
Geometry of cyclic pursuit

K. S. Galloway, E. W. Justh, and P. S. Krishnaprasad

Abstract— Pursuit strategies (formulated using constant-
speed particle models) provide a means for achieving cohesive
behavior in systems of multiple mobile agents. In the present
paper, we explore an n-agent cyclic pursuit scheme (i.e. agent i
pursues agent i + 1, modulo n) in which each agent employs a
constant bearing pursuit strategy. We demonstrate the existence
of an invariant submanifold, and state necessary and sufficient
conditions for the existence of rectilinear and circling relative
equilibria on that submanifold. We present a full analysis
of steady-state solutions and stability characteristics for two-
particle “mutual CB pursuit” and then outline steps to extend
the nonlinear stability analysis to the many particle case.

I. INTRODUCTION

Pursuit and evasion phenomena are observed throughout
biology, in hunting encounters as well as in mating and
play. Pursuit also plays a significant role in the vehicular
setting, in military encounters between planes and missiles
or between adversarial unmanned vehicles. Though pursuit
is often thought of as a competitive phenomenon, it has
been shown to serve as a means of achieving cooperative
behaviors as well. (See, for instance, Bruckstein’s work
on ant path-following in [1], [2].) Application of this idea
may be relevant to the analysis of starling flock cohesion
presented in [3]. In the current work, we focus on a cyclic
pursuit scheme with a constant bearing pursuit law to achieve
group cohesion for a multi-agent “flock.”

Interest in cyclic pursuit dates back to 1877 when Edouard
Lucas originally posed his question asking what trajectories
would be traced out by three “dogs” which started at the
vertices of an equilateral triangle and pursued their next
neighbor at a constant speed.1 Since that time, mathemati-
cians have analyzed various facets and extensions of the
problem, demonstrating, for instance, that mutual capture is
assured in the three “dog” (or “bug”) problem but non-mutual
capture is possible in the more general case (i.e. for n > 3).
(See [7] and [12] respectively.) Recently, there has been a
renewed interest in studying cyclic pursuit from a control-
theoretic perspective, particularly for decentralized control of
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1See [12] for a nice historical summary of the cyclic pursuit problem.

groups of autonomous agents. In [8], Marshall, Broucke and
Francis present an analysis of wheeled vehicles (modeled
as kinematic unicycles) engaged in cyclic pursuit, moving
at a fixed common vehicle speed and employing a steering
law dependent on linear feedback of the relative bearing
error. The authors prove the existence of 2(n − 1) relative
equilibrium formations and conduct local stability analysis of
the equilibria based on linearization of the shape dynamics.
In [9], the authors extend their analysis to incorporate
feedback control of the vehicle speeds as well, presenting a
global stability analysis for the two-particle case and a local
stability analysis for the general case. In [13], Sinha and
Ghose present a generalization of this previous work which
involves heterogeneous formations of agents with differing
speeds as well as differing controller gains. Variations on
the theme are presented in [14] (a hierarchical cyclic pursuit
scheme), [15] (with applications to rendezvous problems and
curve-shortening), and [11] (with applications to coverage).

The contribution of the current work lies in the nonlinear
nature of both the steering law and the stability analysis.
We begin by briefly describing the particle model dynamics
(section II) and introducing the constant bearing pursuit law
(section III). This constant bearing pursuit law (originally
developed in [16]) involves the relative bearing error as
well as a term similar to the “motion camouflage” law
in [5]. In section IV we discuss the reduction to “shape
space,” providing an explicit parametrization and describ-
ing an invariant submanifold with reduced dynamics. After
stating propositions concerning conditions for the existence
of special solutions (e.g. relative equilibria) on the invariant
submanifold, we present the full two-particle analysis and
sketch an extension to the many particle case in section VII.

II. MODELING INTERACTIONS

We describe the movement of agents in our system as unit-
mass particles tracing out twice continuously-differentiable
curves in R2, deriving our dynamics from the natural
Frenet frame equations (see, e.g., [4] for details). (A three-
dimensional analysis of cyclic pursuit formulated in terms
of the natural Frenet frame equations is a topic of ongoing
work.) As is depicted in figure 1, we let ri denote the position
of the ith particle (with respect to a fixed inertial frame),
xi denote the unit tangent vector to the curve, and yi the
unit vector normal to xi. An n-agent system then evolves
according to the particle dynamics given by

ṙi = νixi,

ẋi = νiyiui,

ẏi = −νixiui, i = 1, 2, . . . , n. (1)



Fig. 1. Illustration of particle positions and corresponding natural Frenet
frames for three particles in the plane.

