
ABSTRACT

Title of Thesis: GRADIENT FLOW BASED MATRIX

JOINT DIAGONALIZATION FOR

INDEPENDENT COMPONENT ANALYSIS

Bijan Afsari, Master of Science, 2004

Thesis directed by: Professor P. S. Krishnaprasad
Department of Electrical and Computer Engineering

In this thesis, employing the theory of matrix Lie groups, we develop gradient

based flows for the problem of Simultaneous or Joint Diagonalization (JD) of a set

of symmetric matrices. This problem has applications in many fields especially in

the field of Independent Component Analysis (ICA). We consider both orthogonal

and non-orthogonal JD. We view the JD problem as minimization of a common

quadric cost function on a matrix group. We derive gradient based flows together

with suitable discretizations for minimization of this cost function on the Rieman-

nian manifolds of O(n) and GL(n).

We use the developed JD methods to introduce a new class of ICA algorithms that

sphere the data, however do not restrict the subsequent search for the un-mixing

matrix to orthogonal matrices. These methods provide robust ICA algorithms in

Gaussian noise by making effective use of both second and higher order statistics.

GRADIENT FLOW BASED MATRIX JOINT

DIAGONALIZATION

FOR INDEPENDENT COMPONENT ANALYSIS

by

Bijan Afsari

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science 2004

Advisory Committee:

Professor P. S. Krishnaprasad, Chairman
Professor S. Shamma
Professor J. Simon
Professor A. Tits

c©Copyright by

Bijan Afsari

2004

DEDICATION

This thesis is humbly dedicated to all great men and women who have suffered in

the path to enlightenment and democracy in my country, IRAN.

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor Professor P.S. Krishnaprasad for all his guid-

ance and inspiration.

I would also like to thank the advisory committee for their insightful comments,

especially Professor Andre Tits for his careful corrections and suggestions. I am

also indebted to all University of Maryland members for providing an excellent

environment for my achievement.

This research was supported in part by Army Research Office under ODDR&E

MURI01 Program Grant No. DAAD19-01-1-0465 to the Center for Communicating

Networked Control Systems (through Boston University).

iii

TABLE OF CONTENTS

1 Introduction 1
1.1 Background . 1
1.2 Outlines and Contributions . 3

2 Preliminaries about ICA/BSS 6
2.1 Problem Formulation . 6

2.1.1 Some Possible Assumptions about the Model 7
2.1.2 What is the ICA Problem? 8
2.1.3 Identifiability Conditions . 9

2.2 Measures of Independence and Contrast Functions 11
2.3 Cumulants . 13
2.4 Cumulant Based ICA . 16

2.4.1 Gaussian Manifold and the Negentropy 17
2.4.2 The Negentropy and Mutual Information 17
2.4.3 Whitening the Data . 18
2.4.4 Whitening and Independence 20
2.4.5 A Contrast for White Signals 22

2.5 The Group Structure of the ICA Problem 23
2.6 Measures of Performance . 24
2.7 A Survey of ICA Algorithms . 25

3 The Joint Diagonalization Criterion 27
3.1 Joint Diagonalization of Cumulant Slices of White Signals 27
3.2 The JADE Algorithm . 29

3.2.1 Orthogonal Joint Diagonalization Jacobi Rotations (the so-
called JADE Algorithm) . 30

3.2.2 The JADE Algorithm . 32
3.3 Non-Orthogonal Joint Diagonalization 33

3.3.1 Square Mixing Matrices . 34
3.3.2 Two Desired Properties for JD Cost Functions 35
3.3.3 Examples of Scale and Permutation Invariant Cost Functions 36
3.3.4 Dealing with Cost Functions that are not Scale-Invariant . . 37

iv

4 Matrix Lie Groups 39
4.1 Introduction . 39
4.2 Riemannian Manifolds, Tangent Spaces and Gradients 40

4.2.1 Tangent Space . 41
4.2.2 Riemannian Manifolds . 43

4.3 Flows on Riemannian Manifolds . 44
4.4 Matrix Lie Groups . 46
4.5 Classic Matrix Lie groups . 47

4.5.1 The General Linear Group GL(n) 48
4.5.2 The Special Linear Group SL(n) 48
4.5.3 The Orthogonal Group O(n) 48

5 The Orthogonal Joint Diagonalization Gradient Flow 49
5.1 Introduction . 49
5.2 The Gradient Flow for Minimization of J1(Θ) 50
5.3 The Double Bracket Equation . 52
5.4 Discretization of the Gradient Flow 54

5.4.1 The Euler Discretization Method 55
5.4.2 Runge-Kutta (RK) Methods 57

5.5 Applications in the BSS/ICA Problem(EG-JADE and RKG-JADE
Algorithms) . 60

5.6 Numerical Examples . 60

6 Gradient Based Non-Orthogonal Joint Diagonalization 70
6.1 Gradient Flow for Joint Diagonalization on GL(n) 70
6.2 Gradient Flow for Joint Diagonalization over SL(n) 72
6.3 Nonholonomic Flow for Joint Diagonalization 74

6.3.1 Group Action on a Manifold 75
6.3.2 The Action of the Group of Diagonal Matrices 75

6.4 Flows on the Manifolds of Triangular Matrices 78
6.5 Discretization of the Flows . 79

6.5.1 Euler Discretization . 79
6.5.2 Fourth Order Runge-Kutta Discretization 80
6.5.3 An iterative algorithm based on LU factorization 81
6.5.4 Incorporation of the Armijo line search method 82

7 ICA/BSS Algorithms Based on Joint Diagonalization 85
7.1 Introduction . 85
7.2 A Class of ICA Algorithms Based on Non-Orthogonal JD 88
7.3 Numerical examples . 91

8 Summary and Suggestions for Future Work 97

v

A Derivations and Some Proofs 101
A.1 Proof of Theorem 5.1 . 101
A.2 Proof of Theorem 5.2 . 103
A.3 Proof of Theorem 6.1 . 103

Bibliography 105

vi

Chapter 1

Introduction

1.1 Background

The problems of Independent Component Analysis (ICA) and Blind Source Sepa-

ration (BSS) are emerging and appealing areas of research. Starting in mid 1980’s

in Signal Processing and Neuroscience communities, ICA and BSS fast became

the research focus of many different research communities. In their simplest for-

mulation, ICA and BSS refer to the problem of retrieving n unknown independent

random sources mixed through a mixing matrix and observed by n sensors without

having or using any prior information about the source distributions or the mix-

ing matrix. More specifically, let A be a non-singular matrix and ~s(t) a vector of

random independent sources and ~x(t) = A~s(t) the observed signal. The problem

is to estimate A (the mixing matrix) or a matrix B that we call the un-mixing

matrix, such that ~̂s(t) = B~x(t) is an estimate of the source signals, by just using

the samples of the sensed signal ~x(t). It is apt here to mention that the terms

BSS and ICA are used almost interchangeably, but BSS which is more common

in array processing literature usually refers to the case that the linearity and in-

1

dependence in the model “truly” hold, whereas ICA refers to the case that these

two are just assumed. Without further description the beauty and ubiquity of

the problem is obvious. It is a very natural and immediate problem in many dif-

ferent subjects: Bio-Signal processing, seismic signal processing, communication

channels, array sensor processing, financial data analysis,... all deal with problems

that can be formulated in one or the other way as this problem. Till the 80’s this

problem was considered without enough attention paid to the word “independent”,

where“independent” was identified by or simplified to “uncorrelated”. Although

the independence in many cases is an inherent property related to the physics of

the problems, it was ignored mainly because of computational difficulties, lack of

knowledge about Higher Order Statistics (HOS) at least among engineers, and

the dominance of Gaussian signal model assumption among researchers. In the

mid 80’s it was noticed that by resorting to higher order statistics or non-linear

functions in measuring “independence” it is possible to achieve results that are im-

possible to have by just using second order statistics or linear correlation. Needless

to say ICA’s predecessor Principal Component Analysis (PCA) is based on eigen

decomposition of the data’s covariance matrix.

Since then a huge amount of research has been dedicated to this problem, its dif-

ferent versions and extensions. It is easy to see the influence of various fields on

the ICA/BSS literature, just to mention: Statistics, Statistical Signal Processing,

Neural Networks, Optimization Theory, Nonlinear Dynamical Systems, Differen-

tial and Information Geometry, Neuroscience. As a matter of fact, in this thesis

we pursue a path that encompasses elements of Statistics, Differential Geometry,

Dynamical Systems and Optimization theory.

2

1.2 Outlines and Contributions

In this thesis we develop new methods to solve a problem known as “ Matrix

Joint Diagonalization (JD)” which has applications in the BSS/ICA problem in

addition to other contexts. The Joint Diagonalization problem in one of its forms is

simply: for a set of symmetric matrices {Ci}N
i=1 find a non-singular matrix B such

that BCiB
T ’s are “as close to diagonal as possible” (for more detail see Chapter

3). This, for example, can be encountered in the case that all Ci’s are believed

theoretically to be of the form Ci = AΛiA
T for some common non-singular matrix

A and diagonal Λi, but because Ci’s sample estimates are used this can hold only

approximately. Hence the idea would be to find a matrix B that diagonalizes all

of them simultaneously, as much as possible. Our approach to this problem is to

introduce suitable cost functions for the problem and use ideas from differential

geometry to derive gradient based matrix ordinary differential equations (ODEs) on

certain Riemannian manifolds such that the ODEs solution can yield (or converge

to) a joint diagonalizer. In deriving ODEs for optimization purposes we mainly

follow [Brockett] and [Helmke]. We also give some discretization schemes for these

(ODEs) with an eye to keeping the answers on the underlying manifolds.

In the context of ICA/BSS problem the matrices to be jointly diagonalized can

be “cumulant slices” [Cardoso1, Yeredor]. Applying the developed methods to the

Joint Diagonalization of cumulant slices, we devise algorithms for the ICA/BSS

problem, that are effective for ICA in the presence of Gaussian noise.

In Chapter 2, we introduce and formulate the ICA/BSS problem, and explain

some of the basic definitions about it. We give the fundamental theoretical results

about the issue of identifiability in the ICA/BSS problem. We also introduce

measures of independence, definitions and some useful results about cumulants.

3

The group structure of the ICA/BSS problem is a very important concept that is

introduced there. A short survey of ICA problems is also presented.

In Chapter 3, we elaborate more on the criteria of Joint Diagonalization of

cumulant matrices. We consider some of the commonly used cost functions and

their validity, we introduce some new cost functions, as well.

In Chapter 4, we provide very briefly the required material from the theory of

matrix Lie groups. Our treatment will be very short and informal.

In Chapter 5, following [Brockett] and [Helmke], we introduce a gradient flow

for joint diagonalization by orthogonal matrices, and consider their convergence

properties. The Double Bracket [Helmke,Brockett] formulation of joint diagonal-

ization is introduced there. We also discretize the orthogonal flow (using the Euler

and Runge-Kutta methods) to give a gradient based version of the famous JADE

[Cardoso1] algorithm for the BSS/ICA problem. We also give some numerical

examples manifesting the performance of the developed algorithms.

In Chapter 6, the next contribution of this thesis, we develop flows for joint

diagonalization by non-orthogonal matrices, and discretize them (using the Euler

and Runge-Kutta methods). More specifically, we derive flows on the manifold of

non-singular matrices GL(n) and matrices with unity determinant SL(n) for the

JD problem. We will introduce methods to discretize them as well, so that the

answer stays on the underlying manifold to a good extent.

In Chapter 7, we suggest a class of ICA/BSS algorithms based on the methods

developed in Chapters 5 and 6. We introduce algorithms that whiten the data

(using second order statistics, i.e correlations) in the first step and then search for

non-orthogonal un-mixing matrices via joint diagonalization of a set of cumulant

slices of the whitened data, hence resorting to the HOS of the data. This approach

4

is different from the existing non-orthogonal JD methods in the ICA/BSS context

and also different from methods that use only HOS. In fact our method uses the

benefits both of second order statistics that are robust and cumulants which are

blind to Gaussian noise. In this chapter we also examine the actual performance

of the developed methods by numerical simulations. Chapters 5,6 and 7 constitute

the main contributions of this thesis.

In Chapter 8, we give a summary of the thesis as well as some suggestions for

future work.

In the Appendix we have included some derivations that are rather lengthy to

be included in main chapters or those that their omission do not harm the sequence

of the subjects.

5

Chapter 2

Preliminaries about ICA/BSS

2.1 Problem Formulation

First we formulate the ICA/BSS problem in a general fashion and give different

relevant assumptions. Consider

~x(t) = A ∗~s (t) + ~n(t) (2.1)

where: t denotes continuous or discrete time, ~s is an n dimensional random signal,

∗ indicates the linear convolution operation, A = A(t, τ) is an m × n convolution

kernel or channel distortion matrix, ~n(t) is an n-dimensional additive noise, and

~x(t) is an m-dimensional observed signal. For many problems this model is quite

realistic. It should be noted that because of the presence of the convolution opera-

tion in (2.1) the corresponding restoration or inverse problem is also referred to as

Blind Deconvolution problem, as we will see with some additional assumptions this

problem reduces to the standard BSS/ICA problem. We should also mention that

in what is known as Nonlinear ICA, the assumption of linear mixture is relaxed,

although that problem is much more difficult than the customary ICA formulation

6

presented here [Hyvarinen].

2.1.1 Some Possible Assumptions about the Model

Here we cite some different possible assumptions about each of the introduced

variables:

1. Assumptions about the Source Vector ~s(t):

S1.The source ~s is a vector of n independent stochastic processes,

S2. ~s is a stationary random process, with zero mean, with non-singular and

finite correlation,

∼S2 . ~s is a non-stationary random process,

S3. Each component of ~s is Independently Identically Distributed (i.i.d) in

time,

S4. In addition to S1,S2,S3, ~s has at most one component with Gaussian

distribution,

S5.1. n > m, i.e more sources than sensors,

S5.2. m = n, the same number of sources and sensors,

S5.3. n ≤ m, i.e more sensors than sources,

S6. Sources are complex valued.

2. Assumptions about the Mixing Channel A(t, τ):

A1. A = A(t, τ) is a time-invariant filter.

A2. Impulse response A = A(t, τ) is instantaneous, i.e. Aij(t, τ) = aij(t)δ(t−
(τ + τij(t))), where δ(τ) denotes the Dirac delta function or unit impulse in

the discrete-time case.

A3. Impulse response is memoryless, i.e. τij(t) = 0 and Aij(t, τ) = aij(t)δ(t−
τ).

7

A4. All assumptions A1-3 hold, that is the mixing process is a memoryless,

instantaneous and time independent one, so the model (2.1) boils down to:

~x(t) = ~z + ~n = A~s (t) + ~n(t) (2.2)

where we assume that A is full rank.

3. Assumptions about the Noise Vector ~n(t):

N1. Noise is Gaussian.

∼N1. Noise is not Gaussian.

N2. Noise is stationary.

N3. Noise covariance matrix is known.

N4. Noise and signal vector ~s are statistically independent.

Adopting each of these assumptions has significant impacts on solvability of the

problem and as well as on the corresponding algorithms. For example condition

∼S2 leads to the problem of non-stationary BBS [Pham1], which interestingly is

solvable by resorting to only second order statistics. As another example, under

∼N1 using higher order statistics (HOS) is not helpful because as well shall see in

Section 2.4 HOS are blind only to Gaussian noise. By adopting N3 the estimation of

the correlation matrix of ~z will be “less biased” and the subsequent ICA algorithm

will be easier.(see Section 7.1 for more details)

2.1.2 What is the ICA Problem?

Consider the model (2.2) with extra assumptions S1-4, S5.3 and N1,2,4, then the

standard ICA problem can be stated as follows (we can assume complex data and

channel but we avoid it). By just observing the realizations of the received signal

8

~x:

F1. Estimate A the mixing matrix, or

F2. Find a matrix B such that ~y = B~x is an estimate of all or a subset of sources,

or

F3. Find a matrix B such that the elements of ~y = B~x are as independent as

possible.

