,k1

• j1 < j2 ≤ pa2,k2 < pa1,k1 .
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pa2,k2 j1 j2 pa1,k1

j1 pa2,k2 pa1,k1 j2

It follows by inspection that in each of these cases,

(pa1,k1 − j2)2 + (pa2,k2 − j1)2 < (pa2,k2 − j1)2 + (pa1,k1 − j2)2.

Thus, interchanging the positions of the two flights in y will yield an allocation

with lower cost and, by construction, any such allocation is feasible. This, how-

ever, contradicts the assumption that y is an optimal solution, which completes

the proof. �

A.4 Proof of Theorem 5.3.1

Theorem A.4.1. A solution x obtained by the greedy algorithm shown in Fig-

ure 5.7 is an optimal solution for the IP formulation shown in Figure 5.6 with

constraints 5.3 added.

Proof. The proof again follows using an interchange argument. Suppose x is not

an optimal solution to the IP formulation. Then, there exist another solution

y which is optimal and differs from x in at least one position. Let j1 be the

first position at which the allocations differ, and let a1, a2, k1, k2 be such that

xa2,k2,j1 = 1 and ya1,k1,j1 = 1. It follows that La1,j1 < k1 and La2,j1 < k2, that is,
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j1 pa2,k2 j2 pa1,k1

j1 j2 pa2,k2 pa1,k1

neither of the flights are due at time j. By construction, we therefore know that

pa2,k2 < pa1,k1 . Moreover, we also know that ya2,k2,j2 = 1 for some j2 > j1 and

therefore that La2,j2 ≤ k2.

Suppose now that La1,j2 ≤ k1. In that case, we can interchange the flights

using the argument given in Theorem 5.2.1 (e.g. the interchange will not violate

the lower bounds). Now consider the case where La1,j2 > k1. Thus, flight k1 of

airline a1 is due before time j2, but after time j1. Now let us look at all the flights

fa′,k′ occupying the positions j1 +1, . . . , j2−1, and suppose all these flights were

due before time j2, e.g., La′,j2 > k′. This implies that |{f ∈ F e : etaf = j′}| > 1

for at least one j′ ∈ j1 + 1, . . . , j2 − 1, since we know that La1,j2 > k1. This,

however, would contradict our assumption and therefore there is at least one

j′ ∈ j1 + 1, . . . , j2− 1 such that ya′,k′,j′ = 1 and La′,j2 ≤ k′. Using the arguments

from theorem 5.2.1, we can therefore interchange the assignments of fa2,k2 and

fa′,k′ in y without increasing the cost. This yields an new assignment y where

the distance between fa1,k1 and fa2,k2 has decreased. Thus, by repeating this

argument we would eventually be able to interchange the flights such that fa2,k2

would be assigned to j1, which shows that x is an optimal solution to the IP. �
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