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Abstract: Motion camouflage is a type of pursuit strategy observed in nature. In this paper, we
show that when a pair of autonomous agents, modeled as particles in three dimensions, engage
in mutual motion camouflage, their dynamically coupled trajectories exhibit geometrically
interesting structure, of possible relevance to applications such as surveillance.

1. INTRODUCTION

Pursuit and evasion phenomena play an important role
not only in human society (e.g. in warfare and sports) but
also and foremost in the animal world. For many species,
survival and reproduction depend on their capabilities of
effectively pursuing prey or mates and evading predators.
Pursuit phenomena may also contribute to the generation
of collective motion in homogeneous groups of animals, as
each individual may tend to move closer to other members
to avoid predation [Hamilton, 1971].

The Motion Camouflage(MC), or Constant Absolute Tar-
get Direction(CATD), pursuit strategy has been observed
in the behavior of several animal species. We say that a
pursuer is using this strategy if it approaches its target
while maintaining constant absolute direction of the imag-
inary baseline connecting the two individuals. From Justh
and Krishnaprasad [2006], if r is the relative position of
the evader with respect to the pursuer, and ṙ is its time
derivative, then the motion camouflage pursuit strategy
holds when:

Γ(r, ṙ) ,
ṙ

|ṙ| ·
r

|r| = −1. (1)

Many insects which navigate using vision have compound
eyes that are effective at detecting motion transverse to the
field of view (i.e. optic flow), but limited stereoscopic vision
entails poor sensitivity to looming. Strategy (1) is very apt
in this setting since it enables the pursuer to camouflage its
motion by nulling the optic flow it produces in the visual
field of the target. Empirical evidence in Srinivasan and
Davey [1995] and Mizutani et al. [2003] suggests that the
motion camouflage strategy is employed by male hoverflies
and dragonflies for both mating and territorial battles; the
same references also present evidence for a variant of (1)
which allows the pursuer to appear stationary relative to
a specific background feature in the visual field of the
evader. The motion camouflage pursuit strategy is also
geometrically identical to the one used by echolocating
bats in chasing insect prey, the “constant absolute target
direction strategy” in Ghose et al. [2006]. The biological
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reason for this is clearly different from that of visual
insects, and seems to be rooted in the properties of time-
optimality of this strategy for the capture of evaders
moving in unpredictable fashion. The superiority of the
motion camouflage strategy with respect to alternative
pursuit strategies is studied from a game-theoretic point
of view in Wei et al. [2009].

Inspired by the biological relevance of motion camouflage
pursuit, we have introduced in a recent paper [Mischiati
and Krishnaprasad, 2011] a simple mathematical model
which highlights its potential use as a building-block for
obtaining coordinated motion. In this model, calledMutual
Motion Camouflage(MMC), two individuals are in mutual
pursuit with a constant-speed, planar implementation of
motion camouflage (see Justh and Krishnaprasad [2006]).
The resulting choreography produces trajectories that
have interesting region-filling properties. In Mischiati and
Krishnaprasad [2010], mutual motion camouflage was used
to design control laws and initialization rules for a pair of
artificial agents moving in R

2 to achieve dense coverage
(monitoring) of a region of the plane.

In this paper, we extend this research program to the
three-dimensional setting. Using a biologically plausible
implementation of the motion camouflage pursuit strategy
in R

3 (first presented in Reddy et al. [2006]), we introduce
a three-dimensional model for mutual motion camouflage.
We show that the resulting highly coordinated trajectories
correspond to “periodically modulated” helices. The char-
acteristic region-filling properties of planar mutual motion
camouflage can be recovered by a suitable projection. We
moreover propose a new set of control laws and initial-
ization strategies that would allow a pair of autonomous
agents moving in R

3 (e.g. UAVs) to perform surveillance
tasks that extend those presented in Mischiati and Krish-
naprasad [2010], for example by allowing freedom of choice
of the plane on which the monitored region lies.

We begin by recalling in section 2 the definition of mutual
motion camouflage in R

2 and results from Mischiati and
Krishnaprasad [2010, 2011]. We then proceed to state
the mutual motion camouflage feedback laws in section
3, providing a closed loop analysis in section 4, and
applications to coverage in section 5.



2. MUTUAL MOTION CAMOUFLAGE IN R
2

Let each agent be modeled as a unit-mass particle moving
at constant speed in R

2. Then the motion of the i-th agent
(i = 1, 2) can be described by the (planar) natural Frenet
frame equations [Bishop, 1975]:

ṙi = νi xi

ẋi = νi ui yi

ẏi = −νi ui xi.
(2)

Here yi , xi
⊥ is the counterclockwise rotation of xi by

π/2 radians, and completes with xi an orthonormal frame
at ri attached to the curve traced by the i-th particle
(assumed twice-differentiable). For each agent, the control
is the curvature (steering) ui, which leaves unchanged the
speed νi.