In general these statements are not equivalent. Especially F3 is interesting because

it relates the restoration of the samples of the data to the statistical independence

of the restored signals. As we will see in the next section the key idea in solving

this problem is restoring the independence.

2.1.3 Identifiability Conditions

Some immediate questions are: is it possible to restore ~s exactly?, are there any

ambiguity in the restoration?, under what conditions is the model identifiable?.

To answer these questions we simplify the model another step and consider the

noiseless model:

~x = A~s (2.3)

Due to the multiplicative form of the equation, obviously any blind restoration

will be up to a scaling factor unless we specify something about the power of the

signal or elements of A. On the other hand a priori we have no information about

the ordering of the elements in ~s, thus again any blind restoration will be up to a

permutation of the sources, as well. It turns out that under some extra conditions

these are the only two ambiguities or indeterminacies. We state without proof a

theorem from Comon’s paper [Comon 1] in a rephrased manner. Before that we

give this definition:

9

Definition 2.1 Two vectors or matrices A and B are called essentially the same

or essentially equal if there is an invertible diagonal matrix Λ and a permutation

matrix Π such that A = ΛΠB.

Theorem 2.1 [Comon 1] Suppose that the model ~x = A~s holds with conditions

S4 and S5.3. If the elements of ~y = B~s are independent for some B, then BA is

essentially diagonal, hence ~y and ~s are essentially the same.

So this theorem states that in the case that ~s is a random vector with at most one

Gaussian component with some other mild conditions restoring independence and

separating the sources are equivalent, and this process has an inherent ambiguity

which is about the scale and order of the sources. This theorem is the theoretical

core for almost all ICA/BSS algorithms. That is, all these algorithms introduce a

criterion for independence and try to optimize it. Note that this theorem relates

the BSS problem to the ICA problem, as well. The condition of having at most one

component with Gaussian distribution is an important requirement, because for

Gaussian vectors uncorrelatedness and independence are equivalent, and an uncor-

related Gaussian vector multiplied by an orthogonal matrix remains independent.

Thus if there are more than one Gaussian components, then the ambiguity will be

up to an orthogonal matrix which is not acceptable in a separation context.

Now if we consider the noisy case, we can argue that in the best case we can es-

timate B such that BA = ΛΠ and even ~y = BA~s + B~n can have independent

components but ~y and ~s are not essentially the same, that is through linear trans-

formations we can not restore the sources, although we may be able to restore

independence or find A. In fact resorting to higher order statistics, in Gaussian

noise, we are able to find B such that BA = ΛΠ, but that is not enough to restore

the sources noiselessly.

10

In the next section we introduce measures of independence and their finite sample

estimates.

2.2 Measures of Independence and Contrast Func-

tions

We follow Cardoso’s formulation as in Chapter 4 of [Haykin]. Let ~x be an n-

dimensional random vector with probability density function (p.d.f.) fx(.) (we

also write ~x ∼ fx(.)) and let ~xp be its independentized version; that is fxp(.) =

∏n
i=1 fxi

(.). If ~x ∼ fx(.) and ~s ∼ fs(.) then the Kullback-Leibler (KL) divergence

between random vectors ~s and ~x is defined as D[~s ‖ ~x] =
∫

fs(u) log(fs(u)
fx(u)

) du and

using the concavity of logarithm function it can be proved that D[~s ‖ ~x] = 0 if and

only if fs = fx almost surely [Cover]. An important property of D[. ‖ .] is that

for any two n-dimensional random vectors ~x and ~y and non-singular matrix A we

have:

D[~x ‖ ~y] = D[A~x ‖ A~y]

that is the KL divergence is invariant under one-to-one linear transformations.

The mutual information between the elements of ~x is defined as I[~x] = D[~x ‖
~xp]. So I[~x] = 0 if and only if the elements of ~x are independent. In fact it can be

shown that

I[~x] = min
~z∈P

D[~x ‖ ~z]

where P is the manifold 1 of random vectors with independent components and

1Here we use the term “manifold” in reference to an infinite dimensional manifold of proba-

bility densities whereas in the subsequent chapters we use this term to refer to finite dimensional

manifolds. For rigorous definition of the former the reader is referred to [Amari 1].

11

this minimum is achieved for ~z = ~xp, i.e. ~xp can be considered as the projection of

~x onto P but obviously not in a usual sense because KL divergence is not a true

metric. So we can rephrase the ICA problem in a compact way as:

min
B∈Rn×mand full rank

I[B~x]

Obviously, this is not a very constructive way!, but it is an instructive one, that

the goal is to minimize the output’s mutual information. Later on we will see

that the space of full rank n × m matrices is “too big” for this search, mainly

because of the scale-permutation ambiguity in the ICA problem. Cardoso has

shown that a maximum likelihood approach to ICA also leads to the same criterion

[Cardoso3]. There are also other criteria, but they are somehow derived from

mutual information [Haykin,Hyavarinen].

Mutual information is an example of a contrast function, a function in terms

of an unknown parameter whose optimization (in this case its minimzation) with

respect to that parameter gives independence or solves the ICA problem. For

our purposes contrast functions are ICA cost functions. Obviously a good cost

function is one that has only global optima and all the optimizers are essentially

the same and give independence. So a good contrast function should be scale and

permutation invariant as the mutual information is.

Evidently the problem with the mutual information is that it is a mathematical

expectation and it depends on the p.d.f of ~x which under the assumption of ICA

is not known!. There are different ways to ameliorate this problem, among them

is approximating the mutual information based on data samples and developing

contrast functions accordingly. This is the approach we will follow.

12

2.3 Cumulants

We review the definition and properties of cumulants of random vectors. Intuitively

cumulants are higher order correlations, so they can be considered as measures of

independence. In some steps we follow [Porat] in notations. For an n-dimensional

real random vector ~x the moment generating function is defined as:

Mx(~λ) = E{exp(~λT~x)} , ~λ ∈ Rn

The cumulant generating function then is defined as Cx(~λ) = log Mx(~λ). Let

1 ≤ i1, i2, ..., ik ≤ n then the kth order cumulant of ~x is defined as a k-way array

whose element at the position (i1, i2, ..., ik) is:

Cum(xi1 , ...,xik) = Cumx(i1, ..., ik) =
∂kCx(~λ)

∂λi1 ...∂λik

∣∣∣∣∣
~λ=0

In the case of real valued sources, cumulants and moments both are permutation

invariant. It can be proved that cumulants and moments can be derived from each

other and in fact in practice cumulants are estimated via estimating the moments.

For example the 4th order cumulant for zero mean random variables, which we will

use often, can be expressed in terms of moments as:

Cum(x1,x2,x3,x4) = E{x1x2x3x4} − E{x1x2}E{x3x4} − E{x1x3}E{x2x4}

−E{x2x3}E{x1x4}

In practice we ought to estimate the cumulants from sample data, this is usually

based on sample averaging of expressions such as above, which in general is not

robust to outliers. It can be shown that the higher the order of the estimated

cumulant the larger the variance or error of the estimation would be. This is

one of the main drawbacks of the cumulant based methods, which makes them

13

vulnerable in small sample sizes. There are other approaches and modifications

to sample averaging method. For example one can filter out outliers, out of some

distance from the mean. Methods such as this are costly to apply, and in fact it

turns out that a huge portion of the computational cost in many cumulant based

algorithms is estimating the cumulants rather than the computations afterwards.

Some of the properties of cumulants that are derived from the above definition

are as follows:

C1. Cumulants are multilinear:

Cum(xi1 , ..., αx + βy, ...,xik) = αCum(xi1 , ...,x, ...,xik) + βCum(xi1 , ...,y, ...,xik)

As a result, for ~x = A~s we have

Cum(xi1 , ...,xik) =
∑

j1...jk

ai1j1 ...aikjk
Cum(sj1 , ..., sjk

)

C2. If ~x and ~y are any two independent vectors then for cumulants of order k:

Cumx+y(i1, ..., ik) = Cumx(i1, ..., ik) + Cumy(i1, ..., ik)

C3. If {xi1 , ...,xik} can be partitioned in two independent subsets then:

Cum(xi1 , ...,xik) = 0

Remark: If i1 = i2 = ... = ik = i then Cumx(i, ..., i) is called the kth order

(auto)cumulant of the ith component of ~x, otherwise Cumx(i1, ..., ik) is called cross

cumulant.

Corollary: If the components of ~x are independent then all the cross cumulants

of any order are zero.

C4. The Gaussian random vector is the only vector that all its cumulants of order

k > 2 are zero.

14

By their multi-linearity, cumulants can be considered as tensors [McCullagh], and

the ICA problem can be interpreted as tensor diagonalization. We can restate

Comon’s theorem as:

Corollary: In the standard ICA formulation (with assumptions in Theorem 2.1)

~x = Am×n~s, if B is a matrix that makes the cumulant tensor of ~y = Bn×m~x

diagonal then BA = ΛP , where Λ is a diagonal and P is a permutation matrix.

By a diagonal tensor we mean one with the property that its i1...ik element is

nonzero only if i1 = ... = ik.

In many cases we are interested in cumulant matrix slices, which we find from

the cumulant tensor by fixing all but two of the indices. We denote a cumulant slice

as: Cumx(i1, ..., ip−1, :, ip+1, ..., iq−1, :, iq+1..., ik), notice the sign ”:” which shows

that index ranges over all its possible values. Obviously any cumulant slice of a

real random vector is symmetric. Now we prove a lemma which is essential to the

approach chosen in this thesis.

Notation: δi1,...,ik,...,in denotes the Kronecker delta and is equal to 1 if i1 = ... = in

and is zero otherwise.

Lemma 2.1 : Let ~x = Am×n~s and ~s be an n-dimensional vector with independent

components, then every cumulant slice(matrix) of ~x is of the form

Cumx(i1, ..., ip−1, :, ip+1, ..., iq−1, :, iq+1..., ik) = AΛAT

where Λ is a diagonal matrix of the form:

Λ =




λ11Cums(1, ..., 1) 0 · · ·
0 λ22Cums(2, ..., 2) · · ·
0

. . . 0

· · · 0 λnnCums(n, ..., n)




15

and λjj =
∏k

l=1,l 6=p,q ailj.

Proof : Using the second part of C1 and the fact that because of the indepen-

dence of the components of ~s, Cums(i1, ..., i, .., ik) = δi1,...,i,...,ikCums(i, ..., i), we

have:

Cumx(i1, ..., ip−1, ip, ip+1, ..., iq−1, iq, iq+1..., ik) =

n∑
i=1

k∏

l=1

ailiCums(i, ..., i) =
∑

i

aipiaiqi(
k∏

l=1l 6=p,q

aili) Cums(i, ..., i) =

∑
i

aipiaiqiλiiCums(i, ...i)

The last summation as ip and iq range between 0 and m can be written in the

desired AΛAT form. 4
Note that in the above lemma A is not restricted to be square. It is interesting

to see that Λ depends on both source cumulants and elements of A for k > 2. In

the special case of 2nd order cumulant slice, i.e. covariance, Λ does not depend on

the elements of A. This difference is important, as a covariance matrix is always

positive semi-definite but a cumulant slice is not, necessarily. This lemma implies

that all the cumulant slices of ~x are diagonalizable (in a congruence manner) by

the pseudo-inverse of A or in the case m = n by A−1. This observation is the basis

for the ICA/BSS methods developed in thesis.

2.4 Cumulant Based ICA

As we mentioned before, mutual information is a measure of independence and

cross cumulants show how much the variables are dependent on each other. So it

would be interesting to see how these measures are related to each other.

16

2.4.1 Gaussian Manifold and the Negentropy

Here we follow Cardoso as in Chapter 4 of [Haykin]. Let N be the manifold of

zero-mean Gaussian random vectors . It is easy to prove that if ~n ∈ N minimizes

D[~x ‖ ~n] for finite covariance zero-mean random vector ~x then ~n] is a Gaussian

vector with the same covariance as ~x. We denote this Gaussianized version of ~x as

~xn. The quantity N [~x] = D[~x ‖ ~xn] which measures the KL-distance of ~x from N
is called the Negentropy of ~x. We know that for any ~n ∈ N , and any non-singular

matrix A, A~n ∈ N , so using invariance of the KL divergence under 1-1 linear

transformations we have:

N [~x] = min
~n∈N

D[~x ‖ ~n] = min
A~n∈N

D[A~x ‖ A~n] = min
~n∈N

D[A~x ‖ ~n] = N [A~x]

thus N [~x] is invariant under one-to-one linear transformations.

For a scalar random variable z with unit variance, I[z] can be approximated in

terms of its cumulants as [Comon1]:

I[z] ' 1

12
κ2

3 +
1

48
κ2

4 +
7

48
κ4

3 −
1

8
κ2

3κ4 (2.4)

where κ3 = Cum(z, z, z) and κ4 = Cum(z, z, z, z). The proof of this is based on

the approximation of the p.d.f. of z around the pdf of its gaussianized version, in

an expansion known as Edgeworth expansion [McCullagh].

2.4.2 The Negentropy and Mutual Information

It is easy to show that N [~x] and I[~x] are related as

I[~x] = N [~x]−
n∑

i=1

N [xi] +
1

2
log

(∏n
i=1 Rii

det (R)

)
(2.5)

where R is the covariance matrix of ~x. By the Hadamard inequality [Marcus] about

positive definite matrices, for a positive definite matrix R, log
(∏n

i=1 Rii

det (R)

) ≥ 0, with

17

equality iff R is diagonal. In order to minimize I[B~x] with respect to B , we note

that the first term in (2.5), i.e. N [B~x] is independent of B, so we need just to

minimize the other two terms. In the sequel we show that a separate minimization

of these two terms serves the goal of ICA.

2.4.3 Whitening the Data

By whitening or sphering the data we can minimize the last term in (2.5) and also

confine the search for un-mixing matrix to the set of orthogonal matrices.

For the proof of the next theorem, we state a useful lemma first:

Lemma 2.2 : Let m ≥ n, and Pn×m and Qn×m be full rank matrices. If PP T =

QQT then P and Q are the same up to an orthogonal factor, that is there exists

an orthogonal Un×n such that P = QU or equivalently Q†P = U , where Q† is the

right pseudo-inverse of Q.

Proof : Let P = V1Σ1U
T
1 and Q = V2Σ2U

T
2 be the Economical Singular Value

Decomposition (ESVD) of P and Q, respectively.(So Vi is n× n, Ui is m× n and

Σi are n× n and positive definite). Then from PP T = QQT we have:

V1Σ
2
1V

T
1 = V2Σ

2
2V

T
2

Hence:

(Σ−1
2 V T

2 V1Σ1)(Σ
−1
2 V T

2 V1Σ1)
T = In×n

That is (Σ−1
2 V T

2 V1Σ1) = Zn×n for some orthogonal matrix Z. So we have:

V1Σ1U
T
1 = V2Σ2U

T
2 (U2ZUT

1)

18

U = U2ZUT
1 is orthogonal so P = QU .4

Theorem 2.2 : Let ~x = Am×n~s with standard ICA assumptions and let Rxx

be the correlation matrix of ~x. Then there exists a matrix R
− 1

2
xx such that the

vector ~y = R
− 1

2
xx ~x is white (i.e. its correlation matrix is the identity) and with the

additional assumption that Rss = In×n we have ~y = Un×n~s for some orthogonal

matrix U .

Proof : Let Rxx = Vm×nΛn×nV
T be the ESVD of Rxx. Note that by the as-

sumptions that A is full rank, m ≥ n and that all the components of ~s have

nonzero variance, Rxx has rank n. Let’s define R
− 1

2
xx = Λ−

1
2 V T . Obviously

Ryy = R
− 1

2
xx RxxR

−T
2

xx = In×n.

