

NEXTOR

NEXT GENERATION SATELLITE SYSTEMS FOR AERONAUTICAL COMMUNICATIONS

Participating Units at U of Maryland:
NEXTOR: National Center of Excellence
for Aviation Operations Research
CSHCN: Center for Satellite and Hybrid
Communications Networks

Michael Ball Leandros Tassiulas Özgür Erçetin

1

Types of Communication Services

- Safety Communications
 - Air Traffic Services (ATS)
 - · Air Traffic Control.
 - · Weather and Flight Information Services.
 - Aeronautical Operational Control (AOC)
 - Dispatch, Flight Planning, and independent company communications.

#	CSHCN
----------	-------

Types of Communication Services

Non Safety Communications

- Aeronautical Administrative Communications (AAC)
 - Cabin Provisioning, other company related non-safety communications.
- Aeronautical Public Correspondence (APC)
 - Public Correspondence, personal communications by/for passengers.

Current VHF ATC Communication System

- The communication between controllers and pilots is analog and voice-only, and achieved via terrestrial remote radio stations positioned across the country.
- VHF system consists of 47,000 ground-based radios at 3,700 locations. 800 of these sites are for en-route communications.
- ATC communication is performed over the frequency bands VHF 118-136MHz (civilian), and UHF 225-400MHz (military).

NEXTOR

Current VHF ATC Communication System

- FAA estimates that about 54 million flights will have to be handled annually by 2002.
- Current VHF system is old and the capacity is inadequate for the current increase in air traffic.
- Some disadvantages of the current VHF system are:
 - Low utilization, voice congestion,
 - Inefficient, e.g. 1 in 7 messages is a handoff.
 - High failure rates for the aging equipment, susceptibility to channel blockage.
 - Interference and lack of security.

CSI	HCN
-----	-----

Current Data Link ACARS

- Currently, data link is used by AOCs for non-safety air/ground communications.
- ARINC provides VHF ACARS service to over 6000 aircraft, using the 4MHz of AMS spectrum.
- ARINC also provides HFDL and SATCOM service for oceanic ATC.

NEXTOR

Planned Data Link Evolution

- ARINC will be contracted to provide data link with VDL2 standard for Controller to Pilot Data Link Communications (CPDLC) starting in 1999.
- By 2002, FAA plans to use digital NEXCOM radios for both voice and data.
- Aeronautical Telecommunications Network (ATN)
 - VHF A/G resources will be interconnected for efficient use of the resources and to support new capabilities such as intrinsic backup.

VHF TDMA System En-Route Data Link Services

- Initial Contact, Altimeter setting
- SIGMETS, PIREPS
- Weather Advisories
- · Route Amendments, Traffic Advisories
- · Speed Adjustments/Restrictions
- Frequency Changes/Routine Handoffs/Transfer of Radio Communications
- Traffic Management Information
- Flight Plan Amendments/Routings

9

NEXTOR

Next Generation Satellite Systems

- · Future medium for aeronautical communications.
- Broad feasibility study by RTCA has shown that the proposed LEO/MEO systems are feasible.
- · Key considerations for the feasibility study are:
 - Compliance with AMSS SARPs.
 - Spectrum availability and interference protection.
 - Technical considerations of coverage and capacity.
 - Service interoperability
 - Economic viability.

CSHCN

10

Advantages of Next Generation Satellite Systems

- Global coverage including polar regions.
- Increased communication capacity.
- Higher frequency re use.
- The potential for universal equipage.
- Free flight.
- · Economic benefits.
 - Cheaper, smaller equipment, thus smaller non-recurring and recurring costs for the airlines.

11

NEXTOR

Fundamental Assumptions of Proposed Research

- Although biggest frequency congestion is at the terminal areas, the economic viability will be driven by en route communications.
- Terminal area communications capacity will be enhanced by off-loading some en-route spectrum to SATCOM.

12

- Hybrid ground-based/SATCOM architecture.
- · Concentrate on systems issues.

2	CSHCN
---	-------

Perspective of Various Players

FAA:

- reduction in cost of ground-based infrastructure
- ability to handle increasing demand
- new services/features
- Airline motivator: bottom line \$\$ -- benefits must justify the costs
 - revenues/benefits from "back of plane" services
 - new capabilities: oceanic/polar coverage, broadband data, ???
- Satellite service providers:
 - revenue potential must justify costs (usually implies bundling with passenger services)
- aeronautical services not highest priority
 CSHCN

NEXTOR

Use of NGSS for Aeronautical Communications

Transition from VHF ground communication system to satellite systems will not be instantaneous

Near-term: oceanic/remote communications; satcomm virtual private lines connecting ARTCCs with BUECs and RCAGs.

Medium-term: hybrid architecture -- provides alternate data communications link for equipped aircraft; limited use for voice over continental US.

Long-term: hybrid architecture with reduced ground infrastructure -- voice and data; supports free-flight; equipped aircraft have added flexibility.

CSHCN

Use of NGSS for Aeronautical Communications

· Equipage stages:

- Phase I: Aircraft flying over oceanic routes will be first to obtain NGSS equipment.
- Phase II: The number of aircraft with NGSS equipment is significant so that use over continental US has impact on demand on ground-based facilities.
- Phase III: Substantial percentage of the aircraft have NGSS equipment.

