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Chapter 1

Introduction

1.1 Motivation

Hearing is a very important sensory function to many animals including human
beings. In recent years, many modern techniques have been employed to explore
this function for the benefit of many different applications. For example, people
in the speech recognition field want to reduce the error rate so that machines
can understand vocal commands in realistic environments. People in audio the
coding field want to reduce the bit rate so that sounds need less memory for
storage and need less bandwidth for transmission. People in the speech synthe-
sis field want to improve the text-to-speech performance so that machines can
speak naturally. The progress of these technologies depends highly on under-
standing how human auditory systems interpret sounds. “Sound”, according to
Oxford American Dictionary, is the “vibrations that travel through the air and
are detectable by the ear”. In other words, only ”detectable” sounds need be
taken into account. However, current acoustic processing techniques often in-

clude limited amount of signal representation and processing principles that are



motivated by human audition, and thus may spend valuable processing effort on
data which is not relevant to the human ear.

The three primary elements of sound in terms of human auditory perception
are loudness, pitch, and timbre. Though not very precise, it is well accepted that
loudness and pitch are correlated to the magnitude and frequency, respectively,
of the acoustic waveform. However, timbre still retains its mystical nature. Even
American National Standards Institute (ANSI) is unable to give it a clear def-
inition. Recently, more and more experiments have shown that the shape of
the acoustic spectrum is a fundamental cue to the timbre perception of complex
sounds (Plomp, 1976) [59]. Unlike loudness and pitch, which are of little im-
portance in speech intelligibility, timbre plays a crucial role in automatic speech
processing — such as speech recognition and speech coding. Therefore, under-
standing the encoding of acoustic spectra is essential for the improvement of
high performance sound processing model.

The human auditory system boasts remarkable abilities to detect, separate,
and recognize speech, music, and other environmental sounds. Particularly with
a view towards applying auditory functional principles to the design and imple-
mentation of a man-computer communication link, these capabilities have been
the subject of theoretical investigation in recent decades. Since human perfor-
mance surpasses the performance of automatic speech recognition (ASR), un-
derstanding the basic principles behind human speech recognition (HSR) should
be a promising approach (Allen, 1994) [3].

The speech signal is a mean by which linguistic information is carried from
one destination to another. It is generated by the speech production organs of

the speaker with the purpose of being processed by the auditory system of the



listener. Therefore a sound processing model that resembles human auditory
system should outperform other signal processing models. As such, it is rea-
sonable to believe that signals are best represented in terms of sensory features.
Similarly, the measures of signal quality and the optimal criterion for signal
processing tasks should also be perception-oriented.

The investigation of the function of the central auditory system is still a rel-
ative young science (Kowalski et al., 1996 [42] [43]; Shamma et al., 1993 [75];
Schreiner and Calhoun, 1994 [69]; Eggermont, 1994 [21]). Wang (1995) has de-
veloped a mathematically tractable model to simulate the multi-scale processing
found in the auditory cortex [95]. This model is constructed with three axes,
namely, tonotopic, scale, and symmetry axis. The tonotopic axis, which arises
from the peripheral auditory system, is well understood both physiologically and
perceptually. The other axes are newly introduced hence little is known about
their psychoacoustic properties. According to Wang’s interpretation, important
sound aspects like pitch and timbre are well represented in the cortical model.
However, further practical applications were still under development prior to
this study. Thus, an evaluation is necessary to verify this physiologically-driven

auditory model.

1.2 Approach

The goal of this study is to construct a comprehensive auditory model based
both on mammalian physiology and human perception. The model is supposed
to perform physiological operations and yield useful representations for higher-

level processing stages. Thus, each component should be designed to match




available physiological findings. Of course, psychoacoustic data should be taken
into account to test and refine the model. Ultimately, the experimental data
should be explained by the auditory model. From the viewpoint of evaluation,
the model should outperform other conventional approaches in most auditory-
related applications.

Sound evokes complex patterns of activity in the peripheral auditory system.
This activity codes for the sound in a way that is meaningful to the central
nervous system (CNS). The multidimensionality of the percepts must involve a
large number of parameters. The coding of these parameters in the responses
of the auditory nerve has been a central theme in the neurophysiology of the
peripheral auditory system (Sachs and Young, 1979 [67]; Delgutte and Kiang,
1984 [17]). As a result, several response properties have emerged as potential
cues from which the CNS may derive the appropriate percepts. These properties
include the temporal periodicities, average firing rates, and the distribution of
firing rates across the auditory-nerve fiber array.

The complex patterns of activity on the auditory nerve have two nominal
aspects: spatial in that different tones excite fibers which innervate different
cochlear regions, and temporal in that responses of fibers to low-frequency tones
(less than about 4 kHz) tend to be phase-locked to the waveform of the driving
stimulus. Phase locking diminishes at higher frequencies, but fibers may still
lock to the envelope modulations due to several interfering harmonics within the
bandwidth of the fiber. The spectrotemporal response patterns of the tonotopi-
cally ordered auditory-nerve-fiber array are then projected to the CNS, where
various neural networks perform further analysis. The primary auditory field

(AI) of auditory cortex has been identified in almost all mammals studied. A



fundamental goal in auditory cortical physiology has been to understand how
the spectral profile is represented in the firing rate of cortical cells, or, equiva-
lently, how might one predict the responses of a single unit to arbitrary spectral
profiles. The coding of sounds on the auditory nerve involves a multitude of
spatial and temporal cues. As far as the CNS is concerned, the worth of any
cue is ultimately determined by whether it is biologically feasible to utilize it.
Most contemporary sound processing models are based on some digital signal
processing techniques. This implies that valuable biological behavior is ignored
while some redundant information is considered.

It is natural to explore whether the recently discovered response mapping
in Al may be integrated within a functional framework. In building a sound
processing system, we make the axiomatic assumption that an acoustical signal
can be decomposed to many single unit responses. Recent physiological find-
ings show that the cells in the primary auditory cortex do have selectivity to
certain scale-frequency characteristics of acoustical signal. The computation of
the analytical process is very similar to the wavelet transform which is a hot
topic in the contemporary signal processing world. The wavelet transform is an
attractive signal processing technique primarily because of its multi-resolution
nature. However, it is still unclear how the central auditory system integrates
those responses into useful information.

To put the physiological theory in perspective, psychoacoustic experiments
must be conducted to attack this question. Psychoacoustics could be thought as
an open-ended science of the human hearing. Though the results from physiolog-
ical experiments are more reliable than those from psychoacoustic experiments,

they merely provide a microscopic view of the auditory system. Moreover, the




physiological approach is hard to apply on human subjects. Thus, psychoa-
coustics offers a better approach to get a macroscopic view of human auditory
systems. Conducting threshold-measuring experiments in this study serves two
purposes: first, the resolution of each of cortical axes can be determined; second,
the perceptual distance between two arbitrary complex sounds may be predicted
based on these experimental results.

Human auditory system is a very complicated structure. In most cases, it
receives and interprets the sound produced by the vocal system. It possesses
a remarkable ability to recognize sounds at phonetic level. Either the wave-
form or the spectrum of a phoneme demonstrates wide-range discrepancies due
to genders, accents, and emotions. However, the auditory systems are good
enough to normalize those features and allow the brain to extract the necessary
information. To the contrary, the auditory system can even make use of those
redundant features for some other purposes like speaker identification. There-
fore, there must exist some relationship between the production system and the
perception system.

This multi-disciplined work, driven by physiological findings, involves signal
processing techniques, psychophysical methods, and statistical modeling. Wang
and Shamma’s cochlear model (1994) [94], after some modification, is used as the
peripheral auditory model. Their cortical model (1995) [95] is the static part of
the newly developed spectrotemporal model. Most psychoacoustical procedures
are similar to those in Hillier's ripple detection experiments (1991) [38] and
Vranic-Sowers’ peak profile experiments (1991) [92]. Their results were also used
to test the model. Acoustic tube theory (Temkin, 1981) [87] and Ehrenfest’s

perturbation theorem (Schroeder, 1967) [71] are employed to compute or predict




the frequency response of the vocal tract. Finally, vowel recognition and musical

instrument classification were employed to evaluate the cortical model.