Now we have

Rxx = ARssA
T = AR

1
2
ss(AR

1
2
ss)

T = V Λ
1
2 (V Λ

1
2)T

So using the previous lemma AR
1
2
ss = V Λ

1
2 Un×n for some orthogonal U . Then we

can write Λ−
1
2 V T AR

1
2
ss = R

− 1
2

xx AR
1
2
ss = U or R

− 1
2

xx A = UR
− 1

2
ss . Thus

~y = R
− 1

2
xx ~x = R

− 1
2

xx A~s = UR
− 1

2
ss ~s

But, R
− 1

2
ss is diagonal, and due to the scale indeterminacy in the ICA problem we

can assume that it is part of the source scaling. So we may write, ~y = U~s.4
Note that the assumption Rss = In×n is not restrictive due to scale ambiguity in

the ICA problem. As a matter of fact it is more a convention than an assumption.

Reviewing the above proof reveals that we can give an immediate generalization

of this theorem to “sphering in cumulant slices”, as follows:

Theorem 2.3 (Generalized sphering): Let ~x = Am×n~s with standard ICA as-

sumptions and let C be any cumulant slice matrix that is positive semi-definite.

19

Then there exists a matrix C− 1
2 such that for the vector ~y = C− 1

2~x we can assume

~y = Un×n~s for some orthogonal matrix U .

Proof : Proof is essentially the same as the previous one.4

2.4.4 Whitening and Independence

An interesting question is: do we reduce the mutual information by decorellating

the data?. The following example shows that it is not the case in general:

Example1: Let’s consider two sources x1 and x2 each uniformly distributed

in(−1
2
, 1

2
). Because the mutual information is invariant with respect to multi-

plication by diagonal and permutation matrices we consider two different types of

mixing matrices: one of the form A1(θ) =




cot(θ) 1

1 cot(θ)


 and the other of the

form A2(θ) =




cot(θ) −1

1 cot(θ)


 where θ ∈ (0, π

4
). Obviously A2 is equivalent(as

far as the mutual information is concerned) to a rotation by θ. We consider mixing

the sources under both of these matrices and evaluate the mutual information of

the mixture. Figure (2.1) shows the mutual information in terms of θ under the

two mixers. The graph shows that mixing under A2 has a supremum mutual in-

formation of about .3 for θ = π
4
. On the other hand there is a θc below which the

mixture under A1 has mutual information less than 0.3. So if the sources are mixed

with A1 with θ < θc which corresponds to the case that ”the mixing matrix is more

diagonal than certain amount” then by whitening the data we may increase the

mutual information. Certainly there is a whitening matrix that makes the data

independent but there is also a whitening matrix that increases the mutual in-

formation in this case. Beyond θc all the whitening matrices reduce the mutual

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4
A1
A2

Figure 2.1: Mutual information of mixtures Ai(θ)~x in terms of θ, in Example 1

information. It should be noted that the interesting fact that there is a maximum

achievable mutual information using orthogonal mixing matrix is an immediate

consequence of the compactness of the group of orthogonal matrices.4

The conclusion of the example is that in the case where the mixture is such

that the sources have almost equal power contribution in the received signals then

by whitening the data, the mutual information is reduced. In this case and if the

number of sources is large, we can argue that the received signal ~x, due to Central

Limit Theorem [Papoulis] is almost Gaussian. Thus, the second term in (2.5) is

already zero and by making the last term equal to zero I[B~x] will reduce. On the

other hand if one source is dominant in each sensed signal, i.e. the mixture is not

fully mixed, by whitening we may mix more and increase the mutual information.

Thus in the generic case, i.e. in the case that signals are mixed enough and have

almost equal power contribution in the received signals, whitening or PCA can be

considered as a first step in the ICA in order to reduce dependence. Moreover

21

sphering has other benefits that we will consider in Section 7.1.

2.4.5 A Contrast for White Signals

Using (2.4) we can have an approximation of the mutual information in terms of

cumulants. For the whitened signal ~y = U~s where U is orthogonal and Rss = In×n,

by (2.4) and (2.5) we can have this approximation of the mutual information in

terms of the cumulants:

I[~y] ' N [U~s]− 1

48

n∑
i=1

(4κ2
iii + κ2

iiii + 7κ4
iii − 6κ2

iiiκiii)

where κiii = Cumy(i, i, i) and κiiii = Cumy(i, i, i, i). Each of these cumulants using

C1 can be written as κiii =
∑n

j=1 u3
ijCums(i, i, i) and κiiii =

∑n
j=1 u4

ijCums(i, i, i, i)

where uij is the ijth element of the orthogonal matrix U . Afterwards, considering

the fact that N [U~s] is independent of U minimizing the mutual information is equal

to maximization of Ψ(U) =
∑n

i=1(4κ
2
iii +κ2

iiii +7κ4
iii− 6κ2

iiiκiii) with respect to the

elements of the orthogonal matrix U . Whether Ψ(U) is such that its minimization

results in independence is not known [Comon 1], however a simplification of Ψ(U)

is proved to be a contrast [De Lathauwer2]:

Theorem 2.4 : Let ~x = Un×n~s, and let U be doubly stochastic, i.e. the 2-norm

of each row or column of U is one and also assume that ~s has finite cumulants

up to order r and has at most one zero cumulant of order r. Let κr,i be the rth

order cumulant of xi, and Υ1,r(U) =
∑n

i=1 |κr,i| and Υ2,r(U) =
∑n

i=1 κ2
r,i. If either

of Υ1,r(U) or Υ2,r(U) is maximized then U is a permutation, that is Υ1,r and Υ2,r

are contrast functions over the set of doubly stochastic matrices for random vectors

satisfying above conditions.

22

Again we note that the set of doubly stochastic matrices is a compact set and

hence the cost function defined has global minima on it. Because of the fact that

any orthogonal matrix is also a doubly stochastic matrix we have this corollary:

Corollary: With the above conditions, if U is orthogonal then Υ1,r and Υ2,r are

contrast functions.

Note that without some sort of compactification, optimizing functions of cu-

mulants is meaningless, because cumulants are not scale invariant. For this reason,

most of the contrast function introduced in the literature are over the set of or-

thogonal matrices (see for example [Cardoso1], [Comon1], [Moreau]).

It is interesting to note that maximizing Υ2,r(U) for orthogonal U is equivalent to

minimizing the sum of the square of the cross cumulants, which is sensible because

cross cumulants measure dependence among variables.

There are other contrast functions, among them we will consider the JADE [Car-

doso1] contrast function, in the next chapter.

2.5 The Group Structure of the ICA Problem

An important property of the standard ICA problem in the case m = n is its group

or multiplicative structure [Haykin], [Cardoso 2]. By the group structure we mean

that starting from ~x = A~s, A non-singular, if for a nonsingular matrix K we form

~y = K~x = KA~s = C~s then the form of the problem has not changed and we

have not missed or gained any information. Obviously if A and K are orthogonal

then C also is orthogonal. In fact many algorithms use this fact. For example in

[Cardoso1] and many other papers, an iterative optimization method is used that

updates the orthogonal un-mixing matrix Uk as Uk+1 = HkUk where Hk is a proper

Jacobi rotation matrix. So this way we flow over the group of orthogonal matrices

23

at each step as the cost function is reduced. In Chapter 4 we will introduce the

concept of gradient flow over groups, which is useful in contrast optimization.

The group structure has another implication that is called equivariance or uni-

form performance property, which enables us to devise estimators whose finite

sample performance in the noiseless case is independent of the mixing matrix, that

is they will give the same answer for different mixing matrices. Specifically, let

XT be a matrix of T realizations of ~s then the estimator A(ST) is equivariance if

A(AST) = AA(ST). Then for the ICA problem ~x = A~s, the estimated sources will

be:

ŜT = A−1(AST) AST = A−1(ST)A−1AST = A−1(ST)ST

which depends only on the sources and not the mixing matrix. The key point here

is that if we have contrast functions that depend only on the output vector ~y = B~x

then this property is achieved. Because for two mixing matrices A1 and A2 and

mixed signals ~x1 = A1~s and ~x2 = A2~s if B1 and B2 minimize a function of ~y1 and

~y2, respectively; then B1A1 = B2A2, that is the restored signal will be the same.

Evidently, this is due to the group (multiplicative) structure of the problem.

2.6 Measures of Performance

The performance of different BSS/ICA algorithms can be compared based on their

separation ability, the computational cost or the conditions under which they per-

form well. However in this section by “Performance Measure” we mean separa-

tion performance, that is how well the sources are separated by an algorithm. In

practice there are different performance measures introduced (see Chapter 5 in

[Haykin]). Some of them try to measure the interference and noise at the output

of the separator whereas some others try to measure how far the estimated un-

24

mixing matrix is from a true one. In the case of noisy ICA these two methods

are not equivalent, because asymptotically we might be able to estimate a true

un-mixing matrix (using only HOS) but by applying that un-mixing matrix the

output noise is not cancelled, that is the interference can be nulled, but the noise

can not. In this thesis we follow the second path, because it is straightforward

to compute therefore will compare algorithms on their performance in finding the

un-mixing matrix in noisy ICA. In fact with the usual assumptions in the standard

ICA model we can not do so much about noise other than cancelling its effect on

estimating the un-mixing matrix.

Let B be the estimated un-mixing matrix and let P = BA. If P = ΠΛ where

Λ is a non-singular diagonal matrix and Π is a permutation matrix, then the un-

mixing matrix is estimated perfectly. We can measure the distance of P from

permuted diagonal matrices, for example as [Hyvarinen]:

Index(P) =
n∑

i=1

(
n∑

j=1

|pij|
maxk |pik| − 1) +

n∑
j=1

(
n∑

i=1

|pij|
maxk |pkj| − 1) (2.6)

Obviously the smaller Index(P) the better the performance is and in fact it is zero

if and only if P is a permuted diagonal matrix. In performing simulations we can

average Index(P) for many different realizations and different sources to get an

over all performance assessment of an ICA algorithm.

2.7 A Survey of ICA Algorithms

There are many different classes of algorithms and schools of thought in solving

ICA/BSS problem. One categorization is to divide algorithms in two classes: online

and off-line or batch algorithms. Online algorithms refer to the class of algorithms

that process the data on a sample-by-sample basis, whereas batch or off-line meth-

25

ods refer to those algorithms that process blocks of data. In the ICA context online

algorithms usually implement a stochastic gradient or another form of stochastic

optimization methods. The Amari’s Natural Gradient (see Chapter 2 in [Haykin])

or its equivalent Cardoso’s Relative Gradient [Cardoso2] is an online algorithm

that uses the stochastic gradient over group of nonsingular matrices, i.e. the itera-

tive algorithm updates the unknown matrix by multiplicative updates. FASTICA

is an online algorithm that uses a Newton optimization method [Hyavarinen]. The

category of off-line methods are usually cumulant based, whereas the online algo-

rithms in addition to the cumulants use some other nonlinear functions of the data.

Comon’s ICA [Comon1] and Cardoso’s JADE [Cardoso1] are among the most well

known batch algorithms. There are also algorithms based on Joint Diagonaliza-

tion of cumulant slices and tensor. In [Yeroder] and [Ziehe] ICA by means of joint

diagonalization of cumulant slices by non-orthogonal matrices is addressed and in

this thesis we give alternatives for their methods. In [De Lathauwer1], methods

based on the idea of tensor diagonalization for cumulant tensors are developed .

On the other hand there are algorithms that deal with extensions of the ba-

sic ICA/BSS model. For instance Pham and Cardoso and developed algorithms

based on joint diagonalization of a set of correlation matrices for BSS/ICA of

non-stationary sensors [Pham1]. There are methods to deal with the case of more

sensors than sources (see Chapter 16 in [Hyavarinen]) . There are schemes to con-

sider sources with discrete values, i.e. sources that have values in a finite set, as

in [Grellier].

26

Chapter 3

The Joint Diagonalization

Criterion

In this chapter we introduce the Joint Diagonalization (JD) of cumulant slices

criterion and its application in the ICA/BSS problem. We introduce the JADE

algorithm which is a JD algorithm seeking orthogonal un-mixing matrix. We then

extend the cost function of JADE to be able to search for non-orthogonal un-mixing

matrices which is more desirable in the noisy ICA.

3.1 Joint Diagonalization of Cumulant Slices of

White Signals

As it was mentioned in Chapter 2, in noiseless ICA it is possible to reduce the

search space for the un-mixing matrix to the set of orthogonal matrices denoted

by O(n), by whitening the data. The main advantage of this is that O(n) is a

compact multiplicative group (in fact it is a compact Lie group) [Helmke]. Because

27

of its compactness we can define cost functions that achieve their optima on O(n).

Consider ~x = Am×n~s, with the assumptions m ≥ n, A full rank and~s with indepen-

dent components having at most one component with zero fourth order cumulant

(i.e. assumptions S4, S5.3 from Section 2.1.1). After whitening ~x, by Theorem 2.2

we will have:

~y(t) = U~s Un×n ∈ O(n) (3.1)

Using Lemma 2.1, for fourth order cumulant slices of the form Cumx(:, :, i, j) we

have:

Cumy(:, :, i, j) = UΛijU
T (3.2)

where

Λij =




ui1uj1Cums(1, ..., 1) 0 · · ·
0 ui2uj2Cums(2, ..., 2) · · ·
0

. . . 0

· · · 0 uinujnCums(n, ..., n)




So remembering the fact that Cumy(:, :, i, j) is a symmetric matrix, we can say

that (3.2) is an Eigen Decomposition of the symmetric matrix Cumy(:, :, i, j). On

the other hand if the eigenvalues of Cumy(:, :, i, j) are distinct we know that the

diagonalizer U is unique up to a column permutation. We notice that with two

conditions:

• U is a generic (random) orthogonal matrix

• At most one of the Cums(i, i, i, i) is zero (i.e. zero fourth order cumulant)

28

the eigenvalues of Cumy(:, :, i, j) are distinct and hence any diagonalizer of it is

essentially U . So by finding the eigen decomposition of any of these cumulant slices

we can find U . However, in practice we estimate the cumulants by their sample

averages, so we should not expect that two different cumulant slices have the same

diagonalizer, especially because the estimation of cumulants is very non-robust.

Hence, we may jointly diagonalize all or a subset of the cumulant matrix slices.

In [Cardoso1], a cost function for JD of a set of cumulant slices is introduced.

Let {Ci}N
i=1 be a subset of the set of 4th order cumulant slices of ~y. Then the prob-

lem of finding a joint diagonalizer for {Ci}N
i=1 can be considered as a minimization

problem:

min
Θ∈O(n)

J1(Θ) =
N∑

i=1

∥∥ΘCiΘ
T − diag(ΘCiΘ

T)
∥∥2

F
(3.3)

where diag(X) is a diagonal matrix whose diagonal is identical to X’s diagonal

and ‖.‖F is the matrix Frobenius norm operator. In fact this is a constrained

optimization problem over the group O(n). In different occasions we will see how

the group structure of the constraint set can be exploited.

Remark: As it is clear, in general there exists no exact diagonalizer, so a more

accurate title for the subject is “Joint Approximate Diagonalization (JAD)” as it

was and still is used in the literature. However by “Joint Diagonalization” we also

imply the same concept so we will mainly use the latter.

3.2 The JADE Algorithm

The Joint Approximate Diagonalization of Eigen matrices or JADE is one of the

earliest ICA algorithms to use the idea of joint diagonalization of cumulants slices.

The algorithm can be divided in two separate parts: first, finding a set of symmetric

matrices to be diagonalized and second a joint diagonalization algorithm based on

29

Jacobi rotations. We will first describe the joint diagonalization algorithm, because

it turns out that this is the most applicable and versatile part of the algorithm.

It should be noted that in the literature this joint diagonalization algorithm, itself

is called the JADE algorithm, so with some abuse of terminology, later on we will

refer to this algorithm as JADE.

3.2.1 Orthogonal Joint Diagonalization Jacobi Rotations

(the so-called JADE Algorithm)

The method of Jacobi or Givens rotations in the context of finding the eigen

values of a symmetric matrix is a well established method [Golub]. An extension

of this method can be used to find an approximate orthogonal joint diagonalizer

for a set {Ci}N
i=1 of symmetric matrices. The idea is to compute Θ by orthogonal

multiplicative updates such that at each step the cost function J1 is reduced. The

orthogonal multiplicative updates keep the iterate always orthogonal. These are

matrices known as Givens or Jacobi rotations which have this simple form:

Θkl =




1 0 . . .
yk

. . .
yl

. . .