15

NEXTOR

Use of NGSS as Virtual Private Lines Near term

- Most of the remote radio sites (RCAGs and BUECs) are connected to ARTCCs via leased lines.
 - BUECs intended for use only during RCAG failures.
 - The percent of the time BUECs and the connecting leased lines are used is quite small ==> extremely low link utilization.
 - Can NGSS provide virtual private line service to replace current leased lines?
 - A call is set up between corresponding ARTCC and the BUEC when the need arises.

CSE	ICN
-----	-----

Use of NGSS as Virtual Private Lines: Research Issues

- Economic: What are the costs and benefits of such a system?
- Technical: Can NGSS provide acceptable call setup delay, call prioritization and channel availability.

17

NEXTOR

Use of NGSS as an Additional Level of Data Comm. (Medium term - Phase II)

- · Partition of users
 - Provide SATCOM service to a limited number of users, i.e. users with the necessary equipment.
 - Aircraft with international and/or remote routes will be first to purchase the NGSS SATCOM equipment.
 - These aircraft, while on the domestic routes, may use the NGSS SATCOM for ATS, thereby offloading ground-based system.

	CSHCN
--	-------

Partitioning the Users: Research Questions

- What SATCOM bandwidth requirements and system features are necessary
 - to provide an effective data link
 - to insure that SATCOM can produce a significant reduction in demand on ground-based system.
- For different penetration levels of SATCOM equipment, how much terminal area capacity is freed?
- What are the technical and operational requirements of such a system?
 - e.g. handoffs (discussed later)

10

NEXTOR

Use of SATCOM as an Additional Level of Communication (continued)

- Partition the information -- transfer particular information types with different communication links, i.e. SATCOM, VHF data link, VHF digital voice.
 - New data link applications, e.g. weather maps, weather advisories, are broadcast to many users and require high data rates.
 - SATCOM is a natural choice for non-time critical, high data rate information -- offloads spectrum for time critical data such as hand-offs and emergency voice.
 - Spectrum freed up for use in congested terminal areas, where voice will continue to be the primary means of communication.

20

 For SATCOM, LEO/MEO has advantage over GEO: lower cost per call, smaller on-board equipment, lower round trip delays.

Partitioning the Information: Research Question

- What are the appropriate data partitions between SATCOM and VHF data link?
 - Consider the performance requirements and capacities of each medium and differentiate applications.

NEXTOR

Control Responsibility between ATN Layer and NGSS Physical Subnet

- There will be multiple physical links and physical subnets connected to ATN layer
- In theory ATN layer should find most efficient route to aircraft
- What is division of responsibility between ATN layer and NGSS subnet?

ATC Voice Communication Based on Point-to-Point Connections

- Limited use -- primarily for over-land portion of transoceanic flights.
- Point-to-point connection set up to ARTCC.
- How can these connections be integrated into existing system:
 - setup delay
 - operational issues -- emulation of multi-cast connections
 - due to high setup delay, special handoff process may be needed

23

NEXTOR

Multicast Call Problem in NGSS Long Term - Phase III

- Requirement for provision of voice services equivalent to current operations:
 - Party line capability required: all airborne users in a particular sector should receive all information broadcast by the controller of that sector.
 - These airborne users form a multicast group.
 - Each sector may be serviced by multiple spot beams, which are moving as well.
 - As the aircraft flies on it's path, it changes spot beams as well as sectors.
 - The multicast group of a user has to be changed when it moves into a new sector.
- What are the consequences and requirements of such a system?
 - The handoff 's should be transparent to the controllers and pilots.

CSHCN

24

Transparent Handoffs

- Transparent handoffs should be possible both for NGSS and NEXCOM, eliminating current voice communication overhead
- Sector-to-sector handoffs within an ARTCC
 - on-site processing may be sufficient
- Handoffs between two ARTCCs
 - many cases: voice vs data, multi-cast vs unicast
 - problem may be similar to mobile wireless network handoff questions

25

NEXTOR

Long term - Phase III: Terrestrial Comm Support Proved only along Air Route Highways

Shaded areas are air routes with guaranteed terrestrial communications
The remaining areas are serviced by SATCOM

Motivation: huge savings in ground infrastructure

CSHCN

26

INEVIOR

Air Route Highways: Concepts

- Guaranteed terrestrial communication on the highways.
- Aircraft without SATCOM may use these highways to get from one major airport to another.
- Aircraft equipped with SATCOM, may have free-flight.

CSHCN

27

NEXTOR

Air Route Highways: Research Questions

- What is the best *highway structure*?
- What are cost savings?
- What is impact on airspace congestion?
- What equipage policies will airlines adopt in response to such an architecture?

CSHCN

Long Term

- Emerging applications will lead to much higher data link capacity requirements:
 - Is NGSS the most effective and cost efficient way of providing this increased capacity?
- Improvements in air traffic control by the use of NGSS.
 - Broadcast delivery of the common information
 - Better voice/data integration
- · New approaches to sectorization.
- Free flight -- distributed control architectures -fundamental changes in communications requirements

CSHCN

29