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PROBLEM CHOOSING A REGULARIZATION PARAMETER (OCYV)

Given a time series of observed positions {r;};_, in three dimensional space, our primary | | e We use a subset of the given dataset to ob- timate for the curve is derived from the rest of
objective is to generate a smooth trajectory to fit these data points. tain a parameter estimate and use the rest of the data. The prediction error is computed at
® A penalty term is introduced to assure smoothness of the reconstructed trajectory. the data for performance validation under that  the left out data point and they are summed

. particular value of the estimate. to yield the ordinary cross validation cost. An
N W e Here we use leaving-out-one strategy. optimal A minimizes the total prediction error
Z Ir(t;) — 747 + A\ / (Suitable Path Cost)dt e Each data point is left out in turn and an es-  (sampled variance).
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e Penalty Term to ensure smoothness: ¢ Penalty Term to ensure smoothness: . :
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RECONSTRUCTION THROUGH ERROR MINIMIZATION
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e Approximation by piecewise constant e Path-independence lemmas and Riccatti equa- ot -Modell |
speed and curvature, transforms the prob- tion ensure global optimality of the solu- T P T
lem into a non-convex numerical optimiza- tion and the solution is semi-analytic [1]. xorecton(m 1 H4 _
tion problem [2]. ® Reconstructed positions can be expressed Cun ature (Bat) Curvature (Insect)
e MATLAB routine: fminunc. as linear combinations of raw data, but the s ’ ’
® The algorithm is capable of estimating linear weights vary across data points. Avg. Fit Error Model I Model 11
curvature with higher resolution, but the ® This method is orders of magnitude faster Bat 99401 < 10-2 | 7.6142 < 10-7
rocess is time consuming. than the nonlinear version of the story. Mantis 12966 < 102 [ 2.3013 < 107
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