A biologically-plausible curvature control law for agent i to
implement the motion camouflage strategy is (from Justh
and Krishnaprasad [2006]):

ui = −µ

(

r

|r| · ṙ
⊥

)

, (3)

where µ > 0 is a constant gain and r is the relative
position of the evader with respect to agent i. Provided
that the initial conditions are such that Γ 6= 1 and
|r(0)| > 0, and the evader moves slower than the pursuer
along trajectories with bounded and continuous curvature,
(3) guarantees that the motion camouflage state (1) is
accessible in finite time [Justh and Krishnaprasad, 2006].

Definition 1. The Mutual Motion Camouflage (MMC)
planar model describes the case in which two agents,
subject to dynamics (2), are in mutual pursuit with the
motion camouflage feedback law (3) and gains inversely
proportional to the speeds (to preserve symmetry even
when the individual speeds are different):

u1ν1 = u2ν2 = −µλ, λ ,

(

r

|r| · ṙ
⊥

)

, r , r1 − r2. (4)

The closed loop dynamics of mutual motion camouflage,
expressed in terms of the relative position r and the scaled
center of mass position z , r1 + r2, are:

r̈ = −µλ ṙ⊥ = µ

[(

r

|r| · ṙ
)

ṙ− |ṙ|2 r

|r|

]

(5)

z̈ = −µλ ż⊥, (6)

where in (5) we have used the decomposition of r/|r| with
respect to the orthonormal basis composed of ṙ/|ṙ| and
ṙ⊥/|ṙ|.
The main results on the analysis of (5)-(6) can be sum-
marized as follows 1 [Mischiati and Krishnaprasad, 2010,
2011]:

(a) The relative distance between the agents, ρ , |r|, is
subject to Lagrangian second-order dynamics ρ̈ = (1/ρ −
µ) (δ2 − ρ̇2), where δ , |ṙ| is constant. The orbits (ρ(t),
ρ̇(t)) are periodic and are level sets of the energy function
E(ρ, ρ̇) = ρ2 (δ2 − ρ̇2) e−2µρ. A special case is the equilib-
rium point ρ(t) = 1/µ, ρ̇(t) = 0 corresponding to circular
relative motion.
1 This summary describes the behavior of the system for generic
initial conditions. There is however a thin set of special initial
conditions yielding different results; for example there are (non-
attracting) invariant manifolds characterized by Γ(r, ṙ) = ±1.

(b) The relative position r(t) varies instead aperiodically
(and its dynamics (5) are not Lagrangian) filling in time
an annular region of inner and outer radii ρmin > 0 and
ρmax > ρmin given by the solutions to the equation:
ρ2 δ2 e−2µρ = E(ρ0, ρ̇0).
(c) There exists a fixed vector z0 ∈ R

2, which depends only

on the initial conditions, such that ζ , |z− z0| evolves
(periodically) according to ζ(t) = θρ(t)/δ ∀t, where θ , |ż|
is constant.
(d) The center of mass trajectory z(t)/2, and similarly the
individual particle trajectories r1(t) = (z(t) + r(t))/2 and
r2(t) = (z(t)−r(t))/2, fill in time annular regions centered
at z0/2 and having inner and outer radii proportional to
ρmin, ρmax.
(e) The closed-loop dynamics of the scalar variable λ
(“optic flow”) can be entirely expressed in terms of the
distance ρ (and initial conditions):

λ(t) = λ0ρ0e
µ(ρ(t)−ρ0)/ρ(t). (7)

If the control laws (4) are modified as follows:

u1ν1 = u2ν2 = −µλ+ kd λρ̇(E(ρ, ρ̇)−Ed), kd > 0, (8)

then (almost) all of the orbits (ρ(t), ρ̇(t)) are attracted
to the periodic orbit associated to a prescribed energy
level Ed. With surveillance applications in mind, we have
exploited in Mischiati and Krishnaprasad [2010] the result-
ing “modified (planar) MMC model” to produce design
parameters (choices of µ, Ed and initial conditions) that
enable a chosen annular region to be covered (monitored)
by the agents.

3. THREE-DIMENSIONAL MODEL OF MMC

We extend the dynamical model used in the planar case,
by assuming that each individual is a unit-mass particle
moving at constant speed along twice-differentiable curves
in R

3. Because of the constant speed constraint, the only
control authority for each particle is on the direction
of motion. In mechanical terms, this corresponds to the
particles being subject to gyroscopic forces, which preserve
their total kinetic energies. The dynamics of each agent
(i = 1, 2) can be conveniently described using the natural
Frenet framing of curves in R

3 (as in Bishop [1975], Justh
and Krishnaprasad [2005]):

ṙi = νixi

ẋi = νi(uiyi + vizi)

ẏi = −νiuixi (9)

żi = −νivixi.

Here xi is the unit vector in the direction of motion of the
i-th particle, while yi, zi complete with xi a right-handed
orthonormal frame for the particle trajectory. Notice that
once an initial choice of yi(0), zi(0) is made, the frame
evolution with time is well-defined by (9). The natural
curvatures ui, vi can be thought of as the controls, which
preserve the speed νi; to see this, notice that they act on
ẋi in directions yi and zi, orthogonal to xi.

