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Background and Motivation

Background and Motivation

To explore underlying strategies and motion (pursuit, collective motion etc.)
governing control laws, by extracting parameters of motion (namely curvature,
speed, lateral acceleration etc.) from sampled observations of trajectories.

To extract control inputs from sampled data.
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Problem

Generative Model

Generative Models for a Curve in R3 (Non-linear and Linear)

Natural Frenet Frame

ṙ = νT

Ṫ = ν (k1M1 + k2M2)

Ṁ1 = −νk1T

Ṁ2 = −νk2T

(1)

T

M1

M2

r

Trajectory

The natural curvatures are the
steering inputs and the speed is a
time function dictated by propul-
sive/lift/drag mechanisms.

Linear Generative Model

ṙ = v

v̇ = a

ȧ = u

(2)

Jerk, i.e. the third-derivative of
position, is viewed as the control.

LTI representation

ẋ = Ax+ Bu

r = Cx
(3)

with,

x =
[

rT vT aT
]T

;

A =





0 I 0
0 0 I

0 0 0



 ;B =





0
0
I



 ;

C =
[

I 0 0
]

Controllable and Observable
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Inverse Problem

Regularized Inverse Problem

T

M1

M2

r

Trajectory

: Data Points

Given a time series of observed positions, generate a smooth trajectory to fit
the data points.

The inverse problem is ill-posed.
Highly sensitive to noise.

Non-unique.

A regularization parameter is introduced to control the amount of smoothing.

Ordinary cross validation is a standard approach to choose an optimal value
for the regularization parameter.
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Inverse Problem

Extracting Curvature (Inverse Problem)

Non-linear Optimization

Observations

ri

States, Controls
Regularized
Inversion r, [T,M1,M2],k1, k2, ν

Minimize

(

N
∑

i=0

‖r(ti)− ri‖
2 + λ

∫ T

0
(k̇21 + k̇22 + ν̇2)dt

)

subject to Dynamics in (1), Initial Condition, and Input

(4)

Linear Quadratic Control

Observations

ri

States, Controls
Regularized
Inversion r, v, a,u

Minimize

(

N
∑

i=0

‖r(ti)− ri‖
2 + λ

∫ T

0
uTudt

)

subject to Dynamics in (3), Initial Condition, and Input

(5)
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Relationship between Linear and Non-linear Generative Models

Relationship between Two Approaches for Modelling a Curve

Natural-Frenet Frame → Linear Model (Triple Intigrator)

v = νT

a = ν̇T + ν2k1M1 + ν2k2M2

u = (ν̈ − ν3(k21 + k22))T + (3νν̇k1 + ν2k̇1)M1 + (3νν̇k2 + ν2k̇2)M2

Linear Model (Triple Intigrator) → Natural-Frenet Frame

ν = ‖v‖

T =
v

‖v‖

Ṫ =
1

ν
(a − (a · T )T )

κ =
‖Ṫ‖

ν

τ =
v · (a× u)

‖v × a‖2

k1, k2,M1,M2 can be computed by assuming
suitable intial conditions.

k1(t) = κ cos

(

θ0 +

∫ t

0
τ(σ)dσ

)

k2(t) = κ sin

(

θ0 +

∫ t

0
τ(σ)dσ

)

M1(t) = M1(0) −

∫ t

0
ν(σ)k1(σ)T (σ)dσ

M2(t) = M2(0) −

∫ t

0
ν(σ)k2(σ)T (σ)dσ
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Optimal Control Based Approach for Trajectory Reconstruction

Path Independence Lemma

Application of Path Independence Lemma

Optimal Control Problem:

Minimize
x(t0),u

J(x(t0), u) =
N
∑

i=0

‖r(ti)− ri‖
2 + λ

∫ T

0
uT udt

subject to x(t0) ∈ R
n,

u ∈ U ,

Dynamics in (3)

(6)

Path Independence:
Along trajectories of (3)

0 = xT (ti)K(t+i )x(ti) − xT (ti+1)K(t−i+1)x(ti+1)

+

∫ t
−

i+1

t
+
i

[

x

u

]T [
K̇ + ATK +KA KB

BTK 0

] [

x

u

]

dt

0 = xT (ti)η(t
+
i )− xT (ti+1)η(t

−
i+1) +

∫ t
−

i+1

t
+
i

[

x

u

]T [
η̇ +AT η

BT η

]

dt

for all i ∈ {0, 1, · · · , N − 1}
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Optimal Control Based Approach for Trajectory Reconstruction

Path Independence Lemma

Application of Path Independence Lemma

Assumptions on the the dynamics and boundary values of K and η:

K̇ = −ATK −KA+KBBTK,

K(t+
N
) = 0,

K(t+i )−K(t−i ) = − 1
λ
CTC.

(7)

η̇ = −
(

AT −KBBT
)

η,

η(t+
N
) = 0,

η(t+i )− η(t−i ) = 2
λ
CT ri.