1.3 Overview

An overview of human speech processing pathway is presented in Figure 1.1.
The vocal tract of the speaker modified (filtered) the pulses or the noise excited
by the glottis. Then, the sound pressure radiated from the lips is transmitted
to the listener’s ears. The peripheral auditory system transduces this vibration
into neural spikes. This action, in turn, changes the evoked potential on the
surface of the brain. The block diagram illustrates the backbone of this study
which will be elaborated in next few paragraphs.

In Chapter 2, a physiologically-driven auditory model is proposed, which is
an extension of Wang and Shamma’s cortical model (1995) [95]. Recently avail-
able physiological findings on the dynamic auditory processing were used to build
this extended cortical model. The model, simulating the spectrotemporal pro-
cessing of Al, carries out cortical functions like rate-scale tuning and directional
selectivity. The auditory pathway is modeled with three levels: the acoustic level
(time waveforms), the cochlear level (frequency spectra) and the cortical level
(rate-scale representations). The reconstruction for each level is also explicitly
discussed.

Chapter 3 describes a series of psychoacoustic experiments from the design
stage to the analysis stage. The stimuli were carefully designed to excite de-
sired cells. Ten subjects participated this project. The two-down-one-up (2D1U)

method associated with two-alternative-forced-choice (2AFC) paradigm was em-



sisAjeuy el10adg
‘[ISPON [EQOD |V

uonewnsd |esoadg
[opolN Alolpny

e

xade
e TTUULA TV
LU
ALY

VLY
LT

e WV URURLARAY
aseq

sajidg jeinapN

[e1juajod paxyoA3

WIOJOABA
1SN0y

[BPON
Aoreinoiuy

as|nd [eNO|D

AVIHLY Q) BNISSTO0E ] HO22dG FHL 40 MBAYIAG

auditory model, and

H

Figure 1.1: Speech processing pathway: articulatory model

AT cortical model.




ployed to measure subjective thresholds. The thresholds measured under nu-
merous conditions and the distance due to different models are reported. The
selected threshold predictions are also given. The emphasis of this chapter lies
primarily with the static profile analysis. A preliminary moving ripple experi-
ment is also given for future interest.

In Chapter 4, a simple articulatory model is proposed to seek the corre-
spondence between the speech production system and the perception system.
It was found that the articulatory equivalence of cortical translation is stretch-
ing/compressing the area function of an acoustic tube. The quasi-equivalence
of cortical dilation was also found through more complicated manipulations. A
novel vowel space is also given based on perturbation of the area function.

In Chapter 5, some applications or examples are given to evaluate this per-
ception-based auditory model. Vowel recognition experiment was conducted
to evaluate the representations. The representations were applied in music to
quantify the distances among different instruments.

The conclusion is given in Chapter 6. Some valuable information is also
available in the appendices. Appendix A collects numerous auditory-related
physiological facts and contains a glossary covering the relevant terms. A de-
scription on TIMIT speech corpus, one of the most frequently used databases,
‘s also included. In Appendix B, detail concerning the design of the cochlear
model is given. The the filter bank and the compressive function are described

in depth. The design of the cortical filter array is explained in Appendix C.



Chapter 2

The Multiscale Multirate Auditory

Model

2.1 Introduction

Natural sounds like music and speech are usually characterized by their loudness,
pitch, timbre, and onset/offset instants. These descriptions of sound quality have
a close relationship to the instantaneous spectral properties of the sound waves.
However, the ears are not capable of explicitly computing the Fourier transform
to obtain frequency spectra. Instead, a spectrum-like pattern called the auditory
spectrum is extracted through a series of linear and nonlinear processes.
Physiological, psychoacoustical, and computational studies reveal that the
central auditory system has developed an elegant mechanism to extract and rep-
resent this spectrotemporal information; the primary auditory cortex (AI) em-
ploys a multiscale representation in which the dynamic spectrum is repeatedly
represented in Al at various degrees of spectral and temporal resolution. This
is accomplished by cells whose responses are selective to a range of spectrotem-

poral parameters such as the local bandwidth and symmetry of spectral peaks,
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and their onset and offset transition rates. Such a representation provides a

quantitative description of timbre (quality of sound), and hence can serve as the
front-end for higher level processing. Moreover, it may underlie many important
“perceptual invariances” such as the ability to recognize speech and melodies de-
spite large change in rate of delivery (Jules and Hirsch, 1972) [41], or the ability
to perceive continuous music and speech through gaps, noise, and other short
duration interruptions in the acoustical stream. Furthermore, the segregation
into different rate-scales such as fast and slow corresponds to the intuitive clas-
sification of many natural sounds and music as transient or sustaining; of speech
as stop or continuant.

The model consists of two stages, viz., a spectral estimation model and a
spectral analysis model. The spectral estimation model was designed to mimic
the cochlea in the peripheral auditory system. The relevant physiological back-
ground and the mathematical formulation are elaborated in Section 2.2. The
spectral analysis model mimics the multiscale nature of the primary auditory
cortex. The cortical representation is presented in Section 2.2.3. This repre-
sentation reveals the local bandwidth and the local symmetry of the auditory
spectrum. In Section 2.4, dynamic processing is incorporated into an extended
model to simulate the spectrotemporal characteristics of cortical responses. This
extended cortical model thus analyzes the auditory spectrogram both at different
rates and different scales. The composite characteristic response exhibits the di-
rectional selectivity which has been discovered by Kowalski et al.(1996) in their
surgeries [42]. The reconstruction procedure for each stage is also presented
in the corresponding section. The above models, driven by the physiological

findings, were integrated into a complete multi-resolution model as shown in
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Section 2.5 (Figure 2.18).

2.2 Spectral Estimation Model - The Cochlear

Model

2.2.1 Peripheral Auditory System

When sound waves impinge upon the eardrum of the outer ear, they cause vi-
brations which are transmitted via the middle ear to the fluid of the cochlea in
the inner ear. Consequently, the vibrations produce mechanical displacements
on the basilar membrane. When evoked by a single tone, the vibrations appear
as traveling waves that propagate up to the cochlea from base to apex, reach-
ing a maximum amplitude at a particular point before decaying rapidly. The
point at which maximum displacement occurs depends on the frequency of the
tone, the lower frequencies propagating further towards the apex of the cochlea.
As such, the cochlea segregates incoming frequencies onto different spatial loca-
tions in a tonotopically ordered manner along its length. At each point along
the membrane, one can measure the displacement as a function of the tone fre-
quency, i.e., a transfer function. In mammalian cochleas, the transfer functions
are moderately well tuned, with characteristic frequencies decreasing towards
the apex of the cochlea. In humans, above 800 Hz or so, the transfer functions
of these “cochlear filters” are roughly related to each other by a dilation. Con-
sequently, along the logarithmic frequency axis, those transfer functions appear
approximately invariant except for a translation.

The mechanical vibrations along the basilar membrane are transduced into

12



electrical activity along a dense, topographically ordered array of auditory nerve
fibers. At each point, the membrane displacement causes a local fluid flow which
bends cilia that are attached to inner hair cells. The bending controls the flow
of ionic currents through nonlinear channels into the hair cells. The ionic flow
then generates electrical potentials across the hair cell membranes. Finally, these
electrical potentials are conveyed by the auditory nerve fibers to the cochlear nu-
cleus. Recipient neurons in the cochlear nucleus then reconstruct estimates of
the hair cell potentials from the ensemble averages of activity in locally adjacent
fibers. In the auditory nerve, the dynamic range between threshold and satura-
tion of activity in a given fiber is limited to 30 ~ 40 dB (Sachs and Young, 1979)
[67]. Temporal fluctuations in any given fiber are limited to frequencies below
4 ~ 5 kHz due to the low-pass effect of the hair cell membranes. Above these fre-
quencies, the auditory nerve indicates the presence of a particular frequency by
a steady increase in the firing rate. The anteroventral cochlear nucleus receives

direct input from the auditory nerve and exhibits lateral inhibition.