Biologically-inspired curvature control laws that imple-
ment the motion camouflage pursuit strategy in R

3 were
introduced in Reddy et al. [2006]; for a particle i pursuing
particle j (the evader), they are:



ui = −µ

[

zi ·
(

ṙi,j ×
ri,j

|ri,j|

)]

, vi = µ

[

yi ·
(

ṙi,j ×
ri,j

|ri,j|

)]

,

(10)
where µ > 0 is a constant gain, and ri,j = ri − rj.

Just as in the planar case, if the initial conditions satisfy
Γ 6= 1 and |r(0)| > 0, and the motion of the evader satisfies
certain constraints (slower than the pursuer, trajectories
with bounded and continuous curvatures), then (10) guar-
antees that the motion camouflage state is accessible in
finite time [Reddy et al., 2006]. This is guaranteed even if
the speeds of the two particles vary with time, provided
that the speed profiles are bounded and have bounded and
piecewise continuous derivatives. In support to the claim
that these control laws are biologically feasible, Reddy
[2007] reports high correlation between the curvatures
produced by a delayed version of (10), which accounts
for sensorimotor reaction times, and the actual trajectory
curvatures extracted from experimental flight data of bats
engaged in prey pursuit.

As in (4), for three-dimensional definition of mutual mo-
tion camouflage we require both particles to apply the mo-
tion camouflage control laws (10) scaled by the reciprocals
of their speeds.

Definition 2. We define as Mutual Motion Camouflage
in 3D (MMC-3D) the system composed of two particles
(i = 1, 2) moving in R

3 with dynamics subject to (9)
and the following motion camouflage curvature laws (here

r , r1 − r2):

ui = − µ

νi

[

zi ·
(

ṙ× r

|r|

)]

, vi =
µ

νi

[

yi ·
(

ṙ× r

|r|

)]

(11)

Remark 1. While the control laws for mutual motion cam-
ouflage in the plane satisfy u1ν1 = u2ν2, the same is not
true for (11) (which neither satisfy v1ν1 = v2ν2). The
control laws for MMC-3D depend on the axes yi, zi, which
are in general different for each particle. The curvature
laws (11) do not even satisfy the symmetry condition

κ1 ν1 = κ2 ν2 on the “total” curvatures κi , |r̈i|/ν2 =
√

u2
i + v2i , which are independent of the initial choice of

frame. Nevertheless it is clear from the following analysis
that the choice (11) truly yields dynamics that are a
natural extension of MMC to R

3.

4. ANALYSIS OF MMC IN R
3

The study of mutual motion camouflage in three dimen-
sions involves the analysis of the closed-loop system ob-
tained by substituting (11) in the particle dynamics (9).
The closed-loop system can be conveniently expressed
via two sets of differential equations: one describing the
relative motion between the particles and one describ-
ing the center of mass motion. Introducing r = r1 − r2,
g =ν1 x1−ν2 x2, z = r1 + r2 and k =ν1 x1+ν2 x2, these
are:

ṙ = g

ġ = µ

[

g ×
(

g × r

|r|

)]

, (12)

ż = k

k̇ = µ

[

k×
(

g × r

|r|

)]

. (13)

A vector quantity that plays an important role in the
analysis of both the relative motion and the center of mass
motion is the relative angular momentum l , r× g, which
evolves according to the following dynamics:

l̇ = µγ l, (14)

where γ , g · r/|r| = ρ̇, ρ , |r|. Hence the direction of
l remains constant in time (it depends only on the initial
conditions). In the remainder of the paper, we will denote
as el the constant unit vector in the direction of l(t), and
l(t) the time-varying magnitude of l(t), which is given by:

l(t) = l(0) e

∫

t

0

µγ(s)ds
= l(0)eµ(ρ(t)−ρ(0)). (15)

We will exploit this result on the behavior of the relative
angular momentum to derive the trajectories induced by
MMC-3D in three steps: derivation of the relative motion
between the agents, derivation of the center of mass
trajectory, and finally reconstruction of the individual
trajectories.

4.1 Relative motion between the agents

Using the triple vector product rule, the system of equa-
tions (12) can be expressed in a form identical to (5):

r̈ = ġ = µ

[(

r

|r| · ṙ
)

ṙ− |ṙ|2 r

|r|

]

. (16)

Of course the difference is that here r ∈ R
3, while in

(5) r ∈ R
2. Nevertheless, by (12), r̈ = −µ(ṙ × l)/ρ is

always orthogonal to el. Since the vectors r and ṙ are
orthogonal to el (by the definition of l), we have that
the component of r in the direction el is always zero.
Hence the projection of (16) onto the plane (through the
origin) orthogonal to el is identical to the relative motion
dynamics in planar MMC (5); we conclude that the relative
position r(t) fills annular regions on the plane orthogonal
to el, with the relative distance ρ(t) oscillating periodically
between extrema ρmin and ρmax. This also implies that the
magnitude l(t) of the relative angular momentum, given by
(15), varies periodically.

4.2 Center of mass motion

The (scaled) center of mass velocity k , ż is subject to

the linear time-varying dynamics (13): k̇(t) = µ(l(t) ×
k(t))/ρ(t) = A(t)k(t), with A(t) , µ(l(t)/ρ(t))êl, êl ∈
so(3) being the skew-symmetric matrix associated to the
unit vector el. The solution of this system is:

k(t) = exp(

∫ t

0

A(σ)dσ)k(0) = exp(

∫ t

0

µ
l(σ)

ρ(σ)
dσ êl)k(0).