0 1 0 0 . . . 0 . . .

. . .
. . .

...
...

k −→ 0 · · · cos θkl · · · − sin θkl · · ·
...

. . .
...

l −→ 0 · · · sin θkl · · · cos θkl · · ·
...

. . .

. . . 0 . . . 0 1




(3.4)

where θlk is an angle that at each step is computed in order to minimize the cost

function. In [Cardoso1] the algorithm is proposed for complex and not necessarily

30

symmetric matrices, here we give a version for symmetric and real matrices. The

algorithm is coded in Table (3.1).

Algorithm 3.1:

1. Consider the set of n× n symmetric matrices {Ci}N
i=1, which for notational

convenience we denote as {Ci}N
i=1, let Θ = In×n.

2. For 1 ≤ k < l ≤ n do:

Form the N × 2 matrix:

Gkl =




c1
kk − c1

ll 2c1
kl

c2
kk − c2

ll 2c2
kl

...
...

cN
kk − cN

ll 2cN
kl




Compute ~v2×1 a unit-norm eigen vector of GT
klGkl corresponding to the

larger eigen value and find θkl from ~v = [cos 2θkl sin 2θkl]
T

Form Θkl from (3.4) and update Θ ←− ΘklΘ and C i ←− ΘklC
iΘT

kl.

3. If ”required” goto step 2 else stop.

Table 3.1: The so-called JADE algorithm for joint diagonalization of the set {Ci}N
i=1 by an orthogonal matrix.

The unspecified parameters and qualities are to be decided in practice.

Each run of the step 2 is called a sweep. The appearance of an eigen vector

of Gkl is a result of a simple constrained quadratic minimization of J1(Θkl) which

is a function of only θkl . We note that in the light of the group structure of

the problem, a sequential optimization is possible and the orthogonality of Θ is

guaranteed by construction.

31

3.2.2 The JADE Algorithm

Now we state the original JADE algorithm for the BSS problem. The steps in the

original JADE algorithm are as follows:

1. Whiten the mixed signal ~x to get ~y = R
− 1

2
xx ~x.

2. Estimate Cumy the 4th order cumulant tensor of ~y.

3. Find {Ei}n
i=1, the eigen matrices corresponding to the n largest eigen values

of Cumy.

Remark: Note that any 4th order n-dimensional tensor is a linear mapping

from Rn×n to Rn×n, i.e. from the space of n× n matrices to the space of n× n

matrices. If this mapping is symmetric or self-adjoint, as a cumulant tensor

is , then there exist n2 eigen matrices that are orthogonal to each other and

can represent the tensor. With the condition ~y = U~s and the independence

of the components of ~s , it is shown in [Cardoso1] that only n eigen values of

Cumy are nonzero, and also it is shown that the joint diagonalization of n2

matrix slices of Cumy is equivalent to the joint diagonalization of {Ei}n
i=1.

4. Use Algorithm 3,1, to find Θ the orthogonal joint diagonalizer of {Ei}n
i=1, by

minimizing the cost function:

J1(Θ) =
n∑

i=1

∥∥ΘEiΘ
T − diag(ΘEiΘ

T)
∥∥2

F

In practice because the linear model may not hold exactly and that the cumulant

estimates are not accurate, step 3 is not justified and is neglected and that is why we

did not delve more into computing eigen matrices. Hence in step 4 a set of matrix

slices of Cumy is used, for example the set N = {Cumy(:, :, i, j)|1 ≤ i, j ≤ n}.

32

Remark: It is possible to associate weights to each term in the above cost function.

Hence a more general form of J1 is:

J1(Θ) =
n∑

i=1

wi

∥∥ΘCiΘ
T − diag(ΘCiΘ

T)
∥∥2

F

where wi > 0 and
∑N

i=1 wi = 1. Note that this is equivalent to considering the set

{√wiCi}N
i=1 instead of {Ci=1}N

i=1 in the original form of J1. Hence the cost function

with weights can be reduced to one without weights.

3.3 Non-Orthogonal Joint Diagonalization

The main drawback of the JADE algorithm and other ICA algorithms that whiten

the data and confine the search space to orthogonal matrices is that in the pres-

ence of noise the whitening process is biased, due to the fact the noise covariance

is unknown, and this bias cannot be compensated in the subsequent orthogonal

search. On the other hand the 4th order cumulants are blind to Gaussian noise, so

a method that uses only higher order cumulants can suffer less from this problem.

One approach based on JD is to search for a non-orthogonal joint diagonalizer. This

can be justified by Lemma 2.1 which states that all the cumulant matrix slices of

any order are diagonalizable in a congruence manner by the pseudo-inverse of the

mixing matrix. To be able to have an algorithm for joint diagonalization of a set

of matrices we should have suitable cost functions for joint diagonalization.

In developing JD cost functions for a set of symmetric matrices {Ci}N
i=1, we may

follow two approaches:

1. Find a matrix B such that {BCiB
T}N

i=1 are as diagonal as possible, or

2. Find W and diagonal matrices {Λi}N
i=1 such that Ci ' WΛiW

T as much as

possible for all 1 ≤ i ≤ N .

33

The first approach deals with the un-mixing matrix directly but the second one

looks for an estimate of the mixing matrix. The second approach has the drawback

that because if Ci ' WΛiW then Ci ' (WΛ−1) ΛΛiΛ (WΛ−1)T , for any diagonal

matrix Λ, it is possible that W is very bad conditioned, then its inverse will be

hard to find.

We can use different measures for approximating the “closeness”. One such

measure can be the Frobenius norm of the error, which has the advantage of

analytical convenience. So we can have the corresponding cost functions for the

first approach as:

min J1(B) =
N∑

i=1

∥∥BCiB
T − diag(BCiB

T)
∥∥2

F
(3.5)

where B is a full row-rank n × m matrix (we assume n ≤ m). Note that this

is exactly the cost function we used for the orthogonal case, but now on a larger

space. A cost function corresponding to the second approach used in [Yeredor] is

min J2(W, {Λi}N
i=1) =

N∑
i=1

∥∥Ci −WΛiW
T
∥∥2

F
(3.6)

where W belongs to the manifold of full column-rank m × n matrices and Λi are

diagonal n× n matrices.

3.3.1 Square Mixing Matrices

So far we have considered rectangular mixing matrices, from now on we consider

only square mixing matrices. In fact this restriction is not very prohibitive, because

by whitening the data we can reduce the number of sensors to the number of

sources. On the other hand we may argue that we could use the redundancy in

the data in cumulant domain as well. The main reason that we consider only

square matrices is that in the subsequent chapters we intend to use the group

34

structure of the BSS/ICA problem and develop methods in matrix groups, hence

the assumption of having an inverse in the group-theoretic sense is important and

only square matrices have this property. So from now on we assume that the mixing

matrix is square (m = n) unless otherwise stated.. Yet it is possible to extend the

idea of group structure in a similar form to non-square case as in [Zhang].

3.3.2 Two Desired Properties for JD Cost Functions

In the context of ICA/BSS we expect a cost function for JD to have two properties:

1. It should be scale invariant, i.e. it should not change by diagonal mixing or

un-mixing matrices,

2. It should be invariant under permutations, i.e. it should not change by

permutation mixing or un-mixing matrices.

These two properties represent the inherent indeterminacies in the ICA/BSS prob-

lem, and resemble the properties of the mutual information. We recall that

I[~x] = I[Λ~x] for any non-singular diagonal matrix Λ. Obviously J1 does not

have the first property but has the second one. J2 on the other hand has the first

property in an extended sense, because J2(WΛ, {Λ−1ΛiΛ
−1}N

i=1) = J2(W, {Λi}N
i=1)

for any non-singular Wn×n, i.e. we can keep the cost function unchanged under

diagonal mixing. J2 is obviously unchanged under permutations as well.

Remark: We can derive JD cost functions either in terms of an un-mixing matrix

B or the (estimated) mixing matrix W . If J is a scale-invariant JD cost function

then J(Λ) = J(In×n). If J is in terms of B this translates to J(ΛB) = J(B) and if

it is in terms of W it translates to J(WΛ) = J(W). Therefore scale-invariance in

terms of the un-mixing matrix refers to multiplication by a diagonal matrix from

35

the left and in terms of the mixing matrix it refers to multiplication from the right

by a diagonal matrix. In this thesis we are mainly interested in cost functions in

terms of un-mixing matrices.

3.3.3 Examples of Scale and Permutation Invariant Cost

Functions

In this section we introduce some cost functions for non-orthogonal JD that have

the scale and permutation invariance property.

Example 1: J1(B) is not scale invariant on the set of n×n non-singular matrices

as mentioned above, but it is scale invariant if we restrict B to belong to O(n). It

is permutation invariant on the set of n× n non-singular matrices

Example 2 [Pham2]: The cost function

J3(B) =
N∑

i=1

log
(det diag(BCiB

T)

det BCiBT

)

is not well defined in general, but if {Ci=1}N
i=1 are positive definite, then it is always

non-negative and reaches zero when all {Ci} is jointly diagonalizable. This cost

function has the property that is scale invariant : and also J3(ΛB) = J3(B), for

any non-singular diagonal Λ. It scale-invariant too.

Example 3: Another form of the above cost function with Frobenius norm is

J4(B) =
N∑

i=1

∥∥BCiB
T (diag(BCiB

T))−1 − I
∥∥2

F

This cost function is scale invariant if Ci’s are positive definite. Note that this is

required to ensure that diag(BHiB
T) is invertible. We also have J4(ΛB) = J4(B)

for any non-singular diagonal Λ. It is also permutation invariant.

36

Example 4: A cost function that somehow normalizes J1 is

J5(B) =
N∑

i=1

∥∥Ci −B−1diag(BCiB
T)B−T

∥∥2

F
(3.7)

This cost function does not require positive definiteness of Ci. It is scale and per-

mutation invariant. We also have J5(ΛB) = J5(B), for any non-singular diagonal

Λ. Its drawback is that it uses B−1 together with B which imposes more compu-

tational cost in its minimization.

Remark: Some of the above cost functions require that Ci be positive definite.

In fact as we mentioned before cumulant slices are not necessarily positive definite

so these cost functions are not suitable for joint diagonalization of cumulant slices,

but they can be used to jointly diagonalize a set of correlation matrices. Joint di-

agonalization of correlation matrices is a useful tool in separation of non-stationary

sources [Pham1].

3.3.4 Dealing with Cost Functions that are not Scale-Invariant

The main problem with a joint diagonalization cost function that like J1 is not

scale invariant is that it can be reduced by a diagonal matrix, which in the context

of BSS/ICA does not result in independence. In Chapter 6 we give some methods

to deal with this issue. The main idea there is to somehow identify ΛB with B

for all non-singular diagonal matrices Λ. This way we will exclude all un-mixing

matrices that are essentially the same as B. This problem can be related also to

the fact that the set of non-singular n × n matrices GL(n) is not a compact set

and a priori we have no guarantee that J1(B) has a minimum on GL(n). In fact

J1(B) has a global infimum of zero at B = 0 (which is not in GL(n)) and we will

show in Section 6.1 that in the case that the set {Ci}N
i=1 is not diagonalizable, J1

does not have any local minima. The reason for this is simply the fact that at any

37

point the cost function can be reduced by a diagonal matrix. So the identification

of B and ΛB can be considered as a method for compactification of GL(n).

Another approach maybe to add penalty terms to the cost function which accounts

for the non-compactness issue, for example:

Ĵ1(B) = J1(B)− log (| det B|)

has the property that penalizes the cost when | det (B)| becomes small . This way

we can exclude the global infimum of J1 at B = 0.

38

Chapter 4

Matrix Lie Groups

In this chapter we briefly introduce the necessary tools from the theory of differ-

entiable manifolds and Lie Groups needed in the subsequent chapters.

4.1 Introduction

The theory of differentiable manifolds is a part of the of field of differential geome-

try. Differential geometry is an important mathematical discipline in dealing with

nonlinear systems. Lie theory deals with manifolds that have group structure. To

define abstract groups we do not need any topological requirement, but Lie groups

are in some sense continuous groups, i.e., close to any element of the group we

can have another element. Exact treatment of differentiable manifolds and general

Lie groups requires lots of technicalities and is quite complicated. In this chapter

we consider only matrix Lie groups in order to furnish the necessary tools needed

for our approach to the matrix joint diagonalization problem. We also give some

results for differential equations on manifolds.

39

4.2 Riemannian Manifolds, Tangent Spaces and

Gradients

For the purposes of this thesis we define a (smooth) manifold as follows:

Definition 4.1 Consider the set Mn ⊂ RN . Assume that there exists a collection

of open subsets of Mn such as {Uα} that cover M and each Uα is homeomorphic to

an open set Rn; i.e there exits a continuous and one-to-one map with continuous

inverse, ϕα : Uα → Rn. Assume further that if Uα ∩ Uβ is non-empty then the

transition maps ϕα◦ϕ−1
β : ϕβ(Uα∩Uβ) → ϕα(Uα∩Uβ) and ϕβ◦ϕ−1

α : ϕα(Uα∩Uβ) →
ϕβ(Uα ∩ Uβ) are smooth. The set Mn together will all possible such subsets and

maps is called an n-dimensional smooth manifold. The set Uα is called a chart

and ϕα is its corresponding (local) coordinate function and the function ϕ−1
α is its

corresponding (local) parameterization.

Intuitively this means that M locally looks like Rn, yet it is not flat in the

same manner that Rn is. From this definition the graph of any smooth func-

tion f : Rn → R is an n dimensional smooth manifold. The same is true for a

sphere in R3, which is a 2-dimensional manifold. Note that to describe the points

on a sphere in the above form we need to use more than one local coordinate sys-

tem to describe the whole sphere. On the other hand the graph of the function |x|,
i.e. the points (x, |x|) do not form a smooth manifold. There are manifolds more

interesting than the ones mentioned. For example, the set of non-singular n × n

matrices known as GL(n) is an n2-dimensional manifold in Rn2
, where singular

matrices correspond to “holes” and are excluded from Rn2
, or the set of orthog-

onal n × n matrices is an n(n−1)
2

dimensional manifold in Rn2
. We will consider

matrix manifolds in more detail later.

40

Remark: Note that from the above definition the collection of charts and coordi-

nate functions are maximal in the sense that a manifold contains all the possible

charts that are compatible with its structure. Therefore a point p ∈ M we have in

particular a pair (Up, ϕp) with ϕp(p) = 0 ∈ Rn.

4.2.1 Tangent Space

It should be noted that a manifold by its own does not need to have any algebraic

properties and in fact manifolds are not in general closed under addition or multi-

plication or other algebraic operations. They are merely curved geometric objects

that are smooth enough. Yet one can associate to them some sets that have nice

properties. The most immediate one is a tangent space to a manifold at a point on

the manifold. Tangent space, intuitively is nothing but the linear approximation of

the manifold at a point, and it can be described based on the first order derivative

of the local parameterization function:

Definition 4.2 : Let Mn ⊂ Rn+k be a smooth manifold. Let ϕ be a local co-

ordinate function on a neighborhood around p, then the columns of the Jacobian

matrix ∂ϕ−1

∂~x
centered at p span a linear space of dimension n, which is called the

tangent space at p denoted by TpM and any vector in this space is called a tangent

vector. The set TM =
⋃

p∈M

TpM is called the tangent bundle of M. A function

X : M → TM that to any point p ∈ M assigns tangent vector X(p) ∈ TpM in a

smooth fashion is called a smooth vector field.

It can be shown that the above definition is a geometric one and independent of

the local coordinate function used. Tangent vectors are identified by their effect,

which is to give the directional derivative of a function on the manifold in their

41

directions. It is possible to relate the above definition to the concept of a curve on

a manifold. A curve is a one dimensional object defined as:

Definition 4.3 : A curve through a point p ∈ M is a smooth map γ : (−b, b) →
M , b > 0 such that γ(0) = p. Usually we denote the independent real variable in

the definition as time t and the curve will be γ(t).