(8)

With the assumptions (7) and (8), we obtain

J(x(t0), u) = λ
[

xT (t0)K(t−0 )x(t0) + xT (t0)η(t
−
0 )
]

+
N
∑

i=0

rTi ri −
1

4
λ

∫ T

0
‖BT η(t)‖2dt

+ λ

∫ T

0
‖u(t) +BT

(

K(t)x(t) +
1

2
η(t)

)

‖2dt. (9)

Optimal control input:

uopt(t) = −BT

(

K(t)x(t) +
1

2
η(t)

)

(10)

Optimal initial condition:

[

K(t−0 )
]

xopt (t0) +
1

2
η(t−0 ) = 0. (11)
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Optimal Control Based Approach for Trajectory Reconstruction

Existence of Optimal Initial Condition

Existence of Solution for (11) - Sketch of Proof

Proposition 1

The solution of the Riccati equation (7) assumes the form

K(t−i ) =
1

λ

N
∑

k=i

ΦΣ(ti, tk)C
TCΦT

Σ(ti, tk)

for any i ∈ {0, 1, · · · , N} where Σ(t) = −(A− 1
2
BBTK(t))T and

ΦΣ is the transition matrix of Σ.

Holds true for i = N .

Apply mathematical induction.

Proposition 2

(−ΣT , C) forms an observable pair for the problem of our interest
(3).

Apply Silverman-Meadows rank condition.
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Optimal Control Based Approach for Trajectory Reconstruction

Existence of Optimal Initial Condition

Existence of Solution for (11) - Sketch of Proof

Theorem 1

The equation
[

K(t−0 )
]

xopt (t0) +
1

2
η(t−0 ) = 0.

is uniquely solvable for almost any time index set {ti}Ni=0.

Observe K(t−0 ) can be represented as K(t−0 ) = 1
λ
C
T
C, with

C =











C

CΦ−ΣT (t1, t0)

..

.
CΦ−ΣT (tN , t0)











.

Consider the system ξ̇ = −ΣT ξ; γ = Cξ. The outputs, corresponding to two
different initial conditions, do not match identically over any interval.

ξa 6= ξb ⇒ Cξa 6= Cξb (almost surely)

Otherwise, consider an arbitrary close perturbation of the original time index
set {ti}

N
i=0, to obtain full rank for C.
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Optimal Control Based Approach for Trajectory Reconstruction

Optimal Reconstruction as a Linear Smoother

Linearity in the Reconstructed Trajectory

Closed loop dynamics:

ẋ(t) = −Σ̃Tx(t) −
1

2
BBT η(t)

with Σ̃ =
[

A− BBTK(t)
]T

.

xopt(t0) and η(·) are linear in observed data {ri}
N
i=0.

r(tk) =
1

λ

N
∑

i=0

[

CF
λ
(k, i)CT

]

ri (12)

where

F
λ
(k, i) = ΦT

Σ̃
(t0, tk)

[

K(t−0 )
]−1

ΦΣ̃(t0, ti)

+

min{i,k}
∑

j=1

(

∫ tj

tj−1

ΦT

Σ̃
(σ, tk)BBTΦΣ̃(σ, ti)dσ

)

Can be be viewed as a global alternative to Savitzky-Golay smoothing filters.

Can be used as a building block to obtain a fixed lag smoothing algorithm.
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Optimal Control Based Approach for Trajectory Reconstruction

Co-State Based Approach

An Alternative Co-State Based Approach

Co-state variables:

p(t) , K(t)x(t) +
1

2
η(t)

An optimal trajectory between two observation times can be viewed as the
base integral curve of the following Hamiltonian dynamics

d

dt

[

x(t)
p(t)

]

=

[

A −BBT

0 −AT

] [

x(t)
p(t)

]

Jump condition for the co-state variables:

p(t+i )− p(t−i ) =
1

λ
CT (ri − r(ti))

Terminal condition for the co-state variables:

p(t+
N
) = 0

p(t−0 ) = 0
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Optimal Control Based Approach for Trajectory Reconstruction

Co-State Based Approach

An Alternative Co-State Based Approach

Forward-propagation of x(ti) and p(t+i ):

[

x(ti+1)

p(t+i+1)

]

=

[

eA∆i −eA∆iWi

− 1
λ
CTCeA∆i

[

e−AT ∆i + 1
λ
CTCeA∆iWi

]

]

[

x(ti)

p(t+i )

]

+

[

0
1
λ
CT

]

ri+1

where Wi is defined as

Wi =

∫ ∆i

0
e−AσBBT e−ATσdσ (∆i = ti+1 − ti)

Optimal initial condition is obtained by solving

[0 I]

(

N−1
∏

i=0

Λi

)

[

I

− 1
λ
CTC

]

x(t0) = − [0 I]
N
∑

i=0





N−1
∏

j=i

Λj



Γri (13)

where,

Λi =

[

eA∆i −eA∆iWi

− 1
λ
CTCeA∆i

[

e−AT∆i + 1
λ
CTCeA∆iWi

]

]

; Γ =

[

0
1
λ
CT

]
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Cross-validation Approach to Inverse Problem

Cross-validation Approach to Determination of Penalty Parameter

We use “leaving-out-one” version of the Ordinary Cross Validation (OCV)
technique.

Let, {x
[λ,k]
opt , u[λ,k]} be a minimizer of:

N
∑

i=0
i6=k

‖r(ti)− ri‖
2 + λ

∫ T

0
uTudt

Let the reconstructed trajectory be r[λ,k](·).

Then the OCV cost is defined as:

V0(λ) =
1

N + 1

N
∑

k=0

‖r[λ,k](tk) − rk‖
2

Hence, OCV estimate for λ is defined as:
λ∗ = argmin

λ∈R+

V0(λ)
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Numerical Results

Numerical Result - Curve on a sphere

Avg. Fit Error/Radius: 13.686 × 10−3.
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Numerical Results

Numerical Result - Helix

Avg. Fit Error/Radius: 12.346 × 10−3.
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