From the properties of the exponential map (exp : so(3) →
SO(3)):

k(t) = Rot (el, α(t))k(0), (17)

where α(t) , µ
∫ t

0
l(σ)
ρ(σ)dσ. The notation Rot(e, α) ∈ SO(3)

denotes the matrix corresponding to counterclockwise ro-
tation by an angle α about the axis e ∈ R

3.

Remark 2. Since ρ(t) > 0∀t and l(t) ≥ 0∀t, the “rotation
angle” satisfies α(t) ≥ 0∀t, α(t) = 0 ⇔ l(0) = 0. Hence
the center of mass velocity is constant in time only if either
r(0) is parallel to g(0) (so that l(0) = 0) or k(0) is parallel



to el = l(0)/l(0). On the other hand, the magnitude of k,
and hence the center of mass speed, is always constant in
time (just as in the planar case); we call this quantity θ.

The rotation matrix in (17) can be expanded using Ro-
drigues formula, yielding the more explicit expression:

k(t) = cos(α(t))k(0) + sin(α(t))(el × k(0))

+ (1− cos(α(t)))(k(0) · el)el. (18)

Equation (18) highlights the components of the center of
mass velocity in three fixed (but in general not orthogonal)
directions: k(0), el and el × k(0). Provided that el ×
k(0) 6= 0 (if this is not the case, the center of mass velocity
is constant as explained in remark 2), it is possible to
conveniently rewrite (18) in terms of an orthonormal frame

(ex, ey, el) in R
3, defined by ex , el×k(0)/|el×k(0)| and

ey , el × ex = el × (el × k(0))/|el × k(0)| = (el(k(0) ·
el)− k(0))/|el × k(0)|. It is a simple algebraic exercise to
show that the resulting equation can be expressed as:

k(t) = −|el × k(0)| sin(−α(t))ex
− |el × k(0)| cos(−α(t))ey + (k(0) · el)el, (19)

or component-wise:

k(t) =

[

kx(t)
ky(t)
kl(t)

]

=

[ −|el × k(0)| sin(−α(t))
−|el × k(0)| cos(−α(t))

k(0) · el

]

. (20)

From (20), it is clear that the center of mass velocity in the
direction of el is constant, hence the component zl(t) of the
(scaled) center of mass in that direction grows linearly. On
the other hand, it is possible to prove that the projection
of z on the plane orthogonal to el evolves like the center
of mass motion in the planar MMC case.

Theorem 1. Let zxy ,

[

zx
zy

]

∈ R
2 be the projection of z

on the plane orthogonal to el, with components zx , z·ex,
zy , z · ey. Then zxy satisfies (cf. (6)):

z̈xy(t) =
µ l(0)

ρ(0)λ(0)
λ(t) ż⊥xy(t), (21)

where λ = r · ṙ⊥/ρ ≤ 0.

Proof. The first two components of (20) give żxy(t).
Hence by further differentiating with respect to time:

z̈xy(t) = α̇(t)

[

|el × k(0)| cos(−α(t))
−|el × k(0)| sin(−α(t))

]

= α̇(t) ż⊥xy(t).

Finally, from (7), (15) and the definition of α(t):

α̇(t) = µl(t)/ρ(t) = µl(0)eµ(ρ(t)−ρ(0))/ρ(t) = µ l(0)
ρ(0)λ(0)λ(t).

Here λ is computed as in the planar case (4): λ = r · ṙ⊥/ρ,
where ṙ⊥ = el × ṙ is the (counterclockwise) rotation of ṙ
on the plane orthogonal to el (on which both r and ṙ are
constrained). It is easy to verify that λ ≤ 0; in particular
λ(0) ≤ 0 and the multiplicative constant in (21) has the
same sign as that in (6).

From the results on planar MMC recalled in section 2,
the projection of the center of mass motion on the plane
orthogonal to el is generically aperiodic and fills in time
annular regions on such plane with radii proportional to
the relative distance extrema ρmin and ρmax.

The center of mass motion is therefore the vector sum of
a linear motion in the direction of el (dependent on the

initial conditions) and a planar MMC motion on a plane
orthogonal to el. The trajectory is a “modulated” helix,
as below.

Theorem 2. The curvature and torsion profiles of the cen-
ter of mass trajectory in MMC-3D (well-defined provided
that k(0) is not parallel to el) are given by:

κ(t) =
β(t)

θ2
|k(0)× el| (22)

τ(t) =
β(t)

θ2
(k(0) · el), (23)

and are identical to those of a “modulated” circular helix,
with periodic angular frequency β(t) , α̇(t) = µl(t)/ρ(t).

Proof. Recall that, given a thrice-differentiable curve t 7→
z(t) ∈ R

3 with |ż(t)| = θ (constant), the curvature and

torsion profiles are defined as respectively κ(t) , |Ṫ (t)|/θ
and τ(t) , (Ṅ(t) · B(t))/θ. Here T (t) , ż(t)/θ, N(t) ,

Ṫ (t)/|Ṫ (t)| and B(t) , T (t)×N(t) are the tangent, normal
and binormal to the curve, which form its Frenet-Serret
frame (see for example Bishop [1975]).