2.2.2 The Cochlear Model and Auditory Spectrogram

The cochlear model is composed of three major stages, viz., analysis, transduc-
tion and reduction (Yang et al., 1992 [98]; Wang and Shamma, 1994 [94]). It

can be formulated as following equations:

yi(t,z) = s(t) = h(t;2) (2.1)
va(t,2) = 9(0un(t, 7)) % w(t) (2:2)
ys(t,2) = Outalt, )+, v(2) (23)
yi(t, 1) = max(ys(t,x),0) (2.4)

13



ys(t, x) = yalt, ) % p(t;7) (2.5)

where z represents the spatial location away from the base of the cochlea. The
position-frequency relation is modeled by z = log, f/fo in octaves relative to
fo Hz. For instance, f Hz is mapped to « = log,(f/1000) octaves relative to 1
kHz. This logarithmically transformed frequency is often referred as tonotopic
frequency. The actual frequency scale of the cochlea is not purely logarithmic
for the frequencies below 800 Hz, but rather becomes progressively more linear,
especially below 500 Hz (see Section B.1). However, the logarithmic warping is
still a fair and simple approximation.

In the analysis stage, Eq. (2.1) models the basilar membrane response for a
sound signal s(t), where h(t; ) denotes the impulse response of the filter located
at z and #; denotes the convolution in the time domain. In this model, the
frequency responses of the filter bank were obtained by dilating the response of
a seed band-pass filter, i.e., H(f;z) = H(f/a;xo), or h(t;z) = ah(at; zy) in time
domain, where the scaling factor a = 2*~%°. On the tonotopic axis, the dilation
relationship is transformed to a translation so that and all of the filters share one
common shape. In the context of signal processing, this analysis scheme is called
the constant-Q filter-bank wavelet transform (Fliege, 1994) [29]. According to
the stochastic analysis in Wang and Shamma (1994), the exact shape of the
seed function is not that important [94]. The magnitude of the cochlear filter
resembles the measured cochlear filter shape which is a highly asymmetric band-
pass filter with moderate slope (6 ~ 12 dB/oct) in the low frequency side and
much steeper slope (—50 ~ —500 dB/oct) in the high frequency side (Allen,
1985) [2]. As for the phase, since the response is essentially of finite duration, a

reasonable choice is to make the filter of minimum-phase.

14
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Figure 2.1: Block diagram of the cochlear model.
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In the transduction stage, Eq. (2.2) models the hair cell response which incor-

porates fluid-cilia coupling, compressive ionic channels, and membrane leakage.
The fluid-cilia coupling is described by a temporal derivative which is compu-
tationally equivalent to the so called preemphasis (Rabinar and Juang, 1993)
[61] on the incoming signal. The nonlinear channel through the hair cell is then
modeled by a sigmoid-like function g(-) (see Section B.3). Finally, the leakage
of the cell membrane is accounted for by a low-pass filter w(¢) which filters out
all responses beyond 4 kHz. However, this filter plays a minor role for low fre-
quencies, where most of speech energy resides, and will thus be ignored. Due to
the linearity of the differentiation, two operations in this stage can be moved to
other stage to simplify computation. First, the partial derivative with respect to
time axis (i.e., ;) can be directly applied to the incoming acoustic signal s(t).
Second, the temporal smoothing function w(t) can be associated to next stage.

In the reduction stage, the lateral inhibitory network (LIN) (Shamma, 1985
[72]; Shamma, 1989 [73]) was divided into three steps: tonotopic derivative
(Eq. (2.3)), half-wave rectification (Eq. (2.4)), and leaky integration (Eq. (2.5)).
The derivative 9, simulates the lateral interaction among LIN neurons. The
spatial filter v(-) models the local smoothing due to the finite spatial extent of
the lateral interactions. However, this smoothing may be ignored since central
auditory system provides more significant smoothing. The half-wave rectifier
max(-,0) mimics the positive nature of the LIN neurons. Finally, a temporal
integration window pu(t;7) = e ¥7u(t) is applied to model the slow adaptation
of central auditory neurons. Here 7 is the time constant and u(t) is the unit
step function. Unlike the auditory nerve fibers, the central auditory neurons

cannot follow rapid modulation higher than 1 kHz. However, 7 can be anywhere
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between 1 to 128 ms depending on the intended destination of the signal. For
example, the neurons in cat auditory cortex respond only in the range from 3 to
26 Hz (Eggermont, 1994) [21] whereas those in cat inferior colliculus can tfollow
modulation rate up to 1 kHz (Langner and Schreiner, 1988) [45]. The time-
frequency representation ys(t,z) is called the auditory spectrogram throughout
this work. At a given time instant, ys(z) is called the auditory spectrum (Yang
et al., 1992) [98].

After ignoring w(t) and v(z), the whole model is summarized as
ys(t, 1) = max(9,g(0;s(t) *4 h(t, x)),0) *, p(t; 7) (2.6)

The block diagram is given in the upper part of Figure 2.1. The signal flow is
depicted in solid lines of which the thin lines represent 1-D flow and the thick
lines represent 2-D flow. The bottleneck of the entire process is the cochlear
filter bank. This problem can be mediated by following means. For software
applications on wide-band audible signal, the transfer function of the filter can
be approximated by IIR filter coefficients (see Section B.2). For hardware usage,
the cochlea filter bank can be implemented using analog VLSI technology (Lin
et al., 1994) [48]. The auditory spectrogram is much smoother (in time domain)
than the original signal and can therefore be further downsampled to reduce data
rate. The sample period is of the order of time constant 7, e.g., if the sample

period is chosen as 7 then
ys[n, ¥ = ys(n7, ) (2.7)

Typically, for speech signal sampled at 8 kHz, the appropriate spectrum sam-
pling period is 16 ms. Figure 2.2-(b) depicts an auditory spectrogram induced

by the acoustic waveform of a sentence (”Come home right away”) spoken by
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(a) "Come home right away." (m)

(b) Auditory Spectrogra
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(d) Wideband Spectrogram
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Figure 2.2: (a) The acoustic waveform of a sentence spoken by a male speaker;
(b) the corresponding auditory spectrogram; (c) the corresponding narrow-band

spectrogram; (d) the corresponding wide-band spectrogram;
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a male speaker (shown in Figure 2.2-(a)). In addition, both narrow-band and
wide-band spectrograms are shown (Figure 2.2-(c) and (d)). It is well known
that the narrow-band spectrogram, using longer time-windowing, displays the
fine structure of the spectrum. Thus it amends the extraction of harmonic infor-
mation. On the other hand, the wide-band spectrogram shows the global shape
of the spectrum and hence is employed to highlight the formant traces. However,
the two sound features are not well represented in one plot due to the limitation
of time-frequency resolution. Compared to the conventional spectrogram, the
auditory spectrogram is better for showing both features. In the low frequency
range (100 ~ 500 Hz), the harmonics appear clearly. In the medium frequency
range (300 ~ 2000 Hz), the formant traces show up. In the higher frequency

range (> 2000 Hz), only the energy distribution can be seen.

2.2.3 Properties and Reconstruction
Self-normalization and Noise-robustness

For a weakly stationary sound source, the auditory spectrum, y(t, ), is a kind
of normalized power spectrum. The normalization is driven by the energy dis-
tribution of the signal. For each channel z, the output reflects approximately
the ratio of the energy of its differential filter to that of its cochlear filter. A
spectral peak resolved by the differential filter receives a smaller normalization
than the spectral valley. In effect, this difference enhances the peak-to-valley
ratio. Thus the auditory spectrum is relatively insensitive to broadband changes
in the spectral shape as long as the responses from the differential and cochlear
filters are affected similarly. This characteristic effectively limits the dynamic

range of the spectra while preserving the peak-to-valley ratio. As a consequence,
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the auditory spectra are more robust against noise, preemphasis, and any global

spectral tilt. The reader can refer Wang and Shamma (1994) [94] for examples.

Reconstruction

Despite the nonlinearities and temporal integration used to produce the auditory
spectrum, a reconstruction of the original signal is still possible. There are several
reasons for doing this. First, it is important to show that little information was
lost since a fairly accurate reconstruction is still possible. Second, one may need
to process or manipulate signals in the spectral domain and then playback the
corresponding sounds. Also if the auditory spectrum is invertible, it can then be
applied to audio coding, e.g., codec (coder-decoder).