Let Up be a neighborhood around p with the coordinate function ϕ. Let ϕ−1
i denote

the local parameterization function where all but ith component are fixed to zero

and xi is the only variable. Then ϕ−1
i defines a curve on M . Assume that γ(t) ∈ Up

for −b < t < b then the composition ϕ ◦ γ : (−b, b) ⊂ R→ ϕ(Up) ⊂ Rn is a vector

valued function of the variable t on an open interval around t = 0, so we can define

its time derivative at t=0 in terms of the time derivative of each of its components

ϕi ◦ γ. The time derivative or velocity of the curve γ(t) at t = 0 or at p, can be

defined as

dγ

dt

∣∣∣∣
t=0

=
d(ϕ−1 ◦ ϕ ◦ γ)

dt

∣∣∣∣
t=0

=
n∑

i=1

∂ϕ−1

∂xi

∣∣∣∣
x=ϕ(γ(0))

d(ϕi ◦ γ)

dt

∣∣∣∣
t=0

=

n∑
i=1

dϕ−1
i

dxi

∣∣∣∣
x=ϕ(γ(0))

d(ϕi ◦ γ)

dt

∣∣∣∣
t=0

Thus the velocity vector of the curve γ(t) at t = 0 is a linear combination of the the

tangent vectors or the velocity vectors of the curves ϕ−1
i at t = 0. Therefore it is a

tangent vector as well. This definition is independent of the local coordinate used.

Note that above is in fact an expansion of the velocity vector in the basis {∂ϕ−1
i

∂xi
}n

i=1,

so the vector [d(ϕ1◦γ)
dt

(0), ..., d(ϕn◦γ)
dt

(0)]T is the representation of the velocity vector

of γ at p corresponding to the local coordinate function ϕ. We can also define the

directional derivative of a function f : Mn → R along a curve γ at γ(0) = p based

on the chain rule as :

42

Df |γ̇(0) = (γ∗f) (p) =
d(f ◦ γ)

dt

∣∣∣∣
t=0

=
n∑

i=1

∂f(ϕ−1
i)

∂xi

∣∣∣∣
x=ϕ(p)=0

d(ϕi ◦ γ)

dt

∣∣∣∣
t=0

Note that the directional derivative depends on how f changes on M at p and the

velocity of the curve at p.

4.2.2 Riemannian Manifolds

We emphasize again that TpM is a linear vector space at any point. Therefore we

can equip TpM at any point with an inner product:

Definition 4.4 A Riemannian metric on Mn is a family of inner products 〈., .〉p
defined on each tangent space TpM , such that it depends smoothly on p ∈ M . When

endowed with a Riemannian metric, M is called a Riemannian manifold.

We recall that any inner product on TpM has a positive definite matrix represen-

tation. That is if two tangent vectors in ξ, η ∈ TpM have representations ~u and ~v

in Rn, respectively, then 〈ξ, η〉p = ~uT Qp~v where Qp is the positive definite matrix

representing the Riemannian metric at p.

Let f be a smooth function f : M → R. It can be shown that there exists a

unique smooth vector field ∇f : M → TM , p 7→ ∇f(p) such that for a point p

and any smooth curve γ(t) with γ(0) = p we have (γ∗f) (p) = 〈∇f(p), γ̇(0)〉p where

γ̇(0) = dγ
dt

(t = 0). This vector field is called the gradient vector field. Note that

this vector field depends on the Riemannian metric used, and in fact the above

equation is the defining equation for the gradient vector field. The result of this

definition is that if the function f has a local minimum at p0 ∈ M then ∇f(p0) = 0

at that point. A point p0 ∈ M is called a critical point of f if ∇f(p0) = 0. On the

43

other hand we can define the Hessian Hf (p0) at a critical point p0 as a symmetric

bilinear form such that for any curve γ(t) on M with γ(0) = p we have:

Hf (p0) : Tp0M × Tp0M → R

Hf (p0)(γ̇(0), γ̇(0)) =
d2

dt2
(f ◦ γ)(0)

Note that due to the symmetry and multilinearity property of Hf (p0) we only need

to specify it at points like (ξ, ξ) ∈ Tp0M × Tp0M . A critical point p0 for which

the Hessian is positive definite, i.e. Hf (p0)(γ̇(0), γ̇(0)) > 0 for any curve on the

manifold passing through p0 with nonzero velocity, is a local minimum of f on

M . The significance of this formulation is that if in a constrained optimization

problem the constraints form a smooth manifold then we can reformulate the opti-

mality conditions without constraints and avoid Lagrange multipliers formulation.

As we shall see later this enables us to consider complicated constraints such as

orthogonality or non-singularity for matrices.

We mention that the Hessian is a bilinear form, which for an n-dimensional mani-

fold can have a symmetric matrix representation. If for a critical point p0 the corre-

sponding Hessian matrix is non-singular then that point is called a non-degenerate

critical point. Non-degenerate critical points are always isolated and there are at

most countably many of them[Helmke].

4.3 Flows on Riemannian Manifolds

If a moving object has a velocity vector that is tangent to a manifold at any

point then we expect that the object stays on the manifold. This is not true

of course for all times because we can have the finite escape time phenomena,

which means that the object may leave the manifold in finite time. For example if

44

M = (0, 1) then the answer to the linear differential equation ẋ = 1 with x(0) = 1
2

leaves M at t = 1
2
. An integral curve of the smooth vector field X : M → TM

with initial condition γ(0) = p is a differentiable map γ : Ip → M such that

γ̇p(t) = X(γp(t)),∀t ∈ Ipwhere Ip is an open interval containing 0. If the longest

Ip is of finite length then we have the finite escape time phenomena.

The flow of X is the collection of all maps φt : M → M such that φt(p) = γ(t)

where γ(t) is the integral curve with the initial condition γ(0) = p. Existence and

uniqueness theorems guarantee that φt(p) is a diffeomorphism on-to its image with

inverse (φt)
−1 = φ−t [Helmke],[Marsden].

The ideas of stability for ordinary differential equations(ODEs) on manifolds are

similar to those for ODEs on Rn . Here we state a version of La Salle’s invariance

principle [Khalil] for flows on manifolds [Helmke]:

Theorem 4.1 La Salle’s Invariance principle Let X : M → TM be a smooth

vector field on a Riemannian manifold and let f : M → R be a smooth function

such that it has compact sub-level sets, i.e. the set {p ∈ M |V (p) ≤ c ∀c ∈ R} is

compact and ḟ(γ(t)) = d(f(γ(t)))
dt

≤ 0 for any solution γ(t) of γ̇(t) = X(γ(t))(*).

Then every solution of (*) stays on M for all t ≥ 0. Moreover any solution

approaches the largest compact, connected and invariant subset of Ω = {p ∈
M |〈∇f, X(p)〉p = 0}.(f is called a weak Lyapunov function for (*)).

An important class of flows on Riemannian manifolds is the class of gradient

flows. If the smooth function f : M → R has the gradient vector field (with

respect to a certain Riemannian metric) ∇f then the differential equation ẋ =

−∇f(x)(**) is a flow in the negative direction of the gradient in order to minimize

f . Obviously the critical points of f are equilibria of the flow. In fact we can see

45

that f(x(t)) ≤ f(x(0)) for all t ≥ 0 that x(t) is defined on M . So f is a Lyapunov

function for this flow. It can also been shown that if for a critical point the Hessian

is positive definite then the point is asymptotically stable and if the Hessian has

at least one negative eigenvalue then that point is unstable. Using the La Salle’s

theorem, we can show that if f has compact sub-level sets or M is compact and if

f has only finite number of critical points then any solution of (**) converges to

a single critical point of f (point-convergence as opposed to the set-convergence

stipulated in the La Salle’s theorem) and for typical initial conditions it converges

to a local minimum. Nevertheless not all functions have compact sub-level sets or

finite number of critical points. As we will see in the next chapters the convergence

properties of this flow depend on both the manifold M and the function f .

4.4 Matrix Lie Groups

As it was mentioned before the set of non-singular n × n matrices GL(n) is a

manifold. Actually in addition to being a manifold it is also a group under matrix

multiplication. GL(n) is an example of a Lie group. A Lie group is a manifold

G that has a group structure consistent with its manifold in the sense that the

group multiplication is a smooth map. In this thesis we consider only matrix Lie

groups, but it is true that “most, though not all, Lie groups can be realized as

matrix groups” [HOWE]. There are different ways to treat Lie groups, here we

choose a short and informal path (mainly borrowed from [HOWE]) and we give

the results without proofs. This approach is based on defining the exponential map

for matrices. For any n× n matrix A, exp A is defined as:

exp A = eA =
∞∑

k=0

Ak

k!

46

Note that this series converges for any matrix. Then the Lie algebra of matrix

Lie group G is defined as: g = {∆ ∈ Rn×n| exp(t∆) ∈ G for all t ∈ R}. It can

be shown that g is a vector space. Moreover g is closed under the operation [., .]

defined on g× g as:

(∆1, ∆2) 7→ [∆1, ∆2] = ∆1∆2 −∆2∆1

[., .] is called the (matrix) Lie bracket. Interestingly, g has a significant geometrical

meaning: it is nothing but the tangent space to G at the identity matrix In×n. On

the other hand the tangent space at any other point B ∈ G can be constructed by

matrix multiplication from the elements of g as: TBG = {B∆|∆ ∈ g} = {∆B|∆ ∈
g}. Note that although a tangent vector can be produced by both left and right

multiplication by B yet two different elements in g should be used to produce the

same tangent vector. In subsequent chapters we will use the structure of TBG to

define suitable Riemannian metrics that match the group structure.

As for any other manifold, we can define flows on matrix Lie groups. For example

one class of flows over matrix manifolds is the exponential flow which corresponds

to the differential equations Ḃ = B∆ or Ḃ = ∆B where ∆ ∈ g is a constant

matrix. In the next chapters we deal with gradient flows over matrix Lie groups.

4.5 Classic Matrix Lie groups

Here we briefly introduce the main matrix Lie groups encountered in this thesis:

47

4.5.1 The General Linear Group GL(n)

In fact GL(n) is the “biggest” matrix Lie group and all other matrix Lie groups

are its subsets. It is a non-compact Lie group of dimension n2 and its Lie algebra

gl(n) is Rn×n.

4.5.2 The Special Linear Group SL(n)

SL(n) is the group of all n×n matrices with unity determinant. It is a non-compact

Lie group of dimension n2−1 and its Lie algebra is sl(n) = {∆ ∈ Rn×n|tr(∆) = 0}
where tr(.) is the matrix trace operator. To see the relevance of this result we cite

the identity det(e(t∆)) = etr(∆)t.

4.5.3 The Orthogonal Group O(n)

O(n) is the group of orthogonal n × n matrices. It is a compact Lie group of

dimension n(n−1)
2

and its Lie algebra is o(n) = {∆ ∈ Rn×n|∆ = −∆T}, i.e. the

space of n× n skew-symmetric matrices. O(n) has two components: SO(n) which

is the Lie group of orthogonal matrices with unity determinant and the other part

is the set of orthogonal matrices with −1 determinant which is not a group.

There are other matrix Lie groups that we will consider in Chapter 6, groups

such as non-singular diagonal or lower triangular matrices. All the above Lie

groups can be equipped with suitable Riemannian metrics that match their group

structure. As we will see in next chapters we can also derive gradient flow for

minimization of a cost functions over these matrix groups.

48

Chapter 5

The Orthogonal Joint

Diagonalization Gradient Flow

In this chapter we derive the gradient flow for the Orthogonal Joint Diagonalization

problem, and consider its convergence properties. We also give another version of

the JADE algorithm based on discretization of the gradient flow.

5.1 Introduction

Let us consider the set of n × n symmetric matrices {Ci0}N
i=1. Define the cost

function:

J1(Θ) =
n∑

i=1

∥∥ΘCi0Θ
T − diag(ΘCi0Θ

T)
∥∥2

F
(5.1)

where Θ belongs to the group of n × n orthogonal matrices, i.e. O(n). By min-

imizing this function over O(n) we will find the joint orthogonal diagonalizer of

C = {Ci0}N
i=1. If {Ci0}N

i=1 have an orthogonal joint diagonalizer this minimum will

be zero, otherwise it is not zero. Yet, because of compactness of O(n) as it was

49

mentioned in Chapter 3 we are sure that a minimizer exists.

We follow and generalize the work of [Brockett] and [Helmeke] in developing gra-

dient flows on O(n) for this cost function.

5.2 The Gradient Flow for Minimization of J1(Θ)

Consider the Lie group O(n), at the point Θ ∈ O(n) and for two tangent vectors

ξ and η we define a Riemannian metric as:

〈ξ, η〉
Θ

= tr((ΘT ξ)T ΘT η) = tr(ξT η) (5.2)

where tr(.) is the usual matrix trace operator. Based on this inner product we

then find the gradient flow for the cost function J1.

Theorem 5.1 Consider the cost function J1(Θ) then its gradient with respect to

the Riemannian metric (5.2) is:

∇J1(Θ) = −2 Θ
N∑

i=1

[
ΘT{diag(ΘCi0Θ

T)Θ, Ci0

]
= −2

N∑
i=1

[
diag(ΘCi0Θ

T), ΘCi0Θ
T
]
Θ

(5.3)

where [X,Y] = XY − Y X is the Lie Bracket matrix. Moreover the gradient flow

for minimization of this cost function is:

Θ̇ = −1

2
∇J1(Θ) =

N∑
i=1

[
diag(ΘCi0Θ

T), ΘCi0Θ
T
]
Θ (5.4)

Proof : In the Appendix.

A legitimate question is about the behavior of the solutions of this gradient system

as t → +∞, that whether Θ converges at all or in the case that it converges to

a single point, does it converge to a local or global minimum?. Using the La

Salle’s invariance principle (Section 4.3) observe that the equilibria of (5.4) Ω =

50

{Θ ∈ O(n)|∑N
i=1

[
diag(ΘCi0Θ

T), ΘCi0Θ
T
]

= 0} is exactly the largest invariant

set for which J̇ = 0. Hence any solution stays on O(n) and converges to Ω.

Still this does not give any information about the nature of the convergence, i.e.

whether it is single point-convergence or set-convergence. We state a theorem from

[Mahony] that guarantees point-convergence for (5.4). This theorem considers

gradient flows for analytic functions, i.e. functions that have Taylor expansion in

a local coordinate around a point. In fact gradient flows of analytic functions have

simple behavior, which is described in this theorem:

Theorem 5.2 Let J : Mn → R on the smooth Riemannian manifold M be an

analytic function. Let the Riemannian metric at x ∈ M in a local coordinate have

a symmetric matrix representation Qx. Assume that for any point x ∈ M there

exists an open neighborhood Ux ⊂ M and 0 < λ1x < λ2x such that for all z ∈ Ux we

have λ1xIn×n ≤ Qz ≤ λ2xIn×n, where An×n ≥ Bn×n means that A − B is positive

semi-definite. Then for x(0) ∈ M in the gradient flow ẋ = −∇J(x), either x(t)

leaves M or limt→+∞ x(t) = x∗ where x∗ is a stationary(critical) point of J .

Proof : See [Mahony].

Applying this theorem to the gradient flow (5.4), and noting the fact that J1 is

analytic on O(n), we conclude that for any initial condition there exists a Θ∞ ∈
O(n) such that limt→+∞ Θ(t) = Θ∞ and Θ∞ is a stationary point of J1. Moreover,

in general, we expect that the flow will converge to a local minimum, because

in a generic case the Hessian matrix is invertible and hence all local minima are

asymptotically stable and all other critical points are unstable.

With regard to global minimality of the answer we have no proof, but we have this

conjecture:

Conjecture: In the generic case (for example when all the matrices are generated

51

randomly) all the local minimizers of J1(Θ) where Θ ∈ O(n)are global and they

are unique up to a row permutation.