Here yi = x⊥i , by which we mean that rotating xi counter-
clockwise in the plane by π/2 radians gives yi. Note that
νi, the speed of particle i, could possibly be given by a
time-varying function, but here it is constant and equal to
1. Our controls, ui, can be viewed as curvature controls or
steering controls in the planar setting. We also define the
“baseline vectors” ri,i+1 by ri,i+1 = ri−ri+1, i = 1, 2, ..., n
(interpreted modulo n throughout this paper).

System (1) evolves on the manifold Mstate defined by

Mstate =
{

(r1,x1,y1, . . . , rn,xn,yn) ∈ R6n
∣∣∣ ri 6= ri+1,

|xi| = 1, yi = x⊥i , i = 1, 2, . . . , n
}

.

(2)

Note that we have only disallowed “sequential collocation”,
i.e. the state manifold does not include states for which ri =
ri+1. In terms of pursuit, this means that we restrict our
analysis away from the point of actual capture/rendezvous,
allowing well-posedness of the feedback laws of section III.

III. PURSUIT STRATEGIES AND STEERING LAWS

We describe pursuit interactions in terms of the geometry
of the encounter, typically in terms of relative positions and
velocities. The analysis in [16] concerns several of these
geometric depictions of pursuit (or pursuit strategies), includ-
ing Classical Pursuit (CP), Constant Bearing Pursuit (CB),
and Motion Camouflage Pursuit (MC), and demonstrates that
appropriate cost functions and associated pursuit manifolds
can be defined for each pursuit strategy. For a two-particle
system with particle i pursuing particle i + 1, we define
cost functions for Motion Camouflage Pursuit and Constant
Bearing Pursuit, respectively, by Γi : Mstate → R and
Λi : Mstate → R,

Γi =
d
dt |ri,i+1|
|dri,i+1

dt |
=
(

ri,i+1

|ri,i+1|
· ṙi,i+1

|ṙi,i+1|

)
, (3)

Λi = R(αi)xi ·
ri,i+1

|ri,i+1|
, (4)

where αi ∈ [0, 2π) is the offset angle for the constant bearing
pursuit2 and R(αi) ∈ SO(2) is the rotation matrix defined
by

R(αi) =
(

cos(αi) − sin(αi)
sin(αi) cos(αi)

)
. (5)

(Since Classical Pursuit is a special case of Constant Bearing
Pursuit, we can define the associated cost functions by
substituting αi = 0 into (4).) Then, as in [16], we have
the associated pursuit manifolds defined by Γi = −1 and
Λi = −1 and we can derive steering laws to drive the system
toward the desired pursuit manifold. In particular, we have
for MC,

uMC(i) = −µi

(
ri,i+1

|ri,i+1|
· ṙ⊥i,i+1

)
, (6)

and for CB,

uCB(αi) = −µi

(
R(αi)yi ·

ri,i+1

|ri,i+1|

)
− 1
|ri,i+1|

(
ri,i+1

|ri,i+1|
· ṙ⊥i,i+1

)
, (7)

where µi > 0 is a control gain.
We will focus on the CB pursuit law (7) for our analysis

of cyclic pursuit.

Remark: The classical work on cyclic pursuit (e.g., as in
[7]), and the more recent work of Bruckstein et al. [2] and
Richardson [12], presuppose that the CP strategy is exactly
realized (with no reference to a feedback law). On the other
hand, [9] is based on a linear feedback law motivated by the
CP strategy.

IV. SYMMETRY, SHAPE AND REDUCTION

Pursuit laws (6) and (7) leave our system dynamics (1)
invariant under the action of the special Euclidean group
SE(2) and therefore permit reduction to the quotient manifold
Mstate/SE(2), also known as the shape space. The shape
space describes the relative positions and velocities of the
agents in the system.

A particularly useful parametrization of this shape space
is given by (c.f. [4])

ρi = |ri,i+1| ,
φi = xi · xi+1,

γi = xi · yi+1,

βi = xi ·
ri,i+1

|ri,i+1|
,

δi = yi ·
ri,i+1

|ri,i+1|
, i = 1, 2, . . . , n. (8)

Note that φi and γi are dot products of unit vectors, as are
βi and δi, and they satisfy

φ2
i + γ2

i = 1, β2
i + δ2

i = 1, i = 1, 2, ..., n. (9)

2Note that αi = 0 corresponds to classical pursuit. For π/2 < αi <
3π/2, the pursuer’s feedback law drives its velocity vector away from the
“pursuee” so it may be more appropriate to describe the strategy as constant
bearing “evasion” as opposed to “pursuit”.