In the analysis stage, the filter bank operation is absolutely linear. Therefore,
ideally, the original signal can be perfectly reconstructed from the output of
filter bank by means of reverse filtering (Akansu and Haddad, 1992) [1] based

on following deductions:

Yi(f,x) = S(HH(f;z) (2.8)
= Y. N(f,0)H (f7) = S(f) X H(f2)H(f; %) (2.9)
= S(f) =L Valf,0)H*(fr2)) e H(f;2)H (f;2) (2.10)

where Y}, S, H are the Fourier transforms of ¥, s, h, respectively. However,
this reconstruction has a potential danger. Due to the band-pass nature of the
filter-bank, the overall response Y, H(f;z)H*(f;x) resembles a broad band-pass
filter so that the gain at both the low- and high-frequency skirts is relatively
small. Thus, after reconstruction, any noise or numerical error occurring in

those regions will be magnified significantly. To avoid this adverse effect, one
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may simply ignore the response at both ends. Most natural sounds are essentially
of zero-mean and the human auditory system is less sensitive to the frequencies
beyond 4 kHz hence the above simplification will not result in serious perceptual
distortion. For better and more efficient reconstruction, the transfer functions

of the filter-bank can be weighted, i.e.,
Hy(f;) = w(@)H(f: ) (2.11)

where w(z) is a weighting function, such that the overall response is almost

unitary within the effective band, i.e.,

S IH(f2)Pw(z) =1 (2.12)

Thus the time waveform 3() can be synthesized from the projected filter bank

response ¥ (t, )

S(f) = Y Nf,2)Hi(f;2) (2.13)

5(t) = > it z) = hi(—t;2) (2.14)

The above operation is referred to the inverse wavelet transform (IWT) in the
context of signal processing. In the final two stages, two nonlinear operations
(i.e., g(-) and max(-,O)j and a severe downsampling (i.e., ¢ — n) are involved,
so that the reconstruction from ys[n, z] back to v;(t,z) is impossible to obtain
directly. Our approach is to apply an iterative method similar to the convex
projection in Yang et al.(1992) [98]. The basic assumption is that the auditory
spectrogram ys[n, 2] roughly reflects the local time-frequency (TF) energy distri-
bution. Therefore the guessed §; (¢, x) can be adjusted by the ratio of the target
ys[n, x] over the computed spectrogram is[n, 2] corresponding to ¢, (¢, z).

The iteration is summarized as follows (see also the dashed flow in Figure 2.1).
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1. Generate unitary white noise, i.e., () ~ A(0,1) where A(0,1) denotes
the Gaussian distribution with zero-mean and variance 1.

2. Compute 7;(t,z) through ¢s[n, z] with respect to 5(¢).

3. Find the ratio r[n,z] between the target ys[n,z] and the reconstruction
¥s[n, z] (TF comparator). If a specific gs5[n, 2] is zero while the ys[n, 2] is
not zero, then the corresponding r[n, z] is assigned to be 2.

4. Interpolate r[n, z] to r(t, z) and then use it to scale the filter-bank response,
ie., 91(t,x) + r(t,z)y.(¢t,2) (TF adjustor).

5. Reconstruct the time waveform by means of the IWT,

e, 5(t) = 2, th(t, ) = he(—t; ).

6. Go to step 2.

A few reconstruction examples are given in Figure 2.3. The first example
(Figure 2.3-(a)) is for a sentence spoken by male while the second one (Fig-
ure 2.3-(b)) was spoken by a female. The original waveform is given in the
uppermost panel followed by its corresponding auditory spectrogram (target).
The reconstructed waveform due to the spectrogram is given in the third panel.
The resulting auditory spectrogram is also given in comparison with the target
spectrogram. In both cases, the errors drop below 3% after about 30 iterations.
As the reader can see, the auditory spectrogram of the reconstructed waveform
is very close to the original and the temporal envelope is well preserved in the
reconstructed waveforms. Though reconstructed waveform is not as clean as the
original, an informal hearing test shows that the speech intelligibility is fair, as

the reconstructed sentences were well understood.
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Examples of the reconstruction from the auditory spectrogram.
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2.3 Spectral Analysis Model - The Cortical

Model

2.3.1 Central Auditory System - Static Processing

Generally speaking, the peripheral auditory system acts like a frequency analyzer
which estimates the spectrum of the incoming acoustic signal. In the early stages
of auditory processing, an enhanced spectral representation is extracted in a
series of well understood operations (Wang and Shamma, 1994) [94]. Based
on many physiological findings, Wang and Shamma (1995) suggested that the
central auditory system serves as the spectral shape analyzer which expands a
one-dimensional spectrum into a three-dimensional representation [95]. These
dimensions are the tonotopic azis, scale (local bandwidth), and symmetry (local
phase). Recently available physiological findings (Schreiner and Calhoun, 1994
[69]); Shamma et al., 1995 [76]; Versnel and Shamma, 1995 [90]) also support the
multi-dimensional functionality of the primary auditory cortex.

The aforementioned tonotopic axis is preserved through several central pro-
cessing stages (Webster, 1992) all the way up to the auditory cortex [97]. How-
ever, unlike its essentizilly one-dimensional nature in the cochlea, the tonotopic
axis becomes two-dimensional in Al; many cells tuned to similar frequencies are
lined up along the iso-frequency planes which run perpendicular to the tonotopic
axis (Merzenich et al., 1975 [52]). This suggests that additional features of the
auditory spectral pattern are perhaps explicitly analyzed and mapped out along
the iso-frequency axis (Heil et al., 1992 [36]; Schreiner and Mendelson, 1990
[70]; Versnel et al., 1995 [90]). Such an analysis occurs in other sensory systems

and has been a strong motivation toward the search for auditory analogue. For
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instance, an image induces retinal response patterns that roughly preserve the

form of the image. The representation, however, becomes much more elaborate
in the primary visual cortex (VI), where edges with different orientations, sym-
metries, and widths are extracted and neurally represented (De Valois and De
Valois, 1990 [16]).

It has been reported that cortical cells exhibit a systematic change in the
symmetry of their tuning curves (Shamma et al., 1993) [75]. When tested with
single tones, neurons along the auditory pathway are found to be selective to
a range of frequencies around a BF. Within this range, responses change from
excitatory to inhibitory in a pattern that varies from one cell to another in its
bandwidth and symmetry around the BF. This response pattern is usually called
the receptive field (RF) of the neuron. When a broadband signal is used as a
stimulus, the cell’s response can be thought of as the net effect of all excitatory
and inhibitory influences induced by the portion of the spectrum which lies
within its RF. Interestingly, the experimental data show that in the center of Al,
the RF has a centered excitatory band that is symmetrically flanked by inhibitory
side bands. Towards the edges Al, the response area becomes more asymmetric
with stronger inhibitory side bands above BF in one direction, and below BF
in the opposite direction. Another physiological finding is that cells along the
iso-frequency planes vary considerably and systematically in the bandwidth of
their tuning (Shamma et al., 1993) [75]. Specifically, neurons in the center of Al
are more narrowly tuned compared to those near the edges. Since the notion of
the spectral asymmetry is only meaningful within the bandwidth of the neuron’s
response area, its evaluation must be regarded as a local, and presumably a

multiscale operation. From a functional point of view, this implies that the
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auditory system may employ a multiscale mechanism to analyze the auditory

spectrum, and each scale resolves and extracts information encoded in a specific
bandwidth.

Figure 2.4 displays some typical RFs, which were collected from numerous
experiments, and their approximations. The process to extract RFs is described
in Shamma et al.(1995) [77]. These experimental data suggest the multiscale
nature of the auditory processing in the primary cortex. The RIF's can be fitted by
the second derivative of a Gaussian function (see the dashed curves in Figure 2.4

and Section C for details).
h(z) = Q(1 — 2(rz)?)e (™) (2.15)

To unify the terminology, a couple of parameters regarding the shape of the
receptive field are defined as follows. Scale is a quantity to describe the tuning
range of receptive fields which can be expressed in terms of envelope (ripple)
frequency in cycles/octave (for short, in cyc/oct; or even shorter, in c¢/0). A
schematic example is depicted in Figure 2.5. Symmetry represents the shape of
the response field which is determined by the strength relationship among the
excitatory band and two lateral inhibitory bands. The symmetry of an even
(odd) function is 0 (—90°). An arbitrary symmetry can be obtained by taking
sinusoidal interpolation between the even and the odd function.

