Modernizing the NAS Surveillance and Navigation Infrastructures

Presented at NEXTOR's NAS Infrastructure Management Conference

David Hamrick Director, Safety and Performance-Based Services

September 9, 2005

© 2005 The MITRE Corporation. All Rights Reserved.

- Today's infrastructures
- Why modernize?
- Potential future infrastructures
- Aircraft equipage requirements
- Cost impacts

709 Radars in CONUS

319 Skinpaint

t 338 Beacon

45 ASDE

7 PRM

Unit F&E \$7.9M \$2.4M \$4.4M \$26.4M Costs

Beacon Radars are the Backbone

- 206 Terminal radars
- 132 En route radars

Today's Surveillance System Coverage

338 Backbone Beacon Radars

Coverage Overlap at 12K ft Above Ground Level Coverage at 1, 3, 5, 12, 18K ft Above Ground Level

The coverage is excellent, but is also very costly!

Operating and Maintaining Today's Surveillance Infrastructure

Budget shortfalls

- Reduce cost
 - Equipment
 - Maintenance

Increased air traffic & complexity

- Improve service
 - Increased target accuracy
 - Increased target update rate
 - More robust surveillance data distribution

Increased controller workload

- Add new services
 - Cockpit display of traffic information
 - Down linking of aircraft information, e.g., intent

A Potential Future Surveillance Infrastructure

Automatic Dependent Surveillance – Broadcast (ADS-B)

Primary System

SENSIS UAT GBT

Thales Antenna

Backup System

47 Terminal

114 En route

566 ADS-B Ground Stations

161 Radars

A significant reduction in equipment complexity and cost!

Surveillance Coverage Comparison

Today

338 SSR Backbone (206 Terminal, 132 En Route)

AGL Coverage Overlap at 12K ft

161 Radars (47 Terminal, 114 En Route)

AGL Coverage Overlap at 12K ft

Potential Future

566 GBTs (497 Terminal + 69 En Route)

AGL Coverage Overlap at 12K ft

AGL Coverage at 1, 3, 5, 12, 18K ft

AGL = Above Ground Level

^{ft} AGL Coverage at 1, 3, 5, 12, 18K ft

AGL Coverage at 1, 3, 5, 12, 18K ft

 $\ensuremath{\mathbb{C}}$ 2005 The MITRE Corporation. All Rights Reserved.

Automatic Dependent Surveillance-Broadcast (ADS-B) Architecture

Target Report Comparison

Comparison of FAA Costs

*Source: CIP and Radar Program Management Information 11 Graph courtesy of SF-21 Program Office © 2005 The MITRE Corporation. All Rights Reserved.

ADS-B Avionics

"Broadcast Out" (Transmit Only)

General **Aviation**

Garmin GDL-90 ADS-B UAT

Air Transport

Rockwell-Collins TDR-94 Transponder

"CDTI"

(Transmit & Receive)

Garmin MX-20 **Multifunction Display**

MITRE

12

Air Transport ADS-B Transition Costs

(2004 \$)

(Dual Transponder)