We can derive the associated shape dynamics by first calcu-
lating the derivative of ρi, as follows:

ρ̇i =
d

dt
|ri,i+1| =

1
2
(ri,i+1 · ri,i+1)−1/2(2ṙi,i+1 · ri,i+1)

= (xi − xi+1) ·
ri,i+1

|ri,i+1|
= βi − (φiβi − γiδi)

= βi (1− φi) + γiδi. (10)

(Note that the simplification in the second line is made pos-
sible by expressing xi+1 in terms of xi and yi components.)

Remark: It is possible to derive the following expressions
for the CB cost function (4) and the CB pursuit law (7) in
terms of the shape variables:

Λi = cos(αi)βi + sin(αi)δi, (11)
uCB(αi) = µi [sin(αi)βi − cos(αi)δi]

− 1
ρi

[δi(1− φi)− γiβi] . (12)

Noting that

d

dt

ri,i+1

|ri,i+1|
=

d

dt

ri,i+1

ρi
=

ṙi,i+1ρi − ri,i+1ρ̇i

ρ2
i

=
1
ρi

[
xi − xi+1 −

ri,i+1

|ri,i+1|
[βi (1− φi) + γiδi]

]
,

(13)

it is a straightforward (though somewhat lengthy) exercise to
show that our resultant shape dynamics can be expressed as

ρ̇i = βi (1− φi) + γiδi,

φ̇i = −γi(ui − ui+1),
γ̇i = φi(ui − ui+1),

β̇i = uiδi +
1
ρi

[
δ2
i (1− φi)− βiγiδi)

]
,

δ̇i = −uiβi +
1
ρi

[
γiβ

2
i − βiδi (1− φi)

]
, (14)

i = 1, 2, . . . , n, with (9) as constraints on the initial condi-
tions.

Remark: The dynamics given by (14) hold for any SE(2)-
invariant (feedback) control ui.

If we further impose a cyclic pursuit scheme (i.e. i pursues
i+1, modulo n) with each particle using the CB pursuit law
given by (7), our closed-loop shape dynamics are given by

ρ̇i = βi (1− φi) + γiδi,

φ̇i = −γi(uCB(αi) − uCB(αi+1)),
γ̇i = φi(uCB(αi) − uCB(αi+1)),

β̇i = µi

[
sin(αi)βiδi − cos(αi)δ2

i

]
,

δ̇i = µi

[
cos(αi)βiδi − sin(αi)β2

i

]
, (15)

i = 1, 2, . . . , n, with (9) again providing constraints on
the initial conditions. (The expressions for φ̇i and γ̇i do
not simplify greatly with the substitution of (7) or (12),
and therefore we have not expressed them in their full

explicit form.) One should note that under these closed-
loop dynamics, the evolution of the subsystem

(
β̇i, δ̇i

)
is

dependent only on βi and δi, an important fact which will
be discussed in greater detail later in the paper.

A. An invariant submanifold
We can now define an important submanifold of the state

space corresponding to system states for which each agent
has achieved CB pursuit of the next agent. As discussed
previously, Λi = −1 if and only if agent i has achieved CB
pursuit of agent i+1, and therefore we define the CB Pursuit
Manifold MCB(α) ⊂ Mstate by

MCB(α) =
{

(r1,x1,y1, . . . , rn,xn,yn) ∈ Mstate |

Λi = −1, i = 1, 2, . . . , n
}

, (16)

where α = (α1, α2, . . . , αn). (Note that we could equally as
well define MCB(α) as a submanifold of the shape space, as
is made evident by (11).) In [16], it is demonstrated that the
derivative of Λi under pursuit law (7) can be expressed as
Λ̇i = −µi

(
1− Λ2

i

)
. Noting that this holds regardless of the

maneuver of the pursuee (i.e. agent i + 1) and that Λ̇i = 0
for Λi = −1, we can state that MCB(α) is invariant under
cyclic pursuit dynamics with pursuit law (7).

We can formulate reduced dynamics on MCB(α) in terms
of the shape variables (8) as follows. By expressing xi in the
basis {R(αi)xi, R(αi)yi} and making use of the fact that
Λi = R(αi)xi · ri,i+1

|ri,i+1| = −1 (i.e. R(αi)yi · ri,i+1
|ri,i+1| = 0) on

MCB(α), we have

βi = xi ·
ri,i+1

|ri,i+1|

=
[(

xi ·R(αi)xi

)
R(αi)xi

+
(
xi ·R(αi)yi

)
R(αi)yi

]
· ri,i+1

|ri,i+1|
= cos(αi)R(αi)xi ·

ri,i+1

|ri,i+1|
− sin(αi)R(αi)yi ·

ri,i+1

|ri,i+1|
≡ − cos(αi). (17)

Similar calculations yield

δi ≡ − sin(αi), (18)

and therefore we have the following reduced system dynam-
ics on MCB(α):

ρ̇i = − (1− φi) cos(αi)− γi sin(αi),

φ̇i = −γi

[ 1
ρi

(
(1− φi) sin(αi)− γi cos(αi)

)
− 1

ρi+1

(
(1− φi+1) sin(αi+1)− γi+1 cos(αi+1)

)]
,

γ̇i = φi

[ 1
ρi

(
(1− φi) sin(αi)− γi cos(αi)

)
− 1

ρi+1

(
(1− φi+1) sin(αi+1)− γi+1 cos(αi+1)

)]
,

β̇i = 0,

δ̇i = 0, i = 1, 2, . . . , n. (19)



Remark: Richardson’s model ([12]) is confined to the CP
manifold and obeys equation (19) with αi = 0, ∀i.

Existence of the invariant submanifold MCB(α) on which
the system shape evolves according to these reduced shape
dynamics suggests a two-part approach for characterization
of the solution space and subsequent stability analysis. The
first part of our approach will entail analysis of the solutions
and stability properties of the reduced dynamics on the
CB Pursuit Manifold, and the other part will focus on the
evolution of the system on the full shape space, unrestricted
to (but possibly converging to) the CB Pursuit Manifold. We
sketch this latter step in section VII.

V. SPECIAL SOLUTIONS

Here we characterize possible special solutions for the
system dynamics and determine criteria for their existence.
We will discuss relative equilibria as well as a more general
type of special solution.

A. Relative equilibria

Equilibria of the shape space dynamics (14) correspond
to relative equilibria of the full system dynamics (1). As
is demonstrated in [4], system dynamics of the form (1)
permit only two types of relative equilibria: rectilinear and
circling. For a rectilinear relative equilibrium, all the particle
velocities are aligned (i.e. φi = 1, i = 1, 2, . . . , n) and
u1 = u2 = · · · = un = 0. For a circling relative equilibrium,
the particles travel on a common closed circular trajectory,
separated by fixed chordal distances. At this relative equilib-
rium, we have u1 = u2 = · · · = un = 1

rc
6= 0, where rc is

the radius of the circular orbit.

We now state propositions concerning the existence of
relative equilibria in terms of conditions on the CB angles
{α1, α2, . . . , αn}. Note that we restrict our attention to
relative equilibria existing on the submanifold MCB(α) due
to stability properties of this particular submanifold which
will be discussed in section VII. The first proposition deals
with rectilinear motion, and the second with circling motion.

Proposition 1: Given {α1, α2, . . . , αn}, a relative equilib-
rium corresponding to rectilinear motion on MCB(α) exists
for system (1) under cyclic pursuit with CB(α) control
law (7) if and only if there exists a set of constants
{σ1, σ2, . . . , σn} such that σi > 0, i = 1, 2, . . . , n and

n∑
i=1

σie
jαi = 0, (20)

where j =
√
−1.

Proof: See Appendix.

Proposition 2: Given {α1, α2, . . . , αn}, a relative equilib-
rium corresponding to circling motion on a common orbit
on MCB(α) exists for system (1) under cyclic pursuit with

CB(α) control law (7) if and only if

i. sin(αi) > 0 ∀i ∈ {1, 2, . . . , n} or
sin(αi) < 0 ∀i ∈ {1, 2, . . . , n},

ii. sin

(
n∑

i=1

αi

)
= 0. (21)

Proof: See Appendix.

Remark: Note that the condition of Proposition 1 and
condition (i) of Proposition 2 are mutually exclusive, and
therefore the set of all possible {α1, α2, . . . , αn} for which
rectilinear equilibria exist is disjoint from the set of all
possible {α1, α2, . . . , αn} for which circling equilibria exist.
Also, the two cases in condition (i) of Proposition 2 corre-
spond to the choice of either clockwise or counter-clockwise
circling equilibria.

B. Other special solutions

A collection of particles in cyclic pursuit can be viewed as
a planar polygon with labeled vertices (i.e. the sides connect
particle i to particle i + 1). It is possible to discuss the
“shape” and “size” of a particle polygon with the usual
geometric meanings of these terms. A relative equilibrium is
then a system trajectory for which the size and shape of the
associated particle polygon remain invariant. Our continued
analysis and numerical simulations have demonstrated that a
more general type of special solution exists, for which the
shape of the associated particle polygon remains invariant
but the size is time-varying. Typically, these solutions are
characterized by either spiraling out or spiraling in. Explicit
examples are discussed for the two-particle case in section
VI.

VI. MUTUAL CB PURSUIT

In the two-particle case, cyclic pursuit is more aptly de-
scribed as mutual pursuit. In this case, we are able to perform
a global stability analysis and fully describe the steady-
state solutions as parametrized by α1 and α2. We note that
the n = 2 case provides valuable insight into methods for
attempting stability analysis of higher-dimensional systems
(i.e. for n > 2).

In the two-particle case, we are able to derive a simplified
form of the shape dynamics (15) as follows. First, the
obvious symmetries in the two-particle case allow for the
assignment

φ = φ1 = φ2, γ = γ1 = −γ2, ρ = ρ1 = ρ2. (22)

Then, making use of the orthogonal decomposition of x2 (in
terms of r1−r2

|r1−r2| and (r1−r2)
⊥

|r1−r2| ) and the identity a · b⊥ =
−a⊥ · b, we have

φ = −β1β2 − δ1δ2, γ = −β1δ2 + δ1β2. (23)



Substituting these expressions into our shape dynamics (15),
we then have the simplified two-particle version given by

ρ̇ = β1 + β2,

β̇1 = µ1

[
sin(α1)β1δ1 − cos(α1)δ2

1

]
,

β̇2 = µ2

[
sin(α2)β2δ2 − cos(α2)δ2

2

]
,

δ̇1 = µ1

[
cos(α1)β1δ1 − sin(α1)β2

1

]
,

δ̇2 = µ2

[
cos(α2)β2δ2 − sin(α2)β2

2

]
, (24)

with the auxiliary algebraic equations

φ = −β1β2 − δ1δ2, γ = −β1δ2 + δ1β2,

β2
1 + δ2

1 = 1, β2
2 + δ2

2 = 1. (25)

As noted previously, since
(
β̇i, δ̇i

)
depends only on βi and

δi (for i = 1, 2) we can separately analyze these sub-systems.
Due to the orthogonality condition β2

i +δ2
i = 1, it can readily

be shown that each subsystem has two equilibrium points at
(βi, δi) = ±

(
cos(αi), sin(αi)

)
.

Proposition 3: For i = 1, 2, the point (βi, δi) =
−
(
cos(αi), sin(αi)

)
is an asymptotically stable equilibrium

point for the subsystem
(
β̇i, δ̇i

)
, with region of convergence

given by
{

(βi, δi) ∈ S1
∣∣∣(βi, δi) 6=

(
cos(αi), sin(αi)

)}
.

Proof: Use Lyapunov’s indirect method to show that the
equilibrium point at (βi, δi) =

(
cos(αi), sin(αi)

)
is un-

stable. Then use LaSalle’s invariance principle([6]) with
Lyapunov function Λi = cos(αi)βi + sin(αi)δi to prove
asymptotic stability of the other equilibrium point. �

Note from (17) and (18) that (βi, δi) =
−
(
cos(αi), sin(αi)

)
, i = 1, 2, corresponds to our definition

of MCB(α) for the two-particle case, so Proposition 3
establishes asymptotic convergence to MCB(α). The rate
of convergence is governed by the control gains µ1 and
µ2. We therefore seek to describe the system dynamics on
MCB(α) as parametrized by the particular values of α1, α2,
i.e. the asymptotic behavior of the system.

On MCB(α), the only (possibly) nonzero portion of the
shape dynamics is given by

ρ̇ = β1 + β2 = − [cos(α1) + cos(α2)] . (26)

We can also derive an expression for the controls
uCB(αi)(t) on MCB(α), starting from (12) and substituting
for φ, γi, βi, δi to get

uCB(αi)(t) =
1

ρ(t)
[sin(α1) + sin(α2)] , i = 1, 2. (27)

Since the respective signs of ρ̇ and u(t) = uCB(α1)(t) =
uCB(α2)(t) are determined by the respective signs of the
quantities [cos(α1) + cos(α2)] and [sin(α1) + sin(α2)], we
can concisely state our characterization of the manifold in
terms of vector addition in the complex plane, noting that

ejα1 + ejα2 = [cos(α1) + cos(α2)] + j [sin(α1) + sin(α2)]
= −ρ̇ + jρu. (28)

The results are summarized in table I and illustrated in figure
2.

Remark: For α1 = α2, the center of mass (i.e. 1
2 (r1 + r2))

remains fixed. If α1 = α2 and ejα1 + ejα2 does not lie on
one of the axes, then the particles will spiral out or spiral in
around the center of mass.

Remark: In work to appear [10], Mischiati and Krish-
naprasad have investigated mutual pursuit under motion
camouflage.

VII. STABILITY FOR MANY PARTICLES

As was previously alluded to at the end of section IV-A,
the form of the cyclic CB closed-loop shape dynamics (15)
suggests an approach to stability analysis which involves a
separate investigation of convergence to MCB(α) and conver-
gence to special solutions on MCB(α), in a manner somewhat
reminiscent of center manifold theory. Here we sketch an
outline of this approach, with the intent of presenting a more
complete analysis in future work.

A. Convergence to the invariant manifold

We suggest that the path for proving system convergence
to the invariant manifold MCB(α) lies in following an
approach analogous to that demonstrated in the two-particle
analysis presented in section VI. In the two-particle case,
the cost function Λi (for i = 1, 2) was used as a Lyapunov
function to prove (by way of the invariance principle) that the(
β̇1, δ̇1

)
and

(
β̇2, δ̇2

)
subsystems converge to equilibrium

points corresponding to the definition of MCB(α). In an
analogous approach for the n > 2 case, we define the
projection function Λ : Mstate/SE(2) −→ [−1, 1]n by

Λ(φ1, γ1, β1, δ1, ρ1, . . . , φn, γn, βn, δn, ρn)
= (Λ1,Λ2, . . . ,Λn), (29)

with Λi as defined by (11), and then discuss convergence
to MCB(α) in terms of convergence of Λ to the corre-
sponding point (−1,−1, . . . ,−1)T ∈ [−1, 1]n. (A Lyapunov
function such as V =

∑n
i=1 Λi should serve the purpose.)

Further analysis is required to complete the technical proof
(note, for instance, that care must be taken since the point
(−1,−1, . . . ,−1)T lies on the boundary of [−1, 1]n), but
the outlined approach seems to point the way to a nonlinear
stability analysis for the many particle case.

B. Convergence to special solutions on the invariant mani-
fold

The second portion of the stability analysis focuses on
the reduced dynamics (19) which govern the system shape
evolution on MCB(α). This analysis requires both the char-
acterization of all steady-state solutions corresponding to a
given set of CB angles {α1, α2, . . . , αn} as well as a deter-
mination of the stability properties of these solutions. The
beginning steps in this process were described in section V
with the identification of necessary and sufficient conditions
for the existence of relative equilibria and the description



TABLE I
CHARACTERIZATION OF THE ASYMPTOTIC BEHAVIOR FOR MUTUAL CB PURSUIT

Case ρ̇(t); u(t) ejα1 + ejα2 Description
I. ρ̇(t) ≡ 0; u(t) ≡ 0 0 rectilinear equilibrium
II. ρ̇(t) ≡ 0; u(t) > 0 positive imaginary axis CCW circling equilibrium
III. ρ̇(t) ≡ 0; u(t) < 0 negative imaginary axis CW circling equilibrium
IV. ρ̇(t) < 0; u(t) ≡ 0 positive real axis “straight flight rendezvous”
V. ρ̇(t) > 0; u(t) ≡ 0 negative real axis “straight flight retreat”
VI. ρ̇(t) < 0; u(t) > 0 quadrant I CCW “inward sweep”
VII. ρ̇(t) > 0; u(t) > 0 quadrant II CCW “outward sweep”
VIII. ρ̇(t) > 0; u(t) < 0 quadrant III CW “outward sweep”
IX. ρ̇(t) < 0; u(t) < 0 quadrant IV CW “inward sweep”

(a) Case I: Rectilinear equilibrium
(π/3, 4π/3)

(b) Case III: CW circling equilibrium
(5π/4, 7π/4)

(c) Case VII: CCW “outward sweep”
(2π/3, 2π/3)

Fig. 2. These MATLAB simulations illustrate a selection of the different cases described in table I. The particular choices of (α1, α2) for each simulation
are listed in the captions associated with each figure.

of other special solutions; the classification presented in the
two-particle case may provide the framework for charac-
terizing all possible steady-state solutions. Convergence to
these particular solutions can then be addressed in terms of
Lyapunov analysis with the reduced dynamics (19).

VIII. CONCLUSION

In this work we have presented a formulation of a cyclic
pursuit scheme with a constant bearing pursuit law. By an
explicit reduction to shape space, we have demonstrated the
existence of the invariant submanifold MCB(α) and provided
necessary and sufficient conditions for existence of relative
equilibria on that submanifold. For the two-particle case,
we have proved asymptotic convergence to MCB(α) and
developed a full characterization of the possible steady-state
solutions in terms of the CB angles. Finally, we have outlined
an approach for nonlinear stability analysis in the many
particle case.

Work in progress (in addition to that which was outlined
in section VII) includes a generalization to the full three-
dimensional case (with cyclic pursuit on the sphere as an
intermediate step) as well as allowing for time-varying CB
angles αi.
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APPENDIX

Proof of Proposition 1: (⇒) At a rectilinear relative equi-
librium on MCB(α) we have ρi constant, i = 1, 2, ..., n,
and therefore we can make the assignment σi = ρi =
|ri,i+1|. Furthermore, by definition of a rectilinear relative
equilibrium, there exists a unit vector xcom such that x1 =
x2 = . . . = xn = xcom.

Note that the closure constraint

n∑
i=1

ri,i+1 = 0 (30)

always holds, implying that

0 = xcom ·
n∑

i=1

ri,i+1 =
n∑

i=1

xi · ri,i+1

=
n∑

i=1

|ri,i+1|βi =
n∑

i=1

σi cos(αi), (31)

where the last step follows from the definition of
MCB(α). An analogous chain of logic starting with x⊥com ·∑n

i=1 ri,i+1 = 0 yields
∑n

i=1 σi sin(αi) = 0, from which
(20) follows.

(⇐) Assume that there exists a set of constants
{σ1, σ2, . . . , σn} which satisfy the conditions of Proposition
1. Then a rectilinear relative equilibrium can be constructed
as follows:

1) Place r1 at the origin with velocity vector x1 aligned
with the horizontal axis.

2) Assign the positions and velocities of the remaining
n− 1 particles in an iterative fashion by

xi = x1, i = 2, 3, . . . , n, (32)

ri+1 = ri + σiR (αi)xi, i = 1, 2, . . . , n− 1. (33)

We must show that our constructed state is on MCB(α).
Using (4) with (33), we compute

Λi = R (αi)xi ·
ri,i+1

|ri,i+1|
= R (αi)xi ·

−σiR (αi)xi

|σiR (αi)xi|
= −R (αi)xi ·R (αi)xi

= −1, i = 1, 2, . . . , n− 1. (34)

This shows that the first n− 1 particles are on MCB(α), and
we must now show that Λn = −1, also.

Summing up expressions (33), and substituting xi = x1

per (32), we have

rk =

(
k−1∑
i=1

σiR(αi)

)
x1, k = 2, 3, . . . , n. (35)

Therefore we can express rn by

rn =

(
n−1∑
i=1

σiR(αi)

)
x1

=

((
n∑

i=1

σiR(αi)

)
− σnR(αn)

)
x1

=

([ ∑n
i=1 σi cos(αi) −

∑n
i=1 σi sin(αi)∑n

i=1 σi sin(αi)
∑n

i=1 σi cos(αi)

]

− σnR(αn)

)
x1

= −σnR(αn)x1, (36)

where the last step follows from the assumptions of
Proposition 1. Calculations analogous to (34) can then be
used to show that Λn = −1, and therefore we conclude that
the state lies in MCB(α).

By (32) we have φi = 1 (and γi = 0), and direct substitu-
tion into (19) shows that this corresponds to an equlibrium
for the reduced dynamics (i.e. a relative equilibrium for the
full dynamics.) Since the velocity vectors are aligned, this is
necessarily a rectilinear equilibrium. �

Remark: The next proof uses the following identities (de-
rived from common trigonometric identities and the defini-
tion of the rotation matrix in (5)):

i. sin(θ)R
(
θ +

π

2

)
=

1
2

(
R(2θ)− I

)
, (37)

ii. R(2θ) = I ⇔ sin(θ) = 0. (38)

Proof of Proposition 2: (⇒) Without loss of generality,
assume that the circling relative equilibrium (with radius rc)
rotates in a CCW direction and has its center at the origin,
i.e.

|r1| = |r2| = . . . = |rn| = rc. (39)

Since the particles are moving in a CCW direction with
velocities tangent to the circle, we have

xi =
r⊥i
|ri|

=
r⊥i
rc

. (40)

Our circling equilibrium lies on MCB(α), and therefore it is
possible to show that

R(αi)xi = − ri − ri+1

|ri − ri+1|
(41)

by making use of the definition of Λi and the orthogonal
decomposition of the vector R(αi)xi in terms of ri−ri+1

|ri−ri+1|
and its corresponding orthogonal unit vector. By substitution
of (40) into (41) it follows that

ri+1 = ri + ρiR(αi)
r⊥i
rc

, (42)



which establishes the necessity of condition (i) since we must
have sin(αi) > 0.3 .
Taking the inner product of each side of (42) with itself, we

can solve for ρi as follows:

ri+1 · ri+1 =
(
ri + ρiR(αi)

r⊥i
rc

)
·
(
ri + ρiR(αi)

r⊥i
rc

)
=⇒ r2

c = r2
c + ρ2

i + 2ρiri ·R(αi)
r⊥i
rc

=⇒ ρi = −2ri ·R(αi + π
2 )

ri

rc
= −2 |ri|

|ri|
rc

cos(αi + π
2 )

= 2rc sin(αi). (43)

Substituting this result into (42) and making use of (37)
yields

ri+1 = ri + 2rc sin(αi)R(αi)
r⊥i
rc

= ri + 2 sin(αi)R(αi + π
2 )ri

=
[
I + 2

(
1
2

(
R(2αi)− I

))]
ri

= R(2αi)ri, (44)

which can be expressed in an alternate form as

rj = R

(
2

j−1∑
k=0

αk

)
r1, j = 1, 2, . . . , n, (45)

if we use the convention α0 ≡ 0.

