Control Theoretic Tool for Trajectory Reconstruction
BISWADIP DEY (biswadip@umd.edu)

- A joint work with Prof. P. S. Krishnaprasad.

The

Research

Problem

Given a time series of observed positions $\left\{r_{i}\right\}_{i=0}^{N}$ in three dimensional space, our primary objective is to generate a smooth trajectory to fit these data points.

- A penalty term is introduced to assure smoothness of the reconstructed trajectory.

Penalty Term
 (Suitable Path Cost) $d t$

- BUT the relative importance of the fit error with respect to the penalty term is not known a priori.
- The optimal value of the regularization parameter (λ) is chosen using ordinary cross validation, and the optimal value depends on the signal-to-noise ratio in the data.

Generative Model II
 $\dot{r}=v$ $\dot{v}=a$ $\dot{a}=u$ Penalty Term to ensure smoothness: $\int_{t_{0}}^{t_{N}}\left(u^{T} u\right) d t$

Model II \rightarrow MODEL I

$\nu=\|v\|$
$T=\frac{v}{\|v\|}$
$\dot{T}=\frac{1}{\nu}(a-(a \cdot T) T)$
$\kappa=\frac{\|\dot{T}\|}{\nu}$
$\tau=\frac{v \cdot(a \times u)}{\|v \times a\|^{2}}$
$a=\dot{\nu} T+\nu^{2} k_{1} M_{1}+\nu^{2} k_{2} M_{2}$
$u=\left(\ddot{\nu}-\nu^{3}\left(k_{1}^{2}+k_{2}^{2}\right)\right) T$
$+\left(3 \nu \dot{\nu} k_{1}+\nu^{2} \dot{k}_{1}\right) M_{1}$
$+\left(3 \nu \dot{\nu} k_{2}+\nu^{2} \dot{k}_{2}\right) M_{2}$

Choosing A Regularization Parameter (OCV)

- We use a subset of the given dataset to obtain a parameter estimate and use the rest of the data for performance validation under that particular value of the estimate.
- Here we use leaving-out-one strategy,
- Each data point is left out in turn and an es-
timate for the curve is derived from the rest of the data. The prediction error is computed at the left out data point and they are summed to yield the ordinary cross validation cost. An optimal λ minimizes the total prediction error (sampled variance).

Results (Synthetic Data - Curve on a Sphere)

Distance from Origin

Results (Bat-Mantis Pursuit Event)

ACKNOWLEDGEMENT

This research was supported in part by the Air Force Office of Scientific Research under AFOSR Grant No. FA95501010250.

REFERENCES

[1] B. Dey, P. S. Krishnaprasad. Trajectory Smoothing as a Linear Optimal Control Problem. in Proceedings of Allerton Conference on Communication, Control, and Computing, 2012.
2] P.V. Reddy. Steering Laws for Pursuit. Masters' Thesis, University of Maryland, 2007