It is easy to verify that for a circular helix having angular
frequency ω, radius |a|/ω, pitch 2πb/ω and constant speed√
a2 + b2 (e.g. of the form z(t) = (a/ω) cos(ωt) ex +

(a/ω) sin(ωt) ey+bt el if the helix axes is el), the curvature
and torsion profiles are constant and given by:

κ(t) = |a|ω
a2+b2

∀t, τ(t) = bω
a2+b2

∀t.
Before computing the curvature and torsion for the center
of mass trajectory, we remark the following consequences
of the fact that k̇(t) = −β(t)(k(t)× el):

d

dt
|k(t)× el| =

(k(t)× el) · (k̇(t)× el)

|k(t)× el|
= 0 ∀t

d

dt
(k(t) · el) = k̇(t) · el = 0 ∀t.

Hence, ∀t > 0, |k(t) × el| = |k(0) × el| (which we assume
nonzero) and k(t) · el = k(0) · el are constant. Exploiting
these facts, we can compute the relevant quantities for the
center of mass trajectory as follows:

T (t) =
k(t)

θ
, Ṫ (t) =

k̇(t)

θ
=

−β(t)(k(t)× el)

θ
,

N(t) =
Ṫ (t)

|Ṫ (t)|
=

−k(t)× el

|k(0)× el|
,

Ṅ(t) =
−k̇(t)× el

|k(0)× el|
= β(t)

el(k(0) · el)− k(t)

|k(0)× el|
,

B(t) = T (t)×N(t) =
−k(t)(k(0) · el) + elθ

2

θ|k(0)× el|
.

So the curvature and torsion of the center of mass trajec-
tory are indeed given by:

κ(t) =
|Ṫ (t)|
θ

=
β(t)

θ2
|k(0)× el|,

τ(t) =
Ṅ(t) ·B(t)

θ

β(t)

θ2
(k(0) · el).

If we compare with the curvature and torsion of a standard
circular helix, we see that there is an exact correspondence
between the center of mass trajectory and a “modulated”
helix with periodic angular frequency β(t), radius |k(0)×
el|/β(t), pitch 2π(k(0) · el)/β(t) and constant speed θ.



It is indeed the “modulation” in the angular frequency
(driven by the changes in relative distance between the
agents) that makes the trajectory more complicated (and
interesting) than a standard circular helix.

4.3 Reconstruction of individual trajectories

Since r1 = (z + r)/2 and r2 = (z − r)/2, the individual
dynamics are given by:

r̈1 =
1

2
(z̈+ r̈) =

µ

ρ
(l× ṙ1) =

µl

ρ
êl ṙ1 (24)

r̈2 =
1

2
(z̈− r̈) =

µ

ρ
(l× ṙ2) =

µl

ρ
êl ṙ2, (25)

which means that r1 and r2 satisfy:

ṙi(t) = Rot (el, α(t)) ṙi(0), i = 1, 2, (26)

with α(t) , µ
∫ t

0
l(s)
ρ(s)ds. The motion of the i-th agent

(i = 1, 2) is rectilinear if ṙi(0) is parallel to el, or if el = 0.
In the other cases, it can be decomposed with respect to
the orthonormal frame (ex, ey, el) as done for the center
of mass:

ṙi(t) =

[

ṙix(t)
ṙiy(t)
ṙil(t)

]

=

[ −|el × ṙi(0)| sin(−α(t))
−|el × ṙi(0)| cos(−α(t))

ṙi(0) · el

]

. (27)

Therefore each of the agents travels at constant speed νi
along a “modulated” circular helix of the type described
in the previous subsection, with axis el and curvature and
torsion profiles:

κi(t) =
β(t)

ν2i
|ṙi(0)× el| (28)

τi(t) =
β(t)

ν2i
(ṙi(0) · el). (29)

Figure 1 shows a typical set of trajectories obtained for
two agents engaged in Mutual Motion Camouflage in R

3.
Notice that the agent speeds are different in this example.
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Fig. 1. Representative trajectories obtained with MMC-3D

4.4 Special cases

Among the trajectories that can be obtained with MMC-
3D, we highlight some interesting special cases and suit-
able choices of initial conditions to achieve them.

(i) Rectilinear motion of both agents
Both agents have constant velocity, and hence move in
straight lines, if el = 0 ⇒ r(0) × ṙ(0) = 0. Since we

exclude collision configurations (otherwise the MC control
laws are not well-defined), this can happen only if either
ṙ(0) = ν1x1 − ν2x2 = 0 or if ṙ(0) is parallel to r(0).
The first case is possible only if the agent speeds are
equal (ν1 = ν2), and their initial directions of motion are
identical; in this case the agents move along parallel lines.
The second case corresponds to Γ(r(0), ṙ(0)) = ±1. Just as
in planar MMC, the sets Γ(r, ṙ) = ±1 are (non-attracting)
invariant manifolds, and therefore the agents remain in a
state of motion camouflage with the distance reducing till
collision (if Γ = −1) or increasing (if Γ = 1).