Combining (45) with the closure condition (30) yields

0 =
n∑

i=1

(ri − ri+1)

=
n∑

i=1

[
R

(
2

i−1∑
k=0

αk

)
r1 −R

(
2

i∑
k=0

αk

)
r1

]

=

[
I −R

(
2

n∑
k=0

αk

)]
r1 =⇒ sin

(
n∑

k=0

αk

)
= 0, (46)

where the last step follows from (38).

(⇐) Assume that the conditions of Proposition 2 hold.
(Without loss of generality, we’ll take sin(αi) > 0, i =
1, 2, . . . , n)4. We claim that the following construction leads
to a circling relative equilibrium:

1) Place r1 on the horizontal axis with |r1| = rcom > 0
and assign the positions of the remaining n−1 particles

3To see this, note that r⊥i
rc

denotes the unit vector tangent to the circle
(“pointing” counter-clockwise) at ri. The unit vector that results from

rotating r⊥i
rc

counter-clockwise by αi must therefore indicate the direction
toward particle i + 1. If sin(αi) ≤ 0, then this vector will point outside
the circle.

4In order to prove Proposition 2 for the alternative case, i.e. for

sin(αi) < 0, i = 1, 2, . . . , n, we replace (48) with xi = − r⊥i
|ri|

, i =

1, 2, . . . , n, and proceed in the same fashion.

by

ri = R

(
2

i−1∑
k=1

αk

)
r1, i = 2, 3, . . . , n. (47)

2) Specify the velocities by

xi =
r⊥i
|ri|

, i = 1, 2, . . . , n. (48)

(Note that (47) implies that |ri| = |r1| = rcom, i =
1, 2, . . . , n.) As in the previous proof, we must show that
this state lies on MCB(α) and that it corresponds to an
equilibrium point for the reduced dynamics (19). We will
start with the former.

Note from (47) that we have

ri,i+1 = R

(
2

i−1∑
k=1

αk

)
r1 −R

(
2

i∑
k=1

αk

)
r1

= [I −R(2αi)]R

(
2

i−1∑
k=1

αk

)
r1

= −2 sin(αi)R
(
αi +

π

2

)
ri, i = 1, 2, . . . , n− 1,

(49)

where we have used identity (37). Therefore it holds that

|ri,i+1| = 2 |sin(αi)| |ri| , i = 1, 2, . . . , n− 1. (50)

Since sin(αi) > 0 (by assumption), (48) implies that

R(αi)xi ·
ri,i+1

|ri,i+1|
= R(αi)

r⊥i
|ri|

·
−2 sin(αi)R

(
αi + π

2

)
ri

2 sin(αi) |ri|

= −R(αi)
r⊥i
|ri|

·R (αi)
r⊥i
|ri|

= −1, i = 1, 2, . . . , n− 1. (51)

Also, by (47) we have

rn = R

(
2

n−1∑
k=1

αk

)
r1 = R

(
2

n∑
k=1

αk

)
R (−2αn) r1

= R (−2αn) r1, (52)

(where the last simplification is made possible by condition
(ii) of our proposition in conjunction with identity (38)), and
therefore r1 = R (2αn) rn, i.e.

rn − r1 = [I −R(2αn)] rn. (53)

Then calculations analogous to (51) yield R(αn)xn · rn,1
|rn,1| =

−1, demonstrating that our state lies on MCB(α).

From (47) and (52) it is clear that

ri+1 = R (2αi) ri, i = 1, 2, . . . , n, (54)

and therefore we can express φi for our constructed state as

φi =
r⊥i
|ri|

·
r⊥i+1

|ri+1|
=

r⊥i
rcom

·R (2αi)
r⊥i

rcom

= cos(2αi), i = 1, 2, . . . , n. (55)



(Similar calculations show that γi = − sin(2αi).) For these
particular values of (φi, γi), we note the following:

(1− φi) sin(αi)− γi cos(αi)
= (1− cos(2αi)) sin(αi) + sin(2αi) cos(αi)
= sin(αi)− cos(2αi) sin(αi) + sin(2αi) cos(αi)
= sin(αi) + sin(2αi − αi)
= 2 sin(αi), i = 1, 2, . . . , n. (56)

Substitution of (50), (55) and (56) into (19) demonstrates
explicitly that our constructed state is in fact a relative
equilibrium. �
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