Note that the above conjecture for N = 1 is equivalent to the fact for a symmetric

matrix with distinct eigenvalues orthogonal diagonalizers are unique up to row

permutation.

Assuming the above conjecture we can expect that if Θ(0) is not a stationary

point then the solution will converge to a global minimum. Extensive simulations

support this.

5.3 The Double Bracket Equation

We can also find differential equations that govern the evolution of the matrices

under diagonalization {ΘCi0Θ
T}N

i=1. We consider the original matrices as initial

conditions and define Ci(t) = Θ(t)Ci0Θ
T (t) as the matrices under diagonalization

in time. Note that we require Θ(0) = In×n so that Ci(0) = Ci0. The next theorem

gives a set of differential equations known as Double Bracket equations [Helmke]

that describe the evolution of Ci(t) in time.

Theorem 5.3 Let Θ(t) ∈ O(n) with Θ(0) = In×n satisfy the gradient flow for

minimizing J1 as in the previous theorem, then each of the matrices under diago-

nalization, i.e. Cj(t) = Θ(t)Cj0Θ
T (t) satisfies:

Ċj =

[N∑
i=1

[diag(Ci), Ci], Cj

]
1 ≤ j ≤ N (5.5)

Proof : In the Appendix.

The Double Bracket equation can be shown to be a gradient flow of the cost

function f({Ci}N
i=1) =

∑n
i=1

∥∥Ci−diag(Ci)
∥∥2

F
with respect to a Riemannian metric

known as Normal Riemannian metric over the manifold M(C) = {(C1, ..., CN)|Ci =

52

ΘCi0Θ
T , Θ ∈ O(n)} [Helmke]. We follow [Helmke] to show this fact. Let C ∈

M(C), then we can show that the tangent space at C = (C1, ..., CN) to M(C)

is TCM(C) = {([Ω, C1], ..., [Ω, CN])|Ω ∈ o(n)}, where o(n) is the set of n × n

skew-symmetric matrices, i.e the Lie algebra of O(n). Obviously the mapping

Ω ∈ o(n) 7→ ([Ω, C1], ..., [Ω, CN]) is a linear map that is not 1-1 over its image

TCM(C). The kernel of this map is K = {Ω ∈ o(n)|([Ω, C1], ..., [Ω, CN]) = 0}. The

orthogonal complement of K, defined as K⊥ = {Ω ∈ o(n)|tr(ΩT ∆) = 0, ∀∆ ∈
K} is in 1-1 correspondence with TCM(C) and any Ω ∈ o(n) can be written as

Ω = Ω‖ + Ω⊥ where Ω‖ ∈ K and Ω⊥ ∈ K⊥. A useful observation is that for any

symmetric matrix Hn×n, the matrix HC = ([H, C1], ..., [H, CN]) belongs to K⊥,

because tr(HT
CΩ) =

∑
i tr(H[Ω, Ci]) = 0 for any Ω ∈ K. In the next step we define

an inner product between ξ1, ξ2 ∈ TCM(C) in terms of pre-images of ξ1, ξ2 in K⊥,

indeed we can define the Normal Riemannian metric as:

〈ξ1, ξ2〉C = tr(Ω⊥T
1 Ω⊥

2)

where Ω⊥
1 , Ω⊥

2 ∈ K⊥ are such that ξi = ([Ωi, C1], ..., [Ωi, CN]) for i = 1, 2. Note that

for any Ω⊥ ∈ K⊥ the directional derivative of f along ξ = ([Ω⊥, C1], ..., [Ω
⊥, CN]) is

given by Df |ξ = −tr(Ω⊥T 2
∑N

i=1[diag(Ci), Ci]). By the properties of the gradient

vector with respect to the Normal Riemannian metric we can see that ∇f =

([X,C1], ..., [X, CN]) for some X ∈ K⊥ such that Dfξ = tr(Ω⊥X), therefore X =

−2
∑N

i=1[diag(Ci), Ci]. So we state:

Theorem 5.4 The flow:

(Ċ1, ..., ĊN) = −1

2
∇f =

([N∑
i=1

[diag(Ci), Ci], C1

]
, ...,

[N∑
i=1

[diag(Ci), Ci], CN

])

which is exactly the flow in (5.5) is a gradient flow for minimization of f on M(C)

with respect to the Normal Riemannian metric defined above.

53

5.4 Discretization of the Gradient Flow

The subject of discretization of differential equations on manifolds and groups is

a new and challenging field, it is also known as structure preserving integration

or geometrical integration [Devore]. The difficulty lies where we should keep the

updated answer always on the manifold. For example, for (5.4) we should have

updates that give a Θk ∈ O(n) for any integer k. It is shown in [Calvo] that

only implicit Runge-Kutta methods can give orthogonal updates, and in general

an implicit Runge-Kutta is costly to solve and it is difficult to find exact solutions

for. Thus we should expect to have methods that can retain orthogonality only

approximately, this is in contrast to the JADE algorithm or Jacobi method that

retains orthogonality by construction.

In the sequel we will use the Euler and fourth order (Explicit) Runge-Kutta dis-

cretization methods to discretize (5.4). The Euler method is very simple and be-

cause of its immediate relation to the gradient descent method is considered. The

Euler and Runge-Kutta methods have no measures to keep the updates on O(n),

although by small enough step-size we can achieve almost orthogonal answers. We

will use fixed-step size schemes mainly because they are simple to implement and

that we require small step-size more than anything for having almost orthogonal

answer. We also briefly introduce two other methods, the adjoint equation method

[Calvo] and Cayley-transform methods [Iserles] that try to retain orthogonality in

updates, but are more complicated and computation demanding.

54

5.4.1 The Euler Discretization Method

The Euler method or the first order Runge-Kutta method to discretize (5.4) results

in:

Θk+1 =
(
I−µk

N∑
i=1

[
diag(ΘkCi0Θ

T
k), ΘkCi0Θ

T
k

])
Θk =

(
I−µk∆k

)
Θk k ≥ 0 (5.6)

where µk is the step size for the kth update and Θ0 is an orthogonal initial condition.

In (5.6), ∆k due to the definition of the Lie bracket is a skew-symmetric matrix,

so if we assume Θk−1 is orthogonal we have:

Dk = ΘkΘ
T
k − I = I − µk(∆k + ∆T

k) + µ2
k∆k∆

T
k − I = µ2

k∆k∆
T
k

where Dk is called local orthogonality error, given the assumption that Θk−1 is

orthogonal. We can see that the local orthogonality error is of the second order

in µk. It should be noted that the Euler method is exactly the same as gradient

descent method, so at each step for small enough step size the cost function can

be reduced by this method.

One important issue is how to choose the step size µk at each step so that we

have stable (bounded) and fast converging answer which has small orthogonality

error. In numerical optimization it is usually desired to find the largest step size

that gives the largest reduction in the function value, on the other hand here we

also have the orthogonality constraint which requires small step sizes. Therefore

we encounter two opposite requirements in choosing the step size. It seems that

algorithms to find the best step size (fulfilling both mentioned opposite goals) will

be very costly. Hence in practice we try to find a small and constant step size that

achieves both goals. Evidently this step size depends on many factors, such as

the dimension of the matrices, the number of matrices and the relative scaling of

the matrices. In fact almost all numerical optimization and integration methods

55

Algorithm 5.1

1. Set µ and ε.

2. Set Θ0 = In×n or to a “good” initial guess.

3. While ‖∆k‖F > ε do

Θk+1 =
(
I − µ∆k

)
Θk

if ‖Θk+1‖F or ‖Θk+1Θ
T
k+1 − In×n‖F are “big” then reduce µ and goto 2.

4. End

Table 5.1: A fixed-step size implementation of the Euler discretization of the gradient flow (5.4), which is

re-written in the form Θ̇ = ∆Θ(t)Θ(t). The unspecified parameters and qualities are to be decided in practice.

require some step size tuning that depend on the nature of the data and should

be found by trial and error. On the other hand it is rather easy to find out if the

chosen step size is bad, i.e. if ‖Θk‖F is becoming “big” or far from orthogonal then

this means that the guessed µ is not appropriate. Therefore we ought to reduce

µ and re-start the algorithm. Of course, it is possible to devise more elaborate

adaptive methods.

Table (5.1) depicts this algorithm in pseudo code (see equation (5.6)).

Remark: In the context of BSS a “good” initial guess for Θ0 is in fact the

transpose of an eigen matrix corresponding to any single cumulant slice.

In the above code there are still some un-specified things such as how to choose

the initial µ and ε and what do we mean by “big” and how to reduce µ in case

of observing instability or large orthogonality error. These are issues that depend

on the data at hand and the desired accuracy in the solution. In Section 5.6 we

consider the effect of these parameters in practice.

56

5.4.2 Runge-Kutta (RK) Methods

Runge-Kutta methods are well known numerical integration methods [Stuart].

Here we first introduce the general form of Runge-Kutta methods for discretization

of Ẋ = f(X), where X(t) ∈ Rn×n and f : Rn×n −→ Rn×n is a smooth enough

vector field. Then the classical s stage (RK) method is written as:

Yi = Xk + µ

s∑
j=1

aijf(Yj), i = 1, ..., s (5.7)

Xk+1 = Xk + µ

s∑
i=1

bif(Yi), X0 = X(0) (5.8)

where µ is called step-size, Yi’s are called the stage-values. Numbers aij form a

matrix A and bi’s form a vector ~b. b is such that
∑s

i=1 bi = 1. If aij = 0 for i < j

then the RK scheme is called explicit otherwise it is called implicit. The order of a

RK method is related to the accuracy of the first step error E1 = X(µ)−X1, that is

the method is of rth order if E1 = F (X0)µ
r+1 + O(µr+2), for some matrix function

F where ‖O(µr+2)‖F ≤ Kµr+2 for small h and a constant matrix K. Hence an s

stage method is not necessarily of order s. Note that the Euler method described

above is a one stage and first order method.

It should be noted that the above formulation is a vector space based formulation,

so obviously if it is applied to a differential equation on a manifold again, the

issue of staying on the manifold arises. In [Calvo] it is shown that no explicit RK

method can retain orthogonality. Moreover in [Calvo] it is shown that if an rth

order method is applied for a differential equation of the form Θ̇ = F (Θ)Θ (∗)
where Θ(0) ∈O(n), then the local orthogonality error defined as Dk = ΘkΘ

T
k − I is

such that ‖Dk‖F ≤ Lkµ
r+1 for small enough µ and a constant Lk. Hence we should

expect that a higher order method will result in a better orthogonality error for

the same value of step-size. In [Calvo] a method of adjoint equations is introduced

57

that achieves the above bound for an explicit RK method of order r − 1.

Another possible idea is to use the Cayley transform. The Cayley transform

of Θ ∈O(n) is defined as: Ω = Cay(Θ) = 1
2
(I − Θ)(I + Θ)−1, it is a skew-

symmetric matrix and belongs to o(n) and the inverse Cayley transform given by

Θ = (I − 1
2
Ω)−1(I − 1

2
Ω) belongs to O(n). The Cayley-transform methods [Iserles]

for discretization of (*) are based on the idea of solving (advancing) the counterpart

of (*) on the Lie algebra at any point and again transforming the answer back to

the group O(n). Note that because the Lie algebra is a linear space we have no

difficulty in keeping the answer in it. For more detail the reader is referred to

[Calvo].

One point to mention is that the underlying problem in our case is an optimization

problem for which we derived a gradient descent ODE. In this context one may

want to have the property that at each step of discretization the cost function is

reduced, the same as standard gradient descent methods. As we mentioned the

Euler method obviously has this property, that is for some µ0, any µ ≤ µ0 results

in an update that reduces the cost function and moreover the stationary points of

the discretized equation and the discrete algorithm are the same. On the other

hand whether the RK methods posses this property is not clear in general. In

[Stuart p.519] it is shown that under the additional assumptions that the gradient

of the cost function is globally Lipschitz and radially unbounded this is true for

RK methods in Rn. Hence we may expect this to hold to a good extent on other

manifolds locally. Nevertheless, this form of discretization is not popular in the

optimization community.

58

Algorithm 5.2

1. Set µ and ε.

2. Set Θ0 = In×n or to a good initial guess.

3. While ‖∆k‖F > ε do

Y1 = Θk

Y2 = Θk + 1
2
µf(Y1)

Y3 = Θk + 1
2
µf(Y2)

Y4 = Θk + µf(Y3)

Θk+1 = Θk + µ
(

1
6
f(Y1) + 1

3
f(Y2) + 1

3
f(Y3) + 1

6
f(y4)

)

if ‖Θk+1‖F or ‖Θk+1Θ
T
k+1 − In×n‖F are ”big” then reduce µ and goto 2.

4. End

Table 5.2: A fixed-step size implementation of the fourth order RK discretization of the gradient flow (5.4),

which is re-written in the form Θ̇ = ∆ΘΘ = f(Θ). The unspecified parameters and qualities are to be decided in

practice.

Fourth Order RK Method Discretization for Θ

One of the most popular RK methods is the classical four-stage fourth order explicit

RK method for which A is such that a21 = 1
2
, a32 = 1

2
, a43 = 1 and all other

elements of A are zero and ~b is [1
6
, 1

3
, 1

3
, 1

6
]T . We use this scheme to discretize (5.4).

We will use a fixed small step-size to implement this method. Again we re-write

(5.4) in the form Θ̇ = ∆ΘΘ = f(Θ). The derived algorithm is shown in Table (2).

59

5.5 Applications in the BSS/ICA Problem(EG-

JADE and RKG-JADE Algorithms)

We can use the methods shown in Tables (5.1) and (5.2) to construct gradient based

versions of the JADE algorithm, simply by replacing the Jacobi based joint diag-

onalization by the algorithms developed in previous section. We call the method

using the Euler method Euler-Gradient based JADE or the EG-JADE algorithm

and the other one Runge-Kutta Gradient based JADE or RKG-JADE. These two

methods retain orthogonality in Θ only approximately. However, in the case of

noisy ICA or when using estimated cumulants in the JADE algorithm, we know

that after whitening the data the separating matrix is not an orthogonal one nec-

essarily or exactly, therefore the constraint of keeping the update orthogonal can

be compromised (see Section 7.1 for more detail). In other words for the ICA/BSS

problem we can tolerate slightly off-O(n) answers of (5.4). Of course we will lose

the compactness property of O(n) which is a theoretical guarantee for the conver-

gence of flow (5.4).

5.6 Numerical Examples

In this section we examine the performance of Algorithms 5.1 and 5.2 in the con-

text of joint diagonalization and ICA/BSS problems.

Example 1: In this example we generate N = 100 symmetric 20 × 20 (n = 20)

matrices of the form Ci = UΛiU
T , 1 ≤ i ≤ N where Λi are diagonal matrices

with elements that have i.i.d standard Gaussian distribution. We find {Ci}’s
joint diagonalizer using Algorithm 5.1. In the first set of experiments we set

µ = .0001, .0002, .0006, .0012 and run the algorithm to observe the behavior of

60

0 100 200 300 400 500 600 700 800 900 1000
−50

0

50

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

µ=0001
µ=0002
µ=0006
µ=0012

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

Number of iterations k

a

b

c

d

e

 Example 1: Variation of perfromance with respect to the step size (N=100,n=20)

Figure 5.1: This figure shows variation of some performance measures computed in Example (1) for different

values of step size µ: a. log(‖∇J1(Θk)‖) b. log(J1(Θk)) c. log(Index(Pk)) d.‖Dk‖ e. det(Θk)

different quantities (we do not use any stop criteria, but run the iteration for

k=1000 times). Figure (5.1) shows the variation of some quantities in terms of the

number of iterations k. The first graph depicts log(∇J(Θk)). Because of the large

dynamic range of the graph we used logarithm. Note that the gradient decreases

much faster and deeply for large µ’s. The second graph shows log(J1(Θk)). The

third graph shows how far Pk = ΘkU is from being essentially diagonal, using the

Index criterion defined by equation (2.6). In fact it shows log(Index(Pk)). The

61

ideal value for J1(Θ∞) and Index(P∞) is zero. So obviously the smaller values of µ

result in better performance although the corresponding gradients are not smaller

in norm. The reason will become clear by looking at the next two graphs where

they show measures of orthogonality. The fourth graph shows ‖Dk‖ and the fifth

one shows det(Θk). These two graphs show that the smaller values of µ result in

better orthogonality error and so that is why they give better performance. Among

these values for µ it seems that µ = .0006 is a good one that gives a fair balance

between computational complexity and performance.