(ii) Rectilinear motion of one of the agents
The i-th agent moves along a straight line if ṙi(0) = νiel.
By the definition of el, this requires ṙi(0) to be orthogonal
to r(0). For given initial relative position r(0), and desired
initial velocity (and hence direction of the straight line
trajectory) for one of the agents (say ṙ1(0) = ν1x1(0) ⊥
r(0)), the only choice of velocity for the other agent that
guarantees that el = ṙ1(0)/ν1 is: ṙ2(0) = ν2x2(0) =
ν1x1(0) + (r(0)× x1(0)).

(iii) Rectilinear motion of the center of mass
The center of mass moves along a straight line if k(0)
is parallel to el. Let r(0) be the initial relative position
between the agents, and el a vector orthogonal to r(0)
(the desired direction for the center of mass motion). For
k(0) to be parallel to el, the initial relative velocity g(0)
must satisfy the condition g(0)/|g(0)| = r(0)× el/|r(0)×
el|. Since k(0) must be parallel to l(0) = r(0) × g(0), it
must also be orthogonal to g(0), and thus 2ν1 = |k(0) +
g(0)| = |k(0) − g(0)| = 2ν2. Hence the two agent speeds

must be equal: ν1 = ν2 , ν. The magnitudes δ = |g(0)|
and θ = |k(0)|must be related to the common speed by the

relation
√
δ2 + θ2 = 2ν (if θ = 0 we have the planar mutual

motion camouflage described in (v)). Provided that these
conditions are satisfied, the following initial directions of
motion for the agents guarantee that the center of mass
will move in the direction el at speed θ:

x1(0) =
k(0)+g(0)

2ν = δ
2ν

r(0)×el

|r(0)×el|
+ θ

2ν el,

x2(0) =
k(0)−g(0)

2ν = θ
2ν el − δ

2ν
r(0)×el

|r(0)×el|
.

(iv) Motion of both agents along a double helix
The trajectories of the agents (and of the center of mass)
are true circular helices in the special case that the relative
distance ρ(t) remains constant in time. In that case in fact
β(t) = α̇(t) is constant in the curvature and torsion profiles
(28)-(29). This occurs if the initial conditions fall on the
equilibrium point ρ(0) = 1/µ, ρ̇(0) = 0 of the relative
distance dynamics. Notice that ρ̇(0) = γ(0) = (g(0) ·
r(0))/|r(0)| = 0 requires g(0) to be orthogonal to r(0) (and
of course to el). Hence this special motion is achieved if
initially the positions of the agents have distance 1/µ and
their velocities satisfy:
g(0)
|g(0)| =

ν1x1(0)−ν2x2(0)
|ν1x1(0)−ν2x2(0)|

= r(0)×el

ρ(0) = µ(r(0)× el).

When this is the case: β(t) = α̇(t) = µl(t)/ρ(t) =
µ2|l(0)| = µ2|r(0) × g(0)| = µ2δρ(0) = µδ, where δ =
|g(0)| = |ν1x1(0)−ν2x2(0)|. The curvature and torsion for
each agent, given by the constants κi(t) = µδ|ṙi(0)×el|/ν2i
and τi(t) = µδ(ṙi(0) ·el)/ν2i , correspond to circular helices
with angular frequency µδ, pitch 2π(ṙi(0) · el)/(µδ) and
radius |ṙi(0)× el|/(µδ), covered at speed νi.
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Fig. 2. Examples of special trajectories obtained with
MMC-3D: (a) rectilinear motion of one agent; (b)
rectilinear motion of the center of mass; (c) double
helix; (d) planar MMC.

(v) Planar mutual motion camouflage
The last special case is the one in which k(0) = 0. Then
k(t) = 0 ∀t ≥ 0 and thus ṙ1(t) = ṙ(t)/2, ṙ2(t) = −ṙ(t)/2.
From the results of section 4.1, each agent moves on the
fixed plane orthogonal to el (the direction of l(0)), and the
two agents perform a planar mutual motion camouflage on
that plane. For the MMC-3D system to fall into this special
case, with motion constrained on the plane orthogonal to
a prescribed el, the initial positions and velocities of the
agents must satisfy the constraints ν1x1(0) = −ν2x2(0)

and (r1(0)−r2(0))×ν1x1(0)
|(r1(0)−r2(0))×ν1x1(0)|

= el. The first constraint can be

satisfied only if the speeds of the agents are identical.

Figure 2 shows examples of the special trajectories de-
scribed above (except the simple case of rectilinear motion
of both agents).

5. MMC-3D FOR SURVEILLANCE

The trajectories of the agents in MMC-3D are the vector
sum of a constant-speed translation in the direction el,
and a planar mutual motion camouflage on the plane
orthogonal to el. Since the planar MMC trajectories have
useful region-filling characteristics (they provide dense
coverage of certain annular regions), the MMC-3D model
can be made potentially useful for surveillance applications
(aerial coverage of regions of interest) by adding control
authority on the motion in the direction of el. This can be
accomplished with appropriate initial conditions and the
following modifications of the MMC-3D control laws.