Extensive measurements of such RFs have been carried out in Al using a va-
riety of stimuli (Clarey et al., 1992 [14]; Shamma, 1995 [74]). Most directly rele-
vants are those employing broadband spectra with rippled envelopes (Schreiner
and Calhoun, 1994 [69]; Shamma et al., 1995 [77]). In these experiments, RF
measurements are based on a fundamental assumption that Al responses are

essentially linear. To first order, Al responses to broadband spectra are linear in
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Figure 2.5: The spectrum of a Q-cycle/octave ripple stimulus

the sense that they satisfy the superposition principle. The linearity in Al has
been confirmed in a large number of tests involving spectral profiles composed
up to 10 superimposed spectra (Shamma and Versnel, 1995 [76]; Shamma et
al., 1995 [77]). Linearity is a powerful simplifying principle that allows one to
predict the responses to any arbitrary spectral profile. Thus, a computational

model can be built up based on the single unit response.

2.3.2 Pure Spatial Processing Model

The basic operation of the cortical model is a wavelet analysis of the spectral
profile (Wang and Shamma, 1995 [95]). On the tonotopic axis, the RF is modeled

as
RF(x — 2 Qe, pe) = h(x — 2¢; ) cOS e — h(z — x5 Q) sin ¢, (2.16)

where z denotes the tonotopic frequency in octaves, the seed function h(xz; Q.) is
a real even function with peak spatial frequency response at Q. (in cycle/octave),

z. is the center frequency (in octaves re. 1 kHz), ¢, is the characteristic phase
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(in radians) which determines the symmetry of the receptive field and h denotes

the Hilbert transform of the function h. The exact shape of this even function
is not important as long as it can manifest the lateral inhibition structure, i.e.,
a central excitatory band symmetrically flanked by inhibitory side bands. The

response of the cell tuned to (z., {2, ¢.) for an input auditory spectrum y(x) is
7(Te, Qe, ) =< RF (25 3c, e, Bc), y(2) > (2.17)

where < -, > denotes the inner product of two vectors. The inner product

process is equivalent to a filtering process with the spatial impulse response
hrr (@ Qe, do) = h(z; ) cos de + h(z; Q) sin b, (2.18)
Thus the response can be efficiently computed by the following convolution:

T(:Ec: ‘Qcy ¢c) = y(-;g) * h’R}_(ﬂ;E Qc: éc”m:mc (219)

The spatial impulse response of the cortical filter with scale (). can be equiv-

alently expressed in the wavelet-based analytical form given by
P (z; Q) = h(z; Q) + jh(z; Q) (2.20)

where h(z;€).) is a symmetric function and * denotes Hilbert transformation.
The spatial impulse responses for different scales are related by dilation, i.e.,
h(z; Q.) = Q.h(z;1). Section C.1 presents some possible candidates for the seed
function.

For convenience, let y(z) denote a temporal sample of y(¢, z) at a particular
time instant. The characteristic cortical response to the spectral pattern y(z) is

given by
220, Re) = y(x) * by (25 Q) o=z, (2.21)

= a(z,, Q)@ (2.22)
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Figure 2.6: Block diagram of the cortical model.

where

a(@e ) = VIy) * h@; QP+ [y(@) «h(2; ) Plcs, (2.23)
y(z) * E(m, Q)

X c = ot :
(e, Q) A @) % Az 0,

[ (2.24)

are the characteristic amplitude and the characteristic phase, respectively. The
physical interpretation is that, for all of the cells tuned to (z.,$2.), the cell with
¥(xe, Q)-symmetry has the maximum response a(z.,.). The raw response of
the cells tuned to other symmetries can be obtained by sinusoidally interpolating

the real part and the imaginary part of the characteristic response:

(e, ey ) = R{z(z,Q)}cos . + F{2(z, Q) } sin ¢, (2.25)
= a(z., Q) cos(y(ze, Q) — b) (2.26)

where R{-} denotes the real part and ${-} denotes the imaginary part.
The block diagram of the cortical model is given in the upper part of Fig-

ure 2.6 where the thin line represents 1-D signal flow and the thick line represents

2-D signal flow. Two cortical representations are given in Figure 2.7.
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Figure 2.7: The cortical representation of (a) /aa/ spoken by a male; (b) /iy/

spoken by a female. The corresponding auditory spectra in arbitrary unit were

superimposed on top of the cortical representations.
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2.3.3 Properties and Reconstruction

Cortical Representation

The raw response 7(T¢, 2, ¢.) is a 3-D array and hence is difficult to illustrate.
On the other hand, the characteristic cortical response z(z.,€) is only 2-D
and less redundant than the raw response. However, the complex nature of
the characteristic cortical response makes the illustration non-trivial. Wang and
Shamma (1995) used different colors to indicate the phase and the saturation of
the color to indicate the magnitude [95]. This idea does not work well when color
is not available. In this study, the magnitude is indicated by the darkness and
the phase is indicated by the direction of the white arrows. In order to highlight
the spectral peaks, the "1 is chosen to represent a phase of zero degrees. The
other phases are applied counterclockwise, e.g., 7" for /2, 7—=" for —m/2,
and 7" for 7. The size of the arrows also reflects the magnitude. Consequently,
in the high magnitude region, the arrows are clearer due to their lengths and the
contrast to their surroundings.

The abscissa is the tonotopic axis, covering approximately 5.4 octaves with
24 channel /octave resolution. The ordinate is the logarithmic scale axis, ranging
from .25 cycle/octave to 6 cycle/octave with 10 channel/octave resolution. Two
examples of naturally spoken vowels obtained from the TIMIT database (see
Section A.1) are shown in Figure 2.7. The systematic phase structure of the
cortical representation results in the arrows always pointing to the nearest peak.
Unlike that in the auditory spectrum or other power-spectrum-like representa-
tions, the definition of the peak here has a wider sense. For example, at f =600

Hz in Figure 2.7-(a), the cells tuned to 1 cycle/octave resolve one spectral peak
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(F;, first formant) while the cells tuned to about 4 cycle/octave resolve three

peaks, i.e., the b-th, 6-th, and 7-th harmonics.

Pitch and Formants

The responses related to the harmonics are highlighted by Fy, 2F,, 3Fp, etc,
where Fj is the fundamental frequency. Since the harmonics are equally spaced
on the linear frequency axis, the spacing between two adjacent partials on the
tonotopic axis decreases logarithmically. The partials will be resolved by expo-
nentially increasing scales therefore forming a line with positive slope. Thus this
hyper line effectively shows the pitch information. The higher the hyper line
is, the lower the pitch (e.g., male voice, see Figure 2.7-(a)) and vice versa (e.g.,
female voice, see Figure 2.7-(b)).

Roughly speaking, the response due to pitch resides in the upper-right region,
[/ < 500. The responses related to the formants are highlighted by Fi, Fy, F3,
etc. However, the trace connecting the formants is usually not a straight line.
The locations and the strength of the responses depend on the peak location and
the amplitude, which are highly correlated with the shape and the stress of the
resonator (e.g., human vocal tracts, musical instruments).

Taking these properties into account, it is easier to imagine how the auditory
system is able to extract the physical properties of the sound source through
the acoustical signal. Different vowels (due to different vocal manners) result in

“visible”

different “images” on the primary auditory cortex. The “images” are
to the brain, which has adapted in such a way as to distinguish among the
patterns. An informal experiment shows that human subjects, after minutes

of training, are able to recognize different patterns due to different vowels and
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different accents.

Tree Structure and Singularities

The phase contours of the cortical representations are shown in Figure 2.8. The
vertical contour lines reveal the one-dimensional nature of the source pattern.
The density of contours represents the local slope of the spectrum. Thicker
contours are actually composed of many regular contours due to the phase dis-
continuity at ¢, = £m. The tree structure is a common feature for all kinds of the
wavelet-based analysis models. As shown in Figure 2.8, the tree structure acts as
the skeleton of the whole plot and successfully highlights the spectral peaks due
to harmonics and formants. Slightly above each bifurcation of the tree structure,
there sits a interesting point which will be called a singular point or a singular-
ity throughout this paper. In the neighborhood of a singular point, the cortical
fillers With lower scale will resolve only one spectral peak while the filters with
higher scale will resolve two or more peaks. Obviously, the exact location of the
singular point will be affected by the characteristics of its surrounding peaks.
These characteristics include amplitude, bandwidth, and symmetry. Thus the
constellation of the singular points encodes a lot of information of the spectrum.
Since the response at the singular points is zero, the feature set is naturally level
independent.

The singular points are located at (z,(2)s where the amplitude a(z,Q)s are
mathematical zeros, i.e., not simply numerical zeros. It is easy to detect them by
eye and pick them by hand, e.g., by looking for the bright spots on the cortical
representation (see Figure 2.7). However, due to the discrete nature of digital

computation, it is not a trivial task for the digital computer to locate the singular
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points. Fleet (1991) has shown a method to detect the singular points based on
the phase discontinuities [27]. The method can be simplified into a two-step

algorithm.

1. Collect a set of (x,)s where a(z,, €),) is a local minimum.
2. Accept the (x,)s which satisfy a(zm,,,) < da(z,{2) where J is a small
number representing the threshold factor and - denotes the mathematical

mean.

The asterisks on the two plots in Figure 2.8 were extracted according to this
algorithm.

The cortical representation plot provides a novel way to view the simulated
human perception of sound. However, it is difficult to view many plots at the
same time to check the consistency or to look for invariant features. Because
of its three-dimensional nature, it is not suitable to be superimposed in the
complex domain. The singularity constellations make the superposition possible.
The severe reduction involved cannot promise to preserve all of the information,
yet it is useful to see thousands of data in one plot. Figure 2.9 demonstrates
the singular points for ten American English vowels extracted from the TIMIT
database (see Section Al) In order to eliminate the singular points due to the
harmonics, only four singular points with smaller scale-frequency ratios (£2/f)
were picked. The darkness indicates the population of certain (f, ) points.

The relationship between the singular points and the acoustic characteristics
can be explored by observing the location of specific singular points. The average
formant values listed in Table 5.1 are used to explain this point. The first
formant ratio of a male-spoken /aa/ is about 1.79 (1177/658) which is roughly

.84 octaves (log, 1.79). On the cortical representation, ideally these two formants
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Figure 2.9: The singularity constellations of ten American English vowels. The

ordinate indicates the scale axis (in cyc/oct). The abscissa indicates the fre-

quency axis (in kHz).
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will be resolved as two peaks at 1.19 cycle/octave (1/.84) but as one peak at
59 cycle/octave. Realistically, the scale to resolve just one peak should be
even lower due to the dullness of the trough in the auditory spectrum. The
actual location is also affected by the local bandwidth and the relative amplitude.
In any case, there should exist a singular point within the frequency-scale tile
(650 < f < 1180, .5 < §2 < 1.2). By similar reasoning, the frequency-scale tile
for this particular point due to female /aa/s (with average formants: F; = 746 Hz
and F, = 1366 Hz) is (760 < f < 1370, .5 < Q < 1.2). Referring to Figure 2.9,
the most likely location is (f = .8 kHz, 2 = .7 cycle/octave) and almost all of
the interesting points are confined by the deductive tile. For the vowel /ao/,
with a lower center of gravity (COG), the singular point is roughly at the same
scale but at a lower frequency. For an acute vowel like /ae/, by considering
both females and males (F} = 692 Hz and F» = 1790 Hz), the confining tile is
roughly (690 < f < 1790, .3 < Q < .7). This matches Figure 2.9 very well.
For the vowel /eh/, the interesting singular point is slightly lower in frequency.
For the vowel /ah/, its location is between that of /aa/ and that of /ae/. For
a diffuse vowel like /iy/ (Fy = 420 Hz and F; = 2185 Hz), the confining tile is
roughly (.69 < f < 1.79, .2 < 2 < .4). This singular point is very close to the
border of the representation and sometimes falls out of the scope. Since the first
two formants are too far apart, the singular points contributed by the harmonic
peaks are more apparent than the interesting one.

In Figure 2.9, a cluster found in higher scale for both /iy/ and /ih/ exemplifies
this. Essentially, this interesting point moves from high scale down to lower scale
as the constriction of the vocal tract changes from the back to the front cavity

(from /aa/ — Jah/ — Jae/ — Jeh/ — /ih/ — [iy/). For the rounded vowels,
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this singular point is located in the lower frequency region (~ .5 kHz) because
the first two formants are relatively lower than those of un-rounded vowels.
The constellation is a very compact feature of the cortical representation;
using this feature can greatly reduce the size of the cortical representation. This
not only makes storage easier but also makes identification more straightforward.
Our brain might use the information of the singularities to drive the muscular
system in order to control the vocal tract shape to produce a desired sound.
Further research is necessary to find the mapping from the constellation to the

acoustic spectrum.

Spectrum Reconstruction

Basically, the primary purpose of the cortical model is to analyze the auditory
spectrum. In the cortical representation, the speech features like formants and
pitch are well separated. The model provides a way to manipulate the auditory
information at the cortical level, e.g., to remove certain scales, to shift a pattern
along one of the axes, to emphasize some interesting region, or to change the
phase of the response. In order to investigate what kind of change in the auditory
spectrum will result in certain change in the cortical representation, one needs
to invert the cortical representation back to the auditory spectrum.

In the scale domain, the cortical representation is
Z(2Q) = Y (Q) Ha (2 Q) (2.27)

where Z, Y, and H, are the Fourier transforms of z, y, and h,, respectively.
The cortical filter bank can be designed to be almost unitary, i.e., the overall
gain is flat with the magnitude 1 over a reasonably wide range. If the auditory

spectrum Y (£2) is within the effective band, it can be reconstructed by integrating

39



(a) Auditory Spectrum of the Vowel /eh/ spoken by a male

100
50

\_.\,_\-

Scale (cyc/oct)

Cortical Representation A

250 500 1k 2k 4k
(b) Auditory Spectrum of the Vowel /uw/ spoken by a female

100
50

Scale (cyc/oct)

Figure 2.10:

Cortical Representation A

250 500 1k 2k 4k
Frequency (Hz)

Examples of the reconstruction from the cortical representation.

The reconstructed auditory spectra are plotted in dashed lines.
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the response after reverse filtering,
V(Q) = " Z(Q, Q) HE (2 9,) (2.28)

Assuming the number of channels is K, due to the band-pass nature of the
cortical filter, the effective band is roughly from €2; to Q. Thus, reconstructing
an auditory spectrum in this way will reduce the scale components outside the
effective band. Actually, the higher scale components contain little information
and are often desired to be suppressed. Unfortunately, for the auditory spectrum,
the scale components below (2; cannot be neglected. The normalization, at
least for the low scale components, is therefore inevitable. Ideally, the perfect
reconstruction can be achieved by integrating the response after reverse filtering

with normalization,
V(Q) =D Z(2, Q) Hyy(%0) /> Hu (4 Q) Hyy (22 (2.29)

However, the cortical filters are band-pass filters; hence H,,(0; Q.) =~ 0 for all Q,s.
As a result, any noise outside the effective band will be magnified by the denomi-
nator. One practical solution is to make the first band-pass filter a pure low-pass
filter and the last filter a pure high-pass filter. In this way, a perfect reconstruc-
tion (Akansu and Haddad, 1992) [1] can be achieved. The resulting overall gain
will have less dynamic range; therefore the reconstruction is more stable. One
other practical problem is that the reconstruction ¢(z) may not be real and
positive. Actually, even if the cortical representation has not been altered, the
reconstruction is essentially complex in most of cases due to the imperfectness of
the numerical inverse Fourier transform. A simple treatment can be applied by
taking the rectified real part of the reconstruction, i.e., max(R{y(z)},0). Two

examples are given in Figure 2.10. As the reader can see, the reconstruction is
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Figure 2.11: A moving ripple of rate R Hz and scale Q cycle/octave.

almost the same as the original spectrum.