In the next experiment we increase the dimension and number of matrices. Fig-

ure (5.2) shows the results. In this figure we have four set of curves. We consider

N = 100, n = 40 with µ = .0003, .0001 and N = 200, n = 40 with µ = .0003, .0001.

It is interesting to note that the convergence by increasing n, N or µ will be

faster however the performance will deteriorate, because the orthogonality error

increases.

We should mention that the matrices generated in the above experiments were

somehow “well” scaled, in the sense that Λi’s generated have almost the same

dynamic range of values and this made the convergence of the algorithm much

better. Although this may not be the case in a general JD problem, we can argue

that in the BSS/ICA problem after whitening the data because the correlation ma-

trix is identity, the dynamic range of the data is restricted so the cumulant slices

will have almost close norms. As an example for the case that bad scaling makes

things difficult we consider the first experiment N = 100, n = 20 but we consider

Ci =
√

i UΛiU then algorithm (5.1) does not converge for µ = .0001 at all. Even

by decreasing µ to .000001 still the algorithm does not converge. Hence in the case

that the dynamic range of the matrices are different this algorithm will not work

62

0 100 200 300 400 500 600 700 800 900 1000
−50

0

50

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

N=200,µ=.0001
N=200,µ=.0003
N=100,µ=.0003
N=100,µ=.0001

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

Example 1: The effect of size of matrices (n=40)

Number of iterations k

Figure 5.2: This figure shows how the performance changes when the dimension and number of matrices

is increased in Example (1). N = 100, n = 40 and N = 200, n = 40 are used with µ = .0003, .0001. a.

log(‖∇J1(Θk)‖) b. log(J1(Θk)) c. log(Index(Pk)) d.‖Dk‖ e. det(Θk)

63

properly, although in the case of BSS problem after whitening this is unlikely to

be the case.

Example 2: In this example we apply the EG-JADE algorithm to a BSS problem.

In the first experiment we consider n = 4 independent sources ~s mixed through a

randomly generated mixing matrix:

A =




−1.72577265692312 0.13866495543565 1.15075435309812 −0.37346107032557

0.81319959967304 −0.85953392675766 −0.60802501127072 −0.83203043468849

1.44186661829232 −0.75225055816553 0.80615791615996 0.28686630098359

0.67227220216042 1.22961508382908 0.21713285248002 −1.81889162356406




One of the sources has exponential distribution with zero mean and parameter

λ = 1, the next one has two-sided exponential distribution (also known as Laplace

distribution) with parameter λ = 1, the other two sources have uniform distri-

bution on [−1
2
, 1

2
]. We generate T = 2000 sample of the source data denoted

by the matrix ST (it is a 4 × T matrix), then mix the data to get the mixed

signal samples XT = AST . We then zero the mean of each row of XT and

then compute Rxx = 1
T
XT XT

T . In the next step we find R
− 1

2
xx , using the eigen

decomposition of Rxx and whiten the data to get YT = R
− 1

2
xx XT

1. Then using

the sample estimates of cumulants we compute the cumulant tensor, and there-

after Cy = {Cumy(:, :, i, j)|1 ≤ i, j ≤ n = 4}. Note that due to the symmetry

of cumulant tensor we do not need to compute all the cumulants, and in fact

Cum(:, :, i, j) = Cum(:, :, j, i). Next we pass the set Cy through the EG-JADE

algorithm (Algorithm 5.1) with parameters µ = .01 and ε = .1. We do not use any

initial guess such as an eigen matrix of one of cumulant slices. This could enable

1Direct computation of Rxx and afterwards R
− 1

2
xx is not the best practical way to whiten the

data both from computational load and accuracy points of view, however, for our purposes and

due to the good accuracy of computations in MATLABr this method is satisfactory. For more

details the reader can consult [Comon 1] and the reference therein.

64

faster convergence. The algorithm stops after k = 95 iterations yielding:

Θ95 =




0.95985004288776 −0.28044871233207 0.00550000868509 0.03592182236959

0.27822003344298 0.94999801900180 0.14445051912210 −0.03875257025448

−0.02276020813643 −0.13853724807153 0.78968278035147 −0.63503749191227

−0.04603839531831 −0.04412894967835 0.63399928692651 0.79979176271809




with ‖Θ95Θ
T
95 − I4×4‖F = 0.06586700007617. The estimated un-mixing matrix

B = Θ95R
−1
2

xx is such that the the total mixing matrix is :

P = BA =




0.03884229547725 0.01947545028173 3.42035143547487 0.09397388342959

0.02977653938651 −0.01591949619921 −0.16913582939640 3.50898334470220

0.05539773531559 −0.72804272424862 0.04057529899273 0.05829470954786

−0.99678892890767 −0.00922039815672 0.08732420762586 0.10336859023621




Note that it is close to a permuted diagonal matrix and in fact its distance from

being essentially diagonal is Index(P) = 0.86359255677199. We can give two rea-

sons that Index(P) is not exactly zero: first, we are using estimates of cumulants

rather than exact values; second, we have not proceeded further to minimize the

cost function (the effect of ∇J1(Θ95) not being exactly zero) and that we have or-

thogonality error. However, the first cause is more harmful. In fact with ε = .0001

and µ = .0001 we can have Index(P) = 0.74485563657809 after k = 35056 itera-

tions!. Here we can notice a drawback rampant among gradient based optimization

methods (as opposed to Newton based methods), which is their slow convergence

when they are close to the answer.

To better understand the effect of mixing and un-mixing on the data we plot com-

ponents of the source, sensed, whitened and un-mixed data with respect to each

other in order to visualize their dependency. Figure (5.3) shows these graphs. From

the boundaries, especially in the case of uniform variables, we may understand the

dependency. The first row shows the independent source data. The second row

shows the mixed data. The third row shows the whitened data, we can see that

still some dependency has remained. The last row shows almost independent data.

65

−2 0 2 4 6 8
−10

0

10

−0.5 0 0.5
−0.5

0

0.5

−15 −10 −5 0 5
−10

0

10

−10 −5 0 5 10
−10

0

10

20

−4 −2 0 2 4
−5

0

5

−10 −5 0 5
−10

−5

0

5

−2 −1 0 1 2
−2

0

2

−8 −6 −4 −2 0 2
−10

0

10

S1 and S2 S3 and S4

 X1 and X3 X2 and X4

Y1 and Y2 Y3 and Y4

Received signal 1 and 2 Received signal 3 and 4

Example 2: The components of source, mixed, whitened and restored signal with respect to each other

Figure 5.3: This figure tries to help to visualize the dependence between the components of data during

each step of the mixing-unmixing process in the first experiment Example (2). Each graph is one component

of data vector with respect to another component. a) s1 and s2, they are one-sided and two-sided exponentials,

respectively. They are independent. b) s3 and s4 and both are uniform. They are independent. c) x1 and x3. They

are dependent. d) x2 and x4. They are dependent. e) y1 and y2. They are uncorrelated but still dependent. f) y3

and y4. They are uncorrelated but still dependent. g) ŝ1 and ŝ2. They are almost independent(~̂s = BA~s = P~s).

h) ŝ3 and ŝ4. They are almost independent.

66

Note that the element with maximum absolute value in the last row of P (this cor-

responds to the recovered one-side exponential source) has negative sign, that is

why the graphs (a) and (h) are reverse of each other.

In the next step we consider the effect of changing µ on the convergence rate and

separation performance of the algorithm. The table below shows the results.

We can see that there is not much improvement in the separation performance by

k Index(P) ‖Dk‖F

µ = .04 DNC - -

µ = .03 31 0.90465915694489 0.02068842693575

µ = .01 95 0.86359255677199 0.00229871410397

µ = .005 191 0.85442048722669 5.746785259929237e-004

µ = .001 959 0.84746473734464 2.298714103972716e-005

Table 5.3: This table gives the performance measures from applying the source separation algorithm developed

in this chapter for the sources and mixing matrix A in Example (2) with respect to the step size µ. Note that for

µ = .04 the algorithm does not converge.

decreasing µ, however orthogonality error is reduced. As we can see improvement

in orthogonality error does not improve the separation performance considerably.

We can conclude that the Euler discrete JD scheme with moderately small step-size

results in acceptable separation performance with low computational cost (com-

pared to smaller step-sizes). Note that the algorithm does not converge for µ = .04

and in fact Θk blows up very fast. This can be related to the fact that µ is not

small enough to guarantee reduction in the cost function at each step.

Example 3: In this example we will compare the performance of the EG-JADE

67

and RKG-JADE algorithms with the JADE algorithm2. We have no indication

that these methods can perform better than JADE, because they are different ver-

sions of each other. In fact because it retains the orthogonality by construction

and because of its almost quadratic convergence rate [Bunse-Gerstner], the JADE

algorithm outperforms this gradient based method slightly in separation perfor-

mance and largely in computational cost.

Consider the data model:

~x = A~s + σ~n

where ~n is the standard Gaussian noise and σ2 indicates the noise power. We

compare the performance of EG-JADE and RK-JADE with the standard JADE’s

performance for the same mixing matrix A and source signals as in Example 1.

We compute the averaged performance measure Index(P) (see (2.6)) versus σ in

the model for different values of T = 2000, 5000, ε = .01 and µ = .01 for these

algorithms. To calculate the average of Index(P) we repeat each experiment 100

times for any set of the above parameters.Figure (5.4) shows the results. From

Figure (5.4) we can see that the three algorithms perform almost equally up to

moderate values of σ. For larger noise power the JADE algorithm slightly out-

performs the other two. This result is somehow un-expected. This can mean that

the cost function J1(Θ) is difficult to be minimized by gradient descent when the

matrices are not jointly diagonalizable. It is interesting to note that the Euler and

RK methods also have the same performance in this problem.

2A MATLABr code for JADE was downloaded from:

http://tsi.enst.fr/c̃ardoso/icacentral/Algos

68

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

T=5000,EGJADE
T=5000,RKGJADE
T=5000,JADE
T=2000,EGJADE
T=2000,RKGJADE
T=2000,JADE

The average perfomance Index in terms of noise σ for differentICA methods in Example 3

σ

Figure 5.4: This figure shows the average performance index of EG-JADE and RKG-JADE with ε = µ = .01

and also average performance index of JADE for T = 2000, 5000. The mixing matrix and sources are the same as

in the first part of Example (2). Note that the graphs are bundled in two groups corresponding to three different

values of T .

69

Chapter 6

Gradient Based Non-Orthogonal

Joint Diagonalization

In this chapter we derive gradient based algorithms for Joint Diagonalization by

non-orthogonal matrices using the cost function J1 introduced in Chapter 3. We

develop methods to discretize them, such that the answer has some desired prop-

erties that resemble the continuous answer. We also give a method based on the

Armijo Step Size selection to implement the gradient flow.

6.1 Gradient Flow for Joint Diagonalization on

GL(n)

Let {Ci}N
i=1 be a set of n × n symmetric matrices and consider the cost function

introduced in (3.5) as:

J1(B) =
N∑

i=1

∥∥BCiB
T − diag(BCiB

T)
∥∥2

F
(6.1)

70

where the un-mixing matrix B belongs to GL(n), the group of non-singular n× n

matrices. As it was mentioned in Section 3.3, J1(B) is not scale-invariant, i.e.

J1(ΛB) 6= J1(B) for non-singular diagonal Λ and hence it is not suitable for JD.

We remind that scale-invariance for a cost function in terms of un-mixing matrix

refers to left multiplication of the argument by diagonal matrices. Note that as

‖Λ‖F → 0, J1(ΛB) decreases to zero. In the next two sections we will develop

methods to avoid such reductions.

Consider the manifold GL(n), at any point B ∈ GL(n) for tangent vectors

ξ, η ∈ T
GL(n)
B we define a Riemannian inner product as:

〈ξ, η〉B = tr((ξB−1)T ηB−1) = tr(B−T ξT ηB−1) = tr(η(BT B)−1ξT) (6.2)

In fact QB = (BT B)−1 is the positive definite matrix representing the Riemannian

inner product at the point B. Note that ξB−1 belongs to the Lie Algebra of

GL(n), i.e gl(n). We call this Riemannian metric the Natural Riemannian metric1,

because it matches the group structure of GL(n). Note that we could take 〈ξ, η〉B =

tr((B−1ξ)T B−1η) as the Riemannian metric, however, because we are concerned

about left multiplication of B by diagonal matrices we are interested in tangent

vectors of the form ∆B where ∆ ∈ gl(n).

The gradient flow for minimization of (6.1) on GL(n) corresponding to the Natural

Riemannian metric is given in the following theorem:

Theorem 6.1 :The Natural Gradient of (6.1) on GL(n) is

∇J1(B) = 4

(N∑
i=1

(
BCiB

T − diag
(
BCiB

T
))

BCiB
T

)
B (6.3)

1We use this name after Amari’s Natural Gradient method which uses the same metric (see

Chapter 2 in [Haykin]).

71

and the Natural gradient flow for minimizing (6.1) on GL(n) is:

Ḃ = −
(N∑

i=1

(
BCiB

T − diag
(
BCiB

T
))

BCiB
T

)
B (6.4)

with B(0) ∈ GL(n).

Proof : See the Appendix.

The equilibria of the above flow is found by letting ∇J1(B) = 0 or H =

∑N
i=1

(
BCiB

T − diag
(
BCiB

T
))

BCiB
T = 0. Therefore:

tr(H) = tr

(N∑
i=1

(
BCiB

T−diag(BCiB
T)

)(
BCiB

T−diag(BCiB
T)+diag(BCiB

T)
))

=

N∑
i=1

tr
((

BCiB
T − diag(BCiB

T)
)2)

= 0

where we used the fact that tr((A−diag(A))diag(A)) = 0 for any A. The above re-

sult means that BCiB
T = diag(BCiB

T) for all 1 ≤ i ≤ N . Hence if the set {Ci}N
i=1

are not diagonalizable, i.e. there is no non-singular B such that all {BCiB
T}N

i=1

are diagonal then, this flow does not have any equilibria or J1(B) does not have

any minima on GL(n)!. This can be related to the fact that J1(B) can be reduced

to zero by a diagonal matrix whose norm is approaching zero and again shows that

J1(B) by its own is not a good cost function for joint diagonalization, as mentioned

before.

6.2 Gradient Flow for Joint Diagonalization over

SL(n)

One way to improve the problem with non-compactness of GL(n) and the scale

variability of J1(B) is to consider minimization of J1(B) over the set SL(n), i.e.

72

the group of n × n matrices with unit determinant. Obviously SL(n) is not a

compact group and det(B) = 1 does not put any upper bound on the norm of B,

but from the SVD decomposition B = UΣV T we have | det(B)| = det(Σ) so the

largest singular value is bigger than unity hence ‖B‖2 ≥ 1. By restricting B to be

in SL(n), we identify all matrices of the form αB for α ∈ R − {0} with B. Thus

we hope we can avoid converging to the trivial infimum of J1 at B = 0.

To find the gradient flow of J1 over SL(n) we first state this useful lemma,

about finding the gradient of a function on a sub-manifold from its gradient on the

manifold [Helmke]:

Lemma 6.1 : Let f :M→ R be a smooth function on a Riemannian manifold M

and let V ⊂ M be a sub-manifold, endowed with the Riemannian metric induced

from M . If x ∈ V , then the gradient of the restriction f |V : V → R is the

orthogonal projection of ∇f(x) ∈ TxM on the tangent space of V at x, i.e. TxV .

We state a simple lemma that gives the orthogonal projection of a any matrix on

the linear space of matrices of zero trace, namely sl(n).