Theorem 3. Let the conditions ν1 = ν2 , ν and k(0)
parallel to l(0) 6= 0 be satisfied (cf. section 4.4-(iii)), and
let the curvature control laws for the two agents be given
by:

ui = ui,MMC + u′
i, vi = vi,MMC + v′i, (30)

u′
i = − µ

νi

[

yi ·
(

a

νi

k

|ṙ|2 +
b

νi|ṙ|2
(z · el − z̃l) el

)]

(31)

v′i = − µ

νi

[

zi ·
(

a

νi

k

|ṙ|2 +
b

νi|ṙ|2
(z · el − z̃l) el

)]

, (32)

where ui,MMC , vi,MMC are the curvature controls of MMC
(given by (11)), a > 0, b > 0 are suitable constant gains,
el = l/|l| is constant, and z̃l is the desired position of the
scaled center of mass z(t) in the direction of el. Then z(t)
moves along a straight line and converges asymptotically
from its initial position z(0) to the desired position z(0)+
(z̃l − (z(0) · el))el, while the relative motion between the
agents remains constrained on the plane orthogonal to el
and converges to a planar MMC with δ = 2ν. As a result,
the agent trajectories asymptotically fill annular regions
centered at (z(0) + (z̃l − (z(0) · el))el)/2 and lying on a
plane orthogonal to el.

Proof. The closed-loop equations obtained substituting
(30)-(32) in the agent dynamics (9) are (here g = ṙ, k = ż

as before, and zl , z · el):

ġ = −µ

ρ
(g × l) +

µa

|g|2
(

2− |g|2
2ν2

)

g +
µb(zl − z̃l)

2ν2|g|2 (k · el)g
(33)

k̇ = −µ

ρ
(k× l)− µa

2ν2
k− µb

|g|2 (zl − z̃l)

(

2el −
k · el
2ν2

k

)

,

(34)

Observe that el, the direction of the relative angular
momentum l, is constant in time, since:

l̇ =

[

µγ +
µa

|g|2
(

2− |g|2
2ν2

)

+
µb(zl − z̃l)

2ν2|g|2 (k · el)
]

l. (35)

Let us first consider the center of mass dynamics (34). If
k(0) is parallel to el, then so is k(t) ∀t (since in this case

k̇ is parallel to k). Hence k = ż = żlel and k̇ = z̈ =
z̈lel. Therefore (34) can be reduced to a scalar second-

order differential equation in ∆zl , zl − z̃l, obtained by
projection in the direction el:

∆z̈l +
µa

2ν2
∆żl +

µb

2ν2
∆zl = 0. (36)

Here we have used the fact that 2− (k · el)2/(2ν2) = 2−
|k|2/(2ν2) = |g|2/(2ν2) when k is in the direction el and

ν1 = ν2 = ν (since |k+ g| = |k− g| =
√

|k|2 + |g|2 = 2ν
in this case). The linear constant-coefficient differential
equation (36) has solutions that asymptotically converge
to ∆zl = 0, for all initial conditions ∆zl(0),∆żl(0).

The control laws (30)-(32) are well-defined because |g(t)| =
|ṙ(t)| 6= 0∀t when a, b are chosen appropriately. To show
that this is the case, consider the dynamics of the (non-

positive) variable ∆δ , |g|2 − 4ν2 = −|k|2:

∆δ̇ = 2(g · ġ) = −µa

ν2
∆δ +

µb

ν2
∆zl∆żl. (37)

We can see this equation as a linear system driven (or
perturbed) by a time-varying input ∆zl∆żl. The evolution
of ∆zl(t) and ∆żl(t) can be computed analytically, and
so does the solution to (37). Assume for example that
the constants a > 0, b > 0 are chosen in such a way
that the characteristic polynomial of (36) has two real
and distinct roots λ2 < λ1 < 0. Notice that λ1,2 =



(−µa±
√

µ2a2 − 8µbν2)/(4ν2) hence this requires that b <
(µa2)/(8ν2). Then the solution of (36) for initial conditions
∆zl(0),∆żl(0) is given by: ∆zl(t) = c1e

λ1t + c2e
λ2t, where

c1 = (∆zl(0)λ2 − ∆żl(0))/(λ2 − λ1), c2 = (∆żl(0) −
∆zl(0)λ1)/(λ2−λ1). The evolution of ∆δ(t) starting from
an initial value ∆δ(0) > −4ν2 (since l(0) 6= 0, it must be
|g(0)|2 > 0) is therefore:

∆δ(t) = e
−µa

ν2
t∆δ(0) +

µb

ν2

∫ t

0

e
−µa

ν2
(t−τ)∆zl(τ)∆żl(τ)dτ

= e
−µa

ν2
t(∆δ(0)− c3 − c4 − c5)