Air Transport Aircraft										
Constant Year (2004) Unit Cost (\$K)	200	04 - 2008	20	09 - 2012	20	13 - 2016	20'	17 - 2020		
Classic										
Path 1 (NE -> CDTI)	\$	251.5	\$	251.5	\$	251.5	\$	251.5		
Path 2 (NE -> BCST	\$	169.0	\$	169.0	\$	169.0	\$	169.0		
Path 3 (L -> CDTI)	\$	123.4	\$	123.4	\$	123.4	\$	123.4		
Path 4 (L -> BCST)	\$	25.5	\$	25.5	\$	25.5	\$	25.5		
Path 5 (BCST -> CDTI)	\$	81.2	\$	81.2	\$	81.2	\$	81.2		
Neo-Classic										
Path 1 (NE -> CDTI)	\$	564.3	\$	564.3	\$	564.3	\$	564.3		
Path 2 (NE -> BCST	\$	143.5	\$	143.5	\$	143.5	\$	143.5		
Path 3 (L -> CDTI)	\$	436.2	\$	436.2	\$	436.2	\$	436.2		
Path 4 (L -> BCST)	\$	16.6	\$	16.6	\$	16.6	\$	16.6		
Path 5 (BCST -> CDTI)	\$	419.6	\$	419.6	\$	419.6	\$	419.6		
	Mo	dern								
Path 1 (NE -> CDTI)	\$	357.6	\$	357.6	\$	357.6	\$	357.6		
Path 2 (NE -> BCST	\$	141.7	\$	141.7	\$	141.7	\$	141.7		
Path 3 (L -> CDTI)	\$	231.3	\$	231.3	\$	231.3	\$	231.3		
Path 4 (L -> BCST)	\$	16.5	\$	16.5	\$	16.5	\$	16.5		
Path 5 (BCST -> CDTI)	\$	214.8	\$	214.8	\$	214.8	\$	214.8		
		— .	_							
Regior	ial -	- Turbo	Pro	р						
Path 1 (NE -> CDTI)	\$	178.8	\$	178.8	\$	178.8	\$	178.8		
Path 2 (NE -> BCST	\$	70.9	\$	70.9	\$	70.9	\$	70.9		
Path 3 (L -> CDTI)	\$	115.6	\$	115.6	\$	115.6	\$	115.6		
Path 4 (L -> BCST)	\$	8.3	\$	8.3	\$	8.3	\$	8.3		
Path 5 (BCST -> CDTI)	\$	107.4	\$	107.4	\$	107.4	\$	107.4		
	_		_							
Regional - TurboJet										
Path 1 (NE -> CDTI)	\$	178.8	\$	178.8	\$	178.8	\$	178.8		
Path 2 (NE -> BCST	\$	70.9	\$	70.9	\$	70.9	\$	70.9		
Path 3 (L -> CDTI)	\$	115.6	\$	115.6	\$	115.6	\$	115.6		
Path 4 (L -> BCST)	\$	8.3	\$	8.3	\$	8.3	\$	8.3		
Path 5 (BCST -> CDTI)	\$	107.4	\$	107.4	\$	107.4	\$	107.4		

Equipage cost depends on:

- Existing equipage
- Upgrade path
- Aircraft type
- Timeframe

Aircraft Equipage Status

Capable 📃 Latent 📃 Not Equipped

Equipage is happening, but mandates will be required!

Cost of ADS-B Compliance (\$M)

	Air Transport	General Aviation	Total
Class A Airspace Mandate	~\$ 400	~\$ 400	~\$ 800
Class B, C, D Airspace Mandate	\$0	~\$ 1,200	~\$ 1,200
Total	~\$ 400	~\$ 1,600	~\$ 2,000

Surveillance Modernization Summary

A long-term investment perspective is needed

 Must escape from huge recapitalization requirement looming in the relatively near future

Moving to an ADS-B-centric system can both:

- Improve surveillance service quality
- Reduce FAA capital and operating costs

But a large cost burden would be placed on users

- Mostly on General Aviation

• Even if the FAA covered the avionics cost, it would still obtain a net cost reduction - albeit later

Is it time to consider the flight deck a mobile NAS facility?

Evolution of NAS Nav/Landing Systems

Motivation for Modernizing the Navigation Infrastructure

Reduce cost

- Ground navaid divestment
- Procedure termination

Improve service

- Greater access to more runways

Implement performance-based navigation

- Fully leverage aircraft capabilities
- RNAV everywhere; RNP where beneficial
- Vertically guided approaches for all runways

How Many Ground Navaids Can Be Divested?

Navigation Modernization Summary

 The FAA is moving to Global Navigation Satellite Services (GNSS)

- WAAS program continuing to "full LPV" capability

• The FAA also is moving to Performance-Based Navigation to fully exploit aircraft capabilities

- Details in the Performance-Based Navigation Roadmap

- The FAA cannot afford to also sustain the entire ground-based navigation infrastructure
- Divestment of some ground navaids and their associated procedures is paramount

- A Navigation Services Evolution Roadmap is forthcoming

 The FAA has already begun terminating some NDB procedures

- Where other, non-GPS procedures provide equivalent minima MITRE

EENTER FOR ROUTINEED BULLETION SYSTEM DEVELOPMENT

Accuracy Comparison

Beacon Radar* vs ADS-B/GPS/WAAS – 95% Error Bounds

* Radar azimuth measurement error varies with range from sensor. Values reflect performance of ATCBI-6, Mode S, and MSSR subsystem of ASR-11.

General Aviation ADS-B Transition Costs

(2004 \$)

(Dual Transponder TP and TJ Only)

General Aviation								
Constant Year (2004) Unit Cost (\$K)	200	04 - 2006	20	07 - 2010	20 ⁻	11 - 2020		
Turbine Fixed Wing (TurboProp)								
Path 0 (NE -> L)	\$	34.0	\$	30.5	\$	26.9		
Path 1 (NE -> CDTI)	\$	147.3	\$	131.4	\$	115.6		
Path 2 (NE -> BCST	\$	40.6	\$	36.2	\$	32.2		
Path 3 (L -> CDTI)	\$	113.5	\$	101.1	\$	88.5		
Path 4 (L -> BCST)	\$	6.6	\$	5.7	\$	5.3		
Path 5 (BCST -> CDTI)	\$	109.4	\$	97.4	\$	85.2		

Turbine Fixed Wing (Jet)								
Path 0 (NE -> L)	\$	63.4	\$	57.1	\$	50.8		
Path 1 (NE -> CDTI)	\$	282.1	\$	253.9	\$	225.7		
Path 2 (NE -> BCST	\$	71.7	\$	64.6	\$	57.4		
Path 3 (L -> CDTI)	\$	218.1	\$	196.3	\$	174.5		
Path 4 (L -> BCST)	\$	8.3	\$	7.5	\$	6.6		
Path 5 (BCST -> CDTI)	\$	209.8	\$	188.8	\$	167.8		

All Other							
Path 0 (NE -> L)	\$	4.5	\$	3.8	\$	3.0	
Path 1 (NE -> CDTI)	\$	12.5	\$	8.8	\$	5.5	
Path 2 (NE -> BCST	\$	9.5	\$	7.8	\$	7.0	
Path 3 (L -> CDTI)	\$	9.0	\$	6.0	\$	2.5	
Path 4 (L -> BCST)	\$	5.0	\$	4.0	\$	4.0	
Path 5 (BCST -> CDTI)	\$	9.0	\$	6.0	\$	2.5	

Potential ADS-B Equipage Mandates

- Aircraft using Mode-S manufactured after January 1, 2008 must be DO-260A compliant (no cost allocated)
- Broadcast Out capability required in Class A airspace after January 1, 2014
- Broadcast Out capability required in Class B airspace after January 1, 2016
- Broadcast Out capability required in Class C and D airspace after January 1, 2019

NDB Divestment (CONUS) Example

NDB Procedures

- 1588 NDB approach procedures
 - 669 have non-GPS approach with equivalent minima
 - Immediate divestiture
 - 494 have GPS approach with equivalent minima
 - Divest when sufficient GPS/WAAS equipage (e.g., 2-5 years?)
 - Remainder have no other approach with equivalent minima
 - Divest after RNAV approaches are provided (and sufficient GPS/WAAS equipage)
- Procedure divestment frees resources to develop and maintain new LPV and RNP procedures
 - A necessary step to motivate GPS/WAAS equipage
 - GPS/WAAS equipage necessary to enable future VOR divestiture

NDB Facilities

- 1552 NDB & compass locator facilities
 - Each facility can serve 2 functions:
 - Approach procedure (all)
 - Compass locator for ILS (some)
 - 629 NDBs owned and maintained by FAA (494 are compass locators)
 - Expect only small number that could be divested without loss of the ILS service for non-GPS/WAAS equipped
 - 923 owned & maintained by "other"
- Facility divestment eliminates O&M and life-cycle replacement cost
 - Little near-term savings
 - ...but, may be valuable in terms of setting a divestiture precedent

Possible NDB Divestment (CONUS) Action Plan

- Part I: Procedure divestment
 - Stop processing requests for new procedures (2005)
 - 2. Remove 669 approaches with equivalent VOR, ILS, LOC, SDF approaches (2005)
 - 3. Remove 494 approaches when enough users equip with GPS/WAAS (2007-2009?)
 - 4. For remaining 425 NDB approaches, assess costeffective choice for each (e.g., keep NDB approach, or replace with LPV or RNAV approach?)

Possible NDB Divestment (CONUS) Action Plan (concluded)

- Part II: Facility divestment
 - 1. Plan for no further technology refresh (2005)
 - 2. Identify the procedure/compass-locator use for each of the 629 FAA-owned NDBs
 - 3. Divest non-compass-locator NDBs once procedure is divested
 - Expect very few in 2005 from the 669 procedures (previous slide)
 - Most NDBs serving the 494 procedures (above) are not compass locators, and could be divested
 - 4. Assess future need for ILS compass locator function
 - 5. Other steps/issues: charting, pilot test standards, maintenance staffing reduction, public notice & communication of strategy, environmental clean-up