

MIT International Center for Air Transportation

MIT Extensible Air Network Simulation (MEANS)

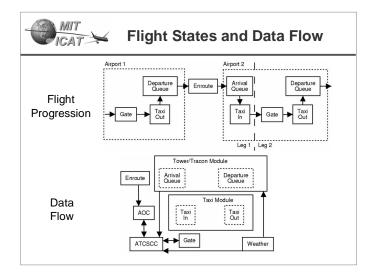
Presented by Terran Melconian

Department of Aeronautics & Astronautics Massachusetts Institute of Technology Cambridge, MA

September 25, 2003

Overview

- ☐ MEANS is an event-based simulation
- ☐ Tracks aircraft through several states
 - Emphasis on ground-based effects
 - Also tracks passengers if desired
- ☐ Arrival and departure rates at airports are constrained
 - This produces delays which propagate throughout the system
- ☐ Multiple runs with controlled distributions provide stochastic results


Background

☐ Development started at the beginning of 2001

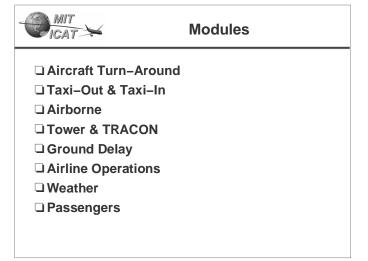
- Developed initially as a tool to evaluate the effect of congestion at a hub airport on the network of an airline
- Expanded soon thereafter to evaluate ideas related to CDM and airline scheduling

☐ Other Features Added During Development

- GDP model
- Pareto Frontier generation
- Weather
- Stochastic modeling
- Human-in-the-loop airline operations interface

Data Sources

□ Schedule


- ASQP database
- CODAS ETMS database

□ Airport Capacities

- FAA Benchmark Report
- Theoretical Generation

☐ Airborne, Taxi, Ground Times

- Historical Data (ASQP)
- ☐ Weather
 - NOAA weather records

Module Implementations

☐ Historical values/distributions

- Aircraft turnaround
- Taxi in/out
- Airborne

□ Queueing Systems

■ Airport/TRACON

☐ Agents/User Control

- Airline Operations
- Ground Delay Programs/ATCSCC

Historical Data

☐ Need "unimpeded" times

- Times recorded in historical data include time spent waiting in queue
- ☐ Unimpeded data obtained by discarding data from "busy" times
 - Look at service rate or service events
 - Algorithm for unimpeded taxi times developed by Francis Carr based on technique developed by Idris, Clarke, Bhuva and Kang

Queueing Systems

- ☐ Airport/TRACON is primary queue☐ Coupled arrival/departure queues☐ Several potential sources for rates
 - Arrival and departure rate from historical data
 - Pareto Frontier from historical data
 - Pareto Frontier from simulation

Stochasticity

- ☐ Stochastic front-end repeats simulation with same data and different random seed
- ☐ Most modules have stochastic and deterministic implementations available
 - Selective use of stochasticity can decrease computation time
- ☐ Stochastic simulation runs parellelize well
- ☐ Adequate convergence for most purposes obtained in under 1000 runs

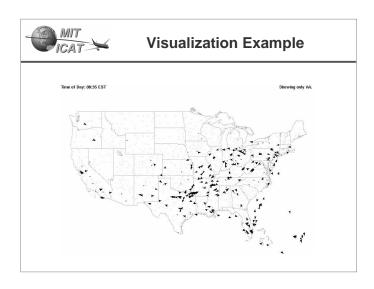
Passengers

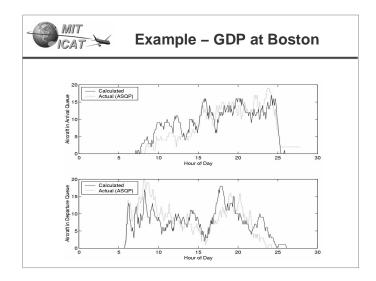
- ☐ Passengers tracked individually
- ☐ Each passenger starts with desired itinerary
- ☐ Passengers can be disrupted/delayed
 - Delayed when final flight leg arrives late
 - Disrupted when flights are cancelled or flight is delayed such that connection cannot be made
- ☐ Passengers reacommodated on later flights when possible

Raw Results

☐ Primary results for every flight

- Provides information on aircraft state transition times, cancellations, etc.
- Filtering available to select only desired flights
- ☐ Primary results for every passenger
 - Provides desired and obtained itineraries
- ☐ Secondary information as simulation runs
 - Detailed information about when decisions were made, operating conditions during simulation, debugging


Processed Results


☐ Airline performance information

- Delay percentages/averages
- Cancellations, expected missed connections
- Direct delay cost to airlines in dollars

☐ Airport demand information

- Delay distributions
- Plots of operations and/or delay over course of day
- ☐ Visualization tools allow examination of bank structure and tracking of delayed flights

MIT ICAT

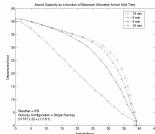
Recent Updates

□ New Modules and Capabilities

- Pareto Frontier simulator
- Aircraft equipment correlations

■ New Scenarios

■ Degradable Scheduling, the dissertation of Laura Kang


Pareto Frontier Simulator

- ☐ Used to generate Pareto Frontiers through stochastic simulation using FAA rules
- ☐ Can produce detailed per–configuration Pareto Frontiers which are difficult to extract from historicla data
- ☐ Can be used to examine factors affecting capacity, and generate Pareto Frontiers for hypothetical situations with no historical data

Pareto Fronter Factors

- ☐ Best performance obtained by alternating arrivals/departures

Equipment Type Correlation

- ☐ ASQP has registration number for aircraft
- ☐ JP-Fleets is a commercial database with equipment type information
- ☐ Correlating the aircraft is not straightforward
 - Some airlines report truncated registration numbers
 - Some airlines report incorrect suffixes on registration numbers
 - Some airlines report their internal tracking numbers, adapted to a pseudo-tailno format
 - Contact me for more information this is work you're doing

Degradable Schedule

- ☐ MEANS used as testbed for work by JP Clarke and Laura Kang
- ☐ Basic Idea: pre–prioritize flights for preferential treatment
 - Select "core" of high-priority flights based on connections and passenger revenue
 - Favor high-priority flights in GDPs and other bottlenecks
 - Try to assign passenger itineraries entirely within set of high-priority flights

MIT → Degradable Schedule & MEANS

- ☐ Added hooks to allow airline to swap flights in departure queue
- ☐ Prioritizing airline agent favors high-priority flights in departure queue and ground delay program by swapping flights
- ☐ Results: Improvements to Prioritized Flights
 - In good weather, 4% fewer passengers missed connections, saving ~\$6,000
 - In bad weather, savings from less lost revenue and reduced operating costs were \$38,000

MEANS Team

- ☐ Prof. John-Paul Clarke
- ☐ Terran Melconian (Chief Engineer)
- ☐ Elizabeth Bly, S.M. '05 (Airport & TRACON)
- ☐ Fabio Rabbani, S.M. '04 (Airline Operations)
- □ Jason Loy, S.M. '04 (Airline Operations)

Current & Ongoing Work

Olicar a ongoing work
☐ Improvements to airline agent
☐ Collaboration with NASA Ames' ACES
☐ Collaboration with Georgia Tech's SimAir
☐ Collaboration with Carmen System
☐ Improvements to weather forecasting