2.4 Spectrotemporal Analysis Model - The Ex-

tended Cortical Model

2.4.1 Central Auditory System - Dynamic Processing

Complex spectra such as those of speech and music are broadband and dynamic.
It has been successfully demonstrated that Al units are essentially linear. There-
fore, the response can be predicted based on the measured ripple transfer function
(Shamma and Versnel, 1995) [76]. The linearity is valid for both stationary and
moving ripples (e.g., Figure 2.11). The transfer function of up-moving ripples, as
well as that of down-moving ripples, are separable by quadrant (Depireux et al.,
1998) [19]. Thus the multiscale cortical representation described in Section 2.3.2
can be further extended to represent dynamic features of complex spectra that

change in time. Such spectra can be conceptually considered as a weighted sum
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Figure 2.12: Two sample spectrotemporal response fields: (a) a cell with sym-
metric receptive field and no directional preference; (b) a cell with asymmetric

receptive field, longer latency, and preference for downward movement.
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of ripples which are moving in time at various velocities and directions. Simi-
lar measurement methods can be devised to obtain temporal transfer functions,
from which impulse responses can be derived. The impulse responses reflect the
dynamic properties of Al units.

Recordings from many Al cells reveal that they respond to modulations in
the spectral envelope in a linear and temporally selective manner, being tuned
to rates in the range of 2 ~ 16 Hz (Kowalski et al., 1996 [42] [43]). One possible
interpretation of these findings is that Al units have impulse response (IR) func-
tions with a range of dilations analogous to the range of different bandwidths
exhibited by the RFs. Specifically, it is assumed in this hypothesis that for any
given RF, there are different units with a range of IRs, each encoding the local
dynamics of the spectrum at a different rate-scale. That is, there are units exclu-
sively sensitive to slow modulations in the spectrum, while others are tuned to
moderate or fast changes. This temporal decomposition is analogous to the mul-
tiscale spectral representation produced by the RFs. Figure 2.12 demonstrates
two typical spectrotemporal receptive fields (STRFs). The upper panel uses
darkness to represent the strength of the response and =+-signs to indicate the
polarity. The lower panel displays the superimposed temporal response curves
for every 1/4 cycle/octave. A receptive field of symmetric shape is given on the
left side. On another side, an asymmetric receptive field, with longer latency
and downward-moving selectivity, is given.

Since the primary purpose of the human auditory system is to process speech
sounds, it should be adapted to the range of parameters that the articulatory
system may produce. For example, the average duration of vowels in continuous

speech is about 80 ms (see Figure 2.13). According to the statistics, /ae/ (as in
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Figure 2.13: (a) The duration of vowels: female (left-hand side) and male (right-
hand side). The lowest water-level (min) indicates the minimal duration. The
second highest one (1) indicates the mean duration. The highest and the second
lowest (p+0) indicate the deviations. (b) Distribution of duration of all vowels:

female (solid) and male (dashed).
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Figure 2.14: Average spectrum of the envelope of the speech waveform for female

(solid) and male (dashed).

hat”) is the longest vowel while /ih/ (as in "hit”) and /uh/ (as in "hood”) are
the shortest. This holds for both males and females, even though it often seems
that females speak more rapidly. The range of vowel durations, 40 ~ 200 ms,
yields an equivalent range of modulation rates, 5 ~ 25 Hz.

More evidence from natural speech is the syllabic rate, which is very low com-
pared to the characteristic frequency of any cochlear filter. Thus, a higher-level
rate processing mechanism must exist in our central auditory system. Figure 2.14
shows the average spectrum of speech envelopes, produced by averaging mag-
nitude function of speech signals which were smoothed by a 16-ms Hamming
1

window The plot shows that the dominating rate is approximately 2 ~ 4

1 According to Oppenheim and Schafer [39], the approximate width of main-lobe is 87 /M,

where M is the number of taps. Thus the main-lope width is about 250 Hz. The measured
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Hz, which matches Houtgast and Steeneken’s measurement (1985) [39]. The
above statistics are based on the TIMIT speech database which contains 6300
sentences (see Section A.1). A pilot experiment shows that thresholds on modu-
lation strength behaves like U-shape curves against the rate axis (see Section 3.5

for details). The most sensitive region is somewhere between 2 and 4 Hz.

2.4.2 Spectrotemporal Processing Model

Based on the evidence mentioned in the preceding section, a spectrotemporal
processing model can be extended from the pure spectral processing model. The
cells tuned to different traveling rates are modeled by a set of temporal band-
pass filters. The impulse response g(t; Ro), which is real, causal, and stable,
was chosen to mimic the measured response (Figure 2.12). For any other rate,
the impulse response is obtained by dilating the seed response, i.e., g(t; R.) =
(Re/Ro)g((R./Ro)t; Ry). The details about designing the seed temporal filter is
elaborated in Section C.2. The phase of the filter is employed to describe the
range of latencies and shapes of the actual impulse responses. Analogous to the

scale wavelet, this phenomenon can be modeled by means of Hilbert transform.
grr(t; Re, 0.) = g(t; R.) cosb. + §(t; R.) sin 0, (2.30)
Therefore the spectrotemporal response at a cell ¢ for the pattern y(t,x) is

T(t; o Rc: Hca ‘Qca qsc) - y(t; $) ot [gRF(t; Rc: Qc) . h’R’,}'(t; Qc: ch)] (231)
=y(t,z) %4 [g - hcosO.cosp. + g - h cos 8, sin ¢,

+§g - hsinf.cos ¢. + § - h sin 6, sin be) (2.32)

3-dB cutoff frequency is approximately at 47.3 Hz)
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Figure 2.15: Block diagram of the extended cortical model.

2.4.3 Implementation and Reconstruction

This multi-resolution auditory model can be thought as a filter array composed
of dilation-related spectrotemporal filters. For audio signal processing, the rate
axis I can be discretized into R;s ranging from 2 to 32 Hz with 2-channel/octave
resolution, and the scale axis  discretized into (2;s ranging from .25 to 8 cy-
cle/octave with 2-channel/octave resolution. The block diagram is shown in
the upper part of Figure 2.15. It is practical to compute the spectrotemporal

response in the two-dimensional Fourier domain (R, 2):

Zu,(R, Q; Ri,Qj) = Y(R, Q)Gw(R, R,)HM(Q,QJ) (238)
Zy(R, % R, Q) = Y(R,Q)G(—R; Ry)Hy(94) (2.39)
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16.00 Hz, 2.00 c/o
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Figure 2.16: Spectrotemporal representation for an auditory spectrogram (see

text).
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Spectrotemporal Cortical Representation

Basically, the cortical representation is a multi-scale multi-rate time-frequency
representation. According to the above specification, a time-frequency represen-
tation consists of 2-by-9-by-11 (direction-rate-scale) elements. Each individual
time-frequency representation is a complez matrix. The size and the complex-
ity make it difficult to have the entire representation in a page without color.
Therefore, only the abstract of the spectrotemporal representation is shown (Fig-
ure 2.16). The source spectrogram is given in Figure 2.2-(b) or Figure 2.18-(b).
A panel represents a cluster of cells (with different BF) tuned to the same rate
and the same scale. The response level is indicated by the darkness. The best
phase is highlighted by the white arrows.

The low-rate-low-scale panel (+4 Hz, .5 cyc/oct) is an “approximation” image
which gives the global energy distribution. The high-rate-high-scale panel (£16
Hz, 2 cyc/oct) is a “detail” image which exhibits the fine structure. The high-
rate-low-scale panel (£16 Hz, .5 cyc/oct) is a “vertical” image in which the
temporal edge is clearly shown. The low-rate-high-scale panel (+4 Hz, 2 cyc/oct)
is a “horizontal” image which enhances the spectral edge. All of these terms
in quotes are frequently used in the wavelet transform literature. In addition,
this representation demonstrates the directional selectivity of AL The negative-
rate panel selects upward-moving spectra while the positive-rate panel prefers
downward moving spectra. All of these phenomena were reported in recent
physiological findings (Kowalski et al., 1996 [42]; Depireux et al., 1998 [19]).

In order to demonstrate the model without any loss, no reduction was per-
formed in the production of the representation. Since the entire representation is

composed of many complex matrices, the required memory for storage is 198 x 2
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times the size to store the source spectrogram. However, according to the wavelet
literature (e.g., Fliege, 1994 [29]; Akansu and Haddad [1]), it is theoretically
possible to have the same size as the input spectrogram. For example, one can
downsample the smoother representation to certain degree or use less precision

to encode the response.

Rate-Scale Plot

Since this model is a multi-dimensional model, we may collapse some of the
dimensions to focus on the interesting axes. For example, if we collapse both
time and frequency axes, we should find a large response around a particular
(R,Q) in the rate-scale plot for a single moving ripple. More peaks should
be found for the multiple moving ripples or most dynamic acoustic signals. A
progressing rate-scale presentation is given in Figure 2.17. This is an alternative
presentation of Figure 2.16 which originated from the spectrogram in Figure 2.2-
(b) or Figure 2.18-(b). The rate-scale response ((R,{2) at a time instant was

generated using following formulas:

GlRe Qt) = [ lzy(t, 23 Re, Q) lda (2.40)
Cﬂ-(RC,Qc; t) = /\zﬂ(t,m; R.,Q.)|dx (2.41)
Each individual rate-scale representation consists of two small plots. The up-
per one is of positive rate (downward moving) and the lower one is of negative
rate (upward moving). The ordinate indicates the rate (in Hz) and the abscissa
indicates the scale (in cycle/octave). Throughout the entire series of plots (Fig-
ure 2.17), the color scale is consistent. In order to enhance the response peaks,

less-than-average response in each time instant was blanked.
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Figure 2.17: Progressing rate-scale representation (see text).
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This plot is useful to track the movement of acoustic features. The reader
can track the global spectral movement in the low scale region and detailed
spectral movement in the high scale region. In Figure 2.17, harmonics and
formants travel downwards around 500 ms from the start of the sound; hence
the stronger response is shown in the upper panel (which prefers to downward
movement). Around 600 ~ 700 ms, the response in the lower panel turns stronger
because harmonics and formants move upwards. During this period, while /ai/
as in “right” was pronounced, the second formant rises from 800 Hz to 1600
Hz whereas the first formant merely changes within a limited range. Thus the
response due to the global spectral movement transfers from high scale to low
scale. At the end of the sentence, the harmonics move down but the COG of the
formants move up. Therefore the high scale response appears in the upper panel

(downward) and the low scale response appears in the lower one (upward).

Spectrogram Reconstruction

The spectrogram can be perfectly reconstructed by the following formula.
Yiig | GoHw (5 Q5)

where Gy = G(R; R;) and Gy = G (—R; R;). However, the dc edge of the

(2.42)

squared sum transfer function is zero due to the zero-mean nature of the indi-
vidual transfer function. Similarly, the overall gain in the high rate (scale) is
relatively small. This will magnify any kind of noise in those region, e.g., numer-
ical truncation errors and quantization errors. One practical way is to make the
first band-pass filter to be a pure low-pass filter and the last filter a pure high-
pass filter. The resulting overall gain will have less dynamic range; therefore the

reconstruction is more stable. Another practical strategy is to weight the filters
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before decomposition such that the overall gain is roughly unitary everywhere.
By doing so, perfect reconstruction can be achieved without post-normalization.
As in the pure spatial processing model, the reconstruction (¢, z) may not be
real and positive due to numerical problems. The rectified real part of the re-
construction, i.e., max(R{g(t,z)},0), can be taken as the final reconstruction.
The block diagram is presented in the lower part of Figure 2.15. A reconstruc-
tion schema is shown in Figure 2.18 (see (b) to (c) to (d)). The reconstructed
auditory spectrogram (Figure 2.18-(d)) looks like its origin (Figure 2.18-(e)). In

this case, the error percentage is below 1%.

2.5 Summary

A comprehensive auditory model including spectral estimation and analysis 1s
proposed. The model was abstracted by a schematic plot, i.e., Figure 2.18. The
input for the model is a speech waveform (“Come home right away”, Figure 2.18-
(a)). This was transformed by the cochlear model into an auditory spectrogram
(Figure 2.18-(b)) in which each row represents the average spike count carried
by an auditory nerve fiber. Then, the cortical model processed the spectrogram
using a two-dimensional filter-array (small panels in Figure 2.18-(c)). Each indi-
vidual filter is tuned to a specific rate-scale which is determined by the receptive
field of a particular cortical cell. As shown in Figure 2.18-(c) (big panels), the
signal can be viewed from many aspects. A filter tuned to low rate extracts the
temporal envelope while a filter tuned to high rate captures the transition. In the
spectral dimension, a filter tuned to low scale highlights the global spectral shape

while a filter tuned to high scale shows the fine structure of the spectrum. The
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Figure 2.18: Overview of the auditory model.
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“spectrally” directional selectivity of the composite response is evident in recent
physiological findings (Kowalski et al., 1996 [42]). Thus this multirate multi-
scale model, capable of processing dynamic signal, with arbitrary instantaneous
spectra, mimics the way the human auditory system processes sounds.

A reconstruction algorithm is available for each stage. Since some non-linear
operations involved in the forwarding processing, the inversion process cannot
perfectly reproduce the original signal. However, the reconstructed signal (Fig-
ure 2.18-(e)) is not substantially degraded since the intelligibility is acceptable.
This allows researchers to manipulate a signal at cortical level, e.g., to remove
or select certain rates and scales in order to synthesize a signal with desired
spectrotemporal characteristics. Automatic audio morphing (Slaney et al., [79])
is then possible at the cortical level by looking for the intermediate cortical
representation between those of two sounds.

Speech is probably the most frequent received meaningful signal to our audi-
tory system. Thus, the sound analysis taking place in the auditory system should
be optimally adapted to the human voice. This indicates that it may be bene-
ficial to encode the features extracted from this physiological-driven model for
the purpose of speech coding. This model also demonstrates a way to separate
sounds into different acoustic aspects, e.g., fine-coarse spectral structure, rapid-
slow temporal evolution, and up-down moving. This suggests a natural way to
handle speech recognition or speaker identification. The drawbacks of apply-
ing this model are its heavy computation complexity due to the filter-bank in
the cochlear model, and the huge memory requirement due to the spectrotem-
poral response from the filter-array in the cortical model. The computation

load can be relieved by modeling the cochlear filters as IIR filters. As for the
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memory requirement, adequate downsampling should be applied to reduce the
representation. Theoretically, the data size can be as low as that of the source
spectrogram. Certainly, newer signal processing techniques should be explored

in further research.
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Appendix C

Cortical Filter Design

C.1 Spatial Filter

The spatial response of a cortical cell tuned to 1 cycle/octave can be described
by the second derivative of a Gaussian pdf (probability density function) with

zero-mean and variance 2/m%.
h(z) = (1 — 2(rz)%)e " (C.1)
The normalized Fourier transform is
H() = Q% (C.2)
Another alternative is the Gabor function.
h(z) = e %1% cos(2ma) (C.3)
Its Fourier transform is
H(Q) = e~ 2r?o?(Q-1)* 4+ e 2riat(Q41)? (C.4)

Both seed functions are depicted in Figure C.1-(a). The negative second

derivative of a Gaussian function is represented with solid lines in the upper
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panel. The Gabor function is shown with dashed lines. Their scale spectra are
shown in the lower panel. Their 3-dB bandwidths are .83 and .82 ) respectively.
One major difference between the two functions is that the former has no dc value
whereas the latter has. Since both impulse responses are symmetric with respect
to 0, their Fourier transform correspondences are pure real. The responses of

the other cells can be obtained by dilating (compressing) the seed function.
H($; ) = H(Q/Q) (C.5)

h(z; Q) = Qeh(Qz) (C.6)

C.2 Temporal Filter

The temporal cortical impulse response can be modeled as an exponentially

decaying sinusoid. For example, at R = 1 Hz,

g(t) = e Psin2rt, fort>0 (C.7)

2m
GR) = G = 1) + janbRe (C-8)

where # =1 in this work.

The seed function is shown in Figure C.1. The 3-dB bandwidth is roughly
.33R. Note that the temporal response is not of zero-mean; since we intend to
use this seed function to construct a minimum-phase filter, all of the magni-
tudes should be greater than zero prior to taking the logarithm. Analogous to
the spectral response, the response of other cells can be obtained by dilating

(compressing) the seed function.
G(R; R.) = G(R/R.) (C.9)

9(t; R) = Reg(R.t) (C.10)
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(a) Spectral Response (b) Temporal Response
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Figure C.1: Cortical response seed functions: (a) Spectral response for Q = 1

cyc/oct: the negative second derivative of a Gaussian function (solid) or the

Gabor function (dashed); (b) Temporal response for R = 1 Hz.
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