Lemma 6.2 : The orthogonal projection of the matrix An×n on the space of ma-

trices with zero trace is given by: A0 = A− tr(A)
n

In×n.

Proof : Obviously tr(A0) = 0 and tr(A0T (A − A0T)) = tr(A)tr(A0T)/n = 0.

Therefore A0 is the orthogonal projection of A to the space of zero trace matrices.4
Now we are ready to give the gradient flow of J1(B) on SL(n). The next two

theorems give the Natural gradient of J1 on SL(n).

Theorem 6.2 : The Natural gradient of J1(B) on SL(n) is:

∇J1(B) = 4∆0B (6.5)

73

where ∆0 is the orthogonal projection of

∆ =
N∑

i=1

(
BCiB

T − diag
(
BCiB

T
))

BCiB
T

on sl(n) from the above lemma. Furthermore the natural gradient flow to minimize

J1(B) on SL(n) is:

Ḃ = −∇J1(B) = −∆0B (6.6)

with B(0) ∈ SL(n).

Proof : Just apply Lemma’s 6.1 and 6.2.

For the convergence properties of this flow, we resort to the Theorem 5.2. As

a result we can say that if the solution to (6.6) stays on SL(n) then it converges

to a single critical point (more likely to a local minimum) of J1 on SL(n).

6.3 Nonholonomic Flow for Joint Diagonaliza-

tion

A more general way to deal with non-compactness of GL(n) and scale-variability of

J1(B) is to project the gradient onto an appropriate space in order to restrict the

reduction in the cost function to only desired directions. For instance we may be

able to prevent undesirable reduction in the cost function due to diagonal matrices.

In other words we want to constrain the flow such that it does not reduce the cost

function due to row scaling. For this purpose we introduce the concept of group

actions and orbits.

Remark: Nonholonomic constraints are constraints on a vector field or velocity

that are not integrable. Nonholonomic treatment of the ICA problem is related

74

to the issue of scale indeterminacy in the un-mixing matrix and is a well known

property (see for example Chapters 2 and 3 in [Haykin] as well as [Amari 2]).

6.3.1 Group Action on a Manifold

Definition 6.1 : A (left) action of a Lie group G with identity element e on a

manifold M is a smooth mapping Φ : G ×M → M such that :

1. Φ(e, x) = x for all x ∈ M ,

2. Φ(g, Φ(h, x)) = Φ(gh, x) for all g, h ∈ G and x ∈ M .

For any x ∈ M the orbit of x is defined as Ox = {Φ(g, x)|g ∈ G} ⊂ M

Example: Let G be GL(n) and M the space of n× n matrices. Then the action

defined by: Sim : GL(n) × M → M with (S, X) 7→ SXS−1 is the similarity

transformation which preserves the set of eigenvalues of X. The orbit of this

action is OX = {SXS−1|S ∈ GL(n)}, that is all the matrices that have the same

eigenvalues as X.

It is easy to see that for any action the relationship “x ∼ y, x, y ∈ M iff y ∈ Ox”is

an equivalent relationship on M and the orbits are its equivalent classes. In the

above example the relationship of “having the same set of eigenvalues” is the

corresponding equivalence relationship.

6.3.2 The Action of the Group of Diagonal Matrices

Consider the group of nonsingular diagonal matrices D. Let’s define an action

Φ : D × GL(n) → GL(n) by (D,B) 7→ DB, i.e. left multiplication by a non-

singular diagonal matrix. The orbit of a matrix B is the set OB = {DB|D ∈ D}.
We can show that OB is an n dimensional sub-manifold of GL(n). The tangent

75

space to this sub-manifold at B is TOB
B = {∆B|∆n×nis diagonal}. On the other

hand the tangent space to GL(n) at B is T
GL(n)
B = {∆B|∆ ∈ Rn×n}. Thus

TOB
B ⊂ T

GL(n)
B . The orthogonal complement of the of TOB

B in T
GL(n)
B is given the

next proposition.

Lemma 6.3 : At any point B ∈ GL(n) the orthogonal complement with respect to

the Natural Riemannian metric of TOB
B in T

GL(n)
B is the set T

O⊥B
B = {∆B|diag(∆n×n) =

0}.

Proof : TOB
B is an n dimensional linear subspace of T

GL(n)
B with bases {∆iB}n

i=1

where ∆i is a diagonal matrix whose only non zero diagonal element is the iith entry

and is equal to unity. On the other hand T
O⊥B
B is also a linear n2 − n dimensional

subspace of T
GL(n)
B with bases {∆⊥

ijB}n
i,j=1 for i 6= j where ∆⊥

ij is an n× n matrix

whose only non zero element is at the ijth position and is unity. For any k and

i 6= j between 1 and n let ξ = ∆kB and η = ∆⊥
ijB, then we have:

tr((ξB−1)T (ηB−1)) = tr(∆T
k ∆⊥

ij) = 0

Hence every vector in T
O⊥B
B is perpendicular to all vectors in TOB

B , and because the

sum of their dimensions is n2, they are orthogonal complement with respect to the

Natural Riemannian inner product.4
Using this lemma we can project any tangent vector to GL(n) at B to two orthog-

onal components, one along TOB
B and the other orthogonal to that. The direction

along TOB
B amounts to the direction in which the cost function is reduced by only

diagonal matrices. Therefore by restricting the gradient to T
O⊥B
B we can avoid the

contribution of diagonal matrices in cost reduction. Let’s define for any matrix ∆:

∆⊥ = ∆− diag(∆) (6.7)

We have this theorem, afterwards:

76

Figure 6.1: Vector fields in equations (6.4),(6.6) and (6.8)

Theorem 6.3 : The Natural gradient flow for minimization of J1(B) restricted

to T
O⊥B
B is given by:

Ḃ = −∆⊥B (6.8)

where ∆ =
∑N

i=1

(
BCiB

T − diag
(
BCiB

T
))

BCiB
T .

Proof : It is the immediate result of theorem (2) and Lemma (3).4
Figure (6.1) illustrates how the Natural gradient flow on SL(n) (6.6) and the non-

holonomic flow in (6.8) are related to the original GL(n) Natural gradient flow of

J1(B).

It is interesting to verify whether the projected flow in (6.8) still gives a descent

flow or not. That is, is the time derivative of J1(B) negative? We can see from

the definition of gradient with respect to the Natural Riemannian:

J̇1 = tr((∇J1B
−1)T ḂB−1) = −tr(∆T ∆⊥) = −tr(∆⊥T ∆⊥) = −

∑

i6=j

∆2
ij ≤ 0

77

So as long as ∆ is not diagonal, (6.8) is a descent flow which is a desirable property.

Note that if the initial condition B(0) ∈SL(n), then flow (6.8) can be also consid-

ered as a flow over SL(n), hence det (B) = 1 and ‖B‖2 ≥ 1.

6.4 Flows on the Manifolds of Triangular Matri-

ces

It is easy to see that the groups of n × n non-singular lower LL(n) and non-

singular upper triangular matrices UL(n) are Lie groups. The sub-group of lower

triangular matrices with all diagonal elements equal to unity SLL(n)⊂ LL(n) and

the sub-group of upper triangular matrices with all diagonal elements equal to

unity SUL(n)⊂ UL(n) are also Lie groups of dimension n(n−1)
2

. In fact they are

very simple sub-manifolds of GL(n) and SL(n). ll(n) is the projection of gl(n) over

the space of lower triangular matrices and sll(n) is the projection of gl(n) over the

space of lower triangular matrices with zero diagonal. The Lie Algebras of UL(n)

and SUL(n) can be found in a similar way. Note that we did not define SUL(n)

as upper triangular matrices with unity determinant as we shall find the presented

definition more useful.

We can easily find the (upper or lower) triangular counterpart of the derived flows

for minimizing J1. Flows (6.6) and (6.8) are of the form Ḃ = −∆B where ∆ is

defined accordingly. In fact this is the form of any tangent vector at B. So by

projecting ∆ to the space of triangular matrices (lower or upper) we can find the

triangular (lower or upper) version of the derived flows. Let ∆L denote a lower

triangular matrix that has the same lower triangular part as ∆. Then the lower

78

triangular version of flow (6.8) is

Ḃ = −∆⊥LB, B(0) ∈ SLL(n) (6.9)

with the same ∆ has defined in the Theorem 6.3. The corresponding upper trian-

gular version is derived in the same manner.

The main reason for introducing flows on triangular matrices is that triangular

versions of the nonholonomic flow (6.8) are suitable for discretization, in the sense

that it is easy to have updates of lower or upper triangular matrices that produce

unity determinant sequence of matrices, as we shall see in the next section.

6.5 Discretization of the Flows

As for discretization of flows over O(n) in Chapter 5, here also we have the problem

of keeping the updates on the manifold. For flows introduced so far this translates

to having updates with unity determinant. In this section we develop some meth-

ods to discretize the flows introduced in the previous sections. Here we first give

Euler and explicit fourth order Runge-Kutta discretization of the flows (see Sec-

tion 5.5). After that we will use the idea of LU decomposition of the un-mixing

matrix to derive a method that keeps the updates on the manifold by construction.

Finally we incorporate the Armjio line search to Euler discretization.

As we mentioned all the flows developed so far have either the form:

Ḃ = −∆B, B(0) = In×n (6.10)

6.5.1 Euler Discretization

Using the Euler method for (6.10) we have the update:

Bk+1 = (In×n − µ∆k)Bk k ≥ 0 (6.11)

79

Algorithm 6.1

1. Set µ and ε.

2. Set B0 = In×n or to a good initial guess.

3. While ‖∆k‖F > ε do

Bk+1 =
(
I − µ∆k

)
Bk

if ‖Bk+1‖F is “big” then reduce µ and goto 2.

4. End

Table 6.1: A fixed-step size implementation of the Euler discretization of the gradient flow (6.10), which

represents all the continuous flows developed based on the Natural Riemannian metric. The unspecified parameters

and qualities are to be decided in practice.

where ∆k is computed according to the corresponding flow at each step and µ

is a small enough step-size so that Bk+1 is on the desired manifold (i.e having unity

determinant) and Bk is bounded. Table(6.1) shows Algorithm 6.1 that represents

this discretization. Note that we have not provided any measure to check the

determinant of Bk, as it is very costly. Only by choosing small µ we hope we can

achieve this goal to a good extent. However checking whether Bk is blowing up and

the algorithm is diverging is easy. If µ is small enough such that J1(Bk+1) < J1(Bk)

then we have a descent algorithm. Therefore for two reasons of keeping the update

on the manifold and descent, we need to have small step-size. We emphasize that

in an optimization problem on a vector space only the second restriction appears

and as long as we have a descent we can choose large step sizes.

6.5.2 Fourth Order Runge-Kutta Discretization

In this section we proceed much the same way as Section 5.5 to derive RK dis-

cretization for the developed flows. Considering equation (6.10) we expect that the

80

update equation for Bk in an RK scheme will be in the form of Bk+1 = (I+µΨk)Bk

where the matrix Ψk is computed using stage values in the RK method. Based on

the ideas used in developing our flows we may want to impose some conditions on

Ψk such that the discrete scheme more resembles the continuous one. In particular

for a nonholonomic flow we can require Ψk to have zero diagonal and for a gradient

flow on SL(n) we project Ψk to Ψ0
k. Note that Ψk will not have these properties

immediately contrary to the ∆k matrix in the Euler method. Table (6.2) shows an

algorithm based on explicit fourth order RK method that takes this measure in to

account. The underlying flow can be on SL(n), nonholonomic or flow on triangular

matrices manifold. Note that for flows over SLL(n) and SUL(n) we do not require

to alter Ψk, because it will have the required properties by construction.

6.5.3 An iterative algorithm based on LU factorization

Here we introduce an iterative algorithm based on LU [Golub] factorization of the

un-mixing matrix B and the nonholonomic flow introduced before. The idea is

to have alternating nonholonomic flows over SLL(n) and SUL(n). Consider the

nonholonomic flow when B(t) is confined to be in SLL(n), i.e (6.9). Note that

both the Euler and RK discretization will have the form Bk+1 = (I + µkΦ
⊥L
k)Bk,

where Φ⊥L
k is a matrix whose non-zero elements are below the diagonal. Therefore

det Bk+1 = det Bk and if B0 = In×n then det Bk = 1 for all k by construction,

moreover all the diagonal elements of Bk are one. The same holds if B is confined

to be in SUL(n) and B0 = In×n. By combining these two approaches we can have

an iterative algorithm that alternatively searches for upper and lower triangular

factors of the un-mixing matrix and keeps the determinant unity by construction.

An algorithm for this is presented in Table (6.3).

81

Algorithm 6.2

Consider any one of the flows (6.6), (6.8) or (6.9). Let them be written in

the general form Ḃ = ∆BB where ∆B is found for each of them accordingly.

1. Set µ and ε.

2. Set B0 = In×n or to a good initial guess.

3. While ‖∆k‖F > ε do

Y1 = Bk, Y2 = (I + 1
2
µ∆Y1)Bk = ΦY1Bk

Y3 = (I + 1
2
µ∆Y2ΦY1)Bk = ΦY2Bk, Y4 = (I + µ∆Y3ΦY2)Bk = ΦY3Bk

Ψk = 1
6
∆Y1 + 1

3
∆Y2ΦY1 + 1

3
∆Y3ΦY2 + 1

6
∆Y4ΦY3

If discretizing (6.6) then Ψk ← Ψ0
k

If discretizing (6.8) then Ψk ← Ψ⊥
k

Bk+1 = (I + µΨk)Bk

if ‖Bk+1‖F is “big” then reduce µ and goto 2.

4. End

Table 6.2: A fixed-step size implementation of the fourth order RK discretization of the flow (6.10), which

can represent all the continuous flows developed. The unspecified parameters and qualities are to be decided in

practice.

The most interesting feature of this algorithm is that det(Lk) = det(Uk) = 1 for

all k independent of µk and hence det(B) = 1 by construction. This is a nice

property, because it guarantees that B is non-singular and ‖B‖2 ≥ 1.

6.5.4 Incorporation of the Armijo line search method

The Armijo line search method is a well known line search method to find step size

for descent methods [Tits]. We can incorporate this method in the above algorithm

(when the Euler method is used for discretization), knowing the fact that using

82

Algorithm 6.3

Consider the set {Ci}N
i=1 of symmetric matrices. Let (a):U̇ = −∆⊥UU and (b):

L̇ = −∆⊥LL with U(0) = L(0) = I be the corresponding upper and lower

nonholonomic joint diagonalization flows. (See equations (6.8) and (6.9))

1. Use Algorithm 6.1 or 6.2 to find U the solution to (a).

2. Set Ci ← UCiU
T .

3. Use Algorithm 5.1 or 5.2 to find L the solution to (b)

4. Set Ci ← LCiL
T .

5. Set B ← L UB

6. If ‖LU − I‖F is “small” stop else goto 1

Table 6.3: The pseudo code for an algorithm for joint diagonalization of {Ci}N
i=1, based on the LU factorization

of the un-mixing matrix. The nonholonomic flows corresponding to L and U are discretized using Algorithm 5.1

or 5.2. The algorithm alternatively finds U and L and forms B from them sequentially. The main feature of this

algorithm is that det B = 1. This is a nice property, because it guarantees that B is non-singular and ‖B‖2 ≥ 1.

The unspecified parameters and qualities are to be decided in practice.

the above algorithm the updates are always on SL(n) independent of step-size.

The basic idea in the Armjio method is to change the step-size µk = βj where

β ∈ (0, 1) by changing j and keeping β constant to find the smallest j such that

J1(Bk+1)−J1(Bk) ≤ αβjJ̇1(Bk) where α ∈ (0, 1) and Bk+1 is updated according to

any descent direction. Note that J̇1(Bk) is the directional derivative in the descent

direction. The derived algorithm is coded in Table (6.4).

83

Algorithm 6.4

Consider the set {Ci}N
i=1 of symmetric matrices.

1. Set B = In×n, