A Vision for Collaborative Routing

NEXTOR Symposium November 2000

Robert Hoffman Metron, Inc.

The Goal of Collaborative Routing

z To Apply GDP concepts and paradigms to the management of en-route airspace

Collaborative Routing vs. GDP-E

z GDP-E

- y Readily identified Problem
- y Needed a Tool
- z Collaborative Routing
 - y Readily identified Tool
 - y Need a Problem

Not that there are no problems...

The Problem is...

- z There are lots of problems!
 - y Coordination/Communication of multi-objective organizations (ATCSCC, AOCs and ARTCCs)
 - y Miles-in-Trail (MIT) restrictions in a more scientific, coordinated fashion
 - y Convective weather activity and associated reroutes (Summer 1999, Summer 2000)
 - y Equitable distribution of en-route resources

Need a Vision

z Long-term CR group:

- y ops concept
- y framework
- y architecture
- y vision

z Short-term CR group:

y SWAP, LAADR, Summer 2000, etc.

GDP ~ P as CR ~ NP Complete

z In GDP,

- y we can (and do) get away with simple queueing
- y project forecasted delays back to origin airport
- y impose ground delays
- y stretch out arrival stream over time

Why CR is harder than GDP (2)

z In CR,

- y spatial as well as temporal allocation
- y multiple resources (arrival fixes, sectors, routes)
- y convective weather
- y orders of magnitude more data
- y unpredictable demand
- y "unknown" capacity

z P1. Continuous Control Process

- y continuously monitor NAS status
- y take congestion-relieving actions as appropriate:
 - x minor route/schedule perturbations, or major resource allocations.
- y Unlike current "on/off" GDP process
- z P2. Collaboration Criteria
 - y Coordinated but distinct roles of ATCSCC, ARTCCs, and AOCs

- z P3. Real-time Distributed Database
 - y NAS Status, ATC Controls, User intentions
 - y Demand/Capacity Forecasts
- z P4. Enhanced Airline Flight Planning
 - y AOCs must update current systems with multi-route congestion-based planning, as opposed to single route optimization

z P5. Post-departure Control Consideration

- y essential to coordinate control of a flight after its departure, not just before
- z P6. Stochastic Demand Estimations
 - y inherent uncertainty in demand and capacity
 - y extended R&D project

z P7. Equity Issues and Resource Rationing

- y Rewards for Submission of early and accurate information
- y Equity among traffic flow classes e.g., IAD departures, NYC-bound traffic
- y Schedule Deviation with System-wide Consideration

Potential Approach to Rationing (1)

- z Aggregate allocation of capacity to major traffic flows
- z "Set", not compute
 - y determine capacity
 - y balance/equity between classes

Potential Approach to Rationing (2)

z Interaction of Traffic Classes

- y some flows will merge
- y network flow problem

z Decision Aid Tools, R&D Project

Assign Flights to Routes

Adapt all GDP features to this setting:

RBS, cancellations & substitutions, compression

User Preferences (M5.4)

z Input to Algorithm:

x alternative flight plans (FP)

 \times D = delay tradeoff specification

Schedule Deviation with System-wide Consideration (SDSC)

- z Proposed rationing basis: assign resources to those flights that have assumed the most delay in the System
- z All delay assumed by a flight is considered
- z delay on f = departure delay + delay from other ATM initiatives

Minimize the Maximum Delay

RBS and SDSC are based on same principal: minimizing max delay

Priority Queues, a la RBS

z Multiple Queues

- y Queue 1 "early filers":
 - x flights filed < 4 hours in advance
 - x order by SDSC
- y Queue 2 "late filers":
 - x filed 4 hours in advance
 - x order by weighted combination of SDSC and file time
- z Assign to Q1, then to Q2