+ c3e
2λ1t + c4e

2λ2t + c5e
(λ1+λ2)t, (38)

where c3 = µbλ1c
2
1/(2ν

2λ1+µa)<0, c4 = µbλ2c
2
2/(2ν

2λ2+
µa) < 0 and c5 = µb(λ1 + λ2)c1c2/(ν

2(λ1 + λ2) + µa) =
−µbc1c2/2. By (38), ∆δ(t) ≥ −|∆δ(0) − c3 − c4 − c5| −
|c3| − |c4| − |c5| ∀t, and since c3(a, b)

b→0−→ 0, c4(a, b)
b→0−→ 0,

c5(a, b)
b→0−→ 0 (and ∆δ(0) > −4ν2), it is always possible

to choose b sufficiently small to guarantee that ∆δ(t) >
−4ν2 ∀t, and hence |g(t)|2 > 0∀t. This proves that the
control laws are well-defined (at least for suitable choices
of the gains a, b). Furthermore, (38) shows that ∆δ(t) goes
to zero asymptotically, and therefore the relative speed
converges to the value δ = 2ν. Finally, let us consider the
relative motion dynamics (33). As ∆zl → 0 and |g|2 → 4ν2

asymptotically, these dynamics converge to those of the
standard MMC-3D case (16) (with constant relative speed
δ = 2ν).

Another modification of MMC-3D that can be useful for
surveillance applications is a three-dimensional version of
(8); the objective of this modification is to stabilize the
energy of the (periodic) relative distance dynamics to
a desired value, to indirectly control the minimum and
maximum distances between the agents.

Theorem 4. Let the curvature control laws for the two
agents be given by:

ui = ui,MMC + u′′
i , vi = vi,MMC + v′′i , (39)

u′′
i =

[

kd
νi

(

r · ṙ
|r|

)

(E − Ed)

] [

zi ·
(

ṙ× r

|r|

)]

(40)

v′′i = −
[

kd
νi

(

r · ṙ
|r|

)

(E − Ed)

] [

yi ·
(

ṙ× r

|r|

)]

, (41)

where ui,MMC , vi,MMC are the MMC curvature controls
given by (11), kd > 0 is a constant gain and 0 < Ed ≤
δ2e−2/µ2. Then the energy function E = E(ρ, ρ̇) = ρ2(δ2−
ρ̇2) e−2µρ converges to the value Ed, provided that ρ̇(0) 6=
±δ and (ρ(0), ρ̇(0)) 6= (1/µ, 0).

Proof. The relative motion closed-loop system is:

r̈ =

[

µ− kd

(

r · ṙ
|r|

)

(E − Ed)

] [

ṙ×
(

ṙ× r

|r|

)]

. (42)

The relative position r is constrained to the plane or-
thogonal to el, and its dynamics on this plane are identi-
cal to those obtained in the two-dimensional model with
the control laws (8). The level set E(ρ, ρ̇) = Ed is an
attractor for these dynamics, with region of attraction
{(ρ, ρ̇) : ρ > 0,−δ < ρ̇ < δ, (ρ, ρ̇) 6= (1/µ, 0)} (see theorem
2 in Mischiati and Krishnaprasad [2010]). As the energy
E converges to the desired value Ed, (42) converges asymp-
totically to (12) (and it could also be shown that the center
of mass dynamics converge to (13)).

Corollary 1. With the following choices of µ and Ed, the
control laws (39)-(41) yield (asymptotic) trajectories in
which the distance between the agents oscillates between
ρ̂min and ρ̂max:

µ =
ln(ρ̂max/ρ̂min)

ρ̂max − ρ̂min

, Ed = ρ̂2minδ
2e−2µρ̂min . (43)

Proof. Immediate from theorem 4 and the fact that the
minimum and maximum distances between the agents are
the two solutions of equation ρ2 δ2 e−2µρ = E.

As an example of surveillance application, we propose
the following control strategy that allows two agents (e.g.
UAVs) moving at identical and constant speeds ν1 = ν2 =
ν and initially on the ground, to asymptotically cover an
annular region of prescribed radii ρ̂min and ρ̂max at a fixed
prescribed altitude z̃l:
(i) Choose initial conditions such that k(0) and l(0)
are both in the vertical direction, compatibly with the
hypothesis of theorem 3 (specialized to the case of vertical
rectilinear motion of the center of mass).
(ii) Choose a > 0, b > 0 for the “altitude control”
component of the control laws, as in theorem 3.
(iii) Choose kd > 0, µ > 0 and 0 < Ed ≤ δ2e−2/µ2 for
the “energy control” component of the control laws, as in
corollary 1. In this context, the asymptotic value of the
relative speed (δ = 2ν) should be used.
(iv) Apply a combined control of altitude and energy:

ui = ui,MMC + u′
i + u′′

i , vi = vi,MMC + v′i + v′′i . (44)

Notice that the closed loop equations due to these control
laws are identical to (33)-(34) except that the first terms

(in both equations) are scaled by µ − kd

(

r·ṙ
|r|

)

(E − Ed)

instead of simply µ. Therefore the center of mass motion
(under the special conditions for rectilinear motion) is
unaffected by the “energy control”, and the relative motion
converges asymptotically to (42).

Figure 3 shows a simulation of this control strategy in
action.
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Fig. 3. Asymptotic coverage of an annular region at fixed
altitude.

6. CONCLUSIONS

This paper reveals a double-helical structure in the trajec-
tories of interacting agents (particles) subject to mutual



motion camouflage in three dimensions. Certain modifica-
tions of the MMC feedback law lead to behavior that is
useful in surveillance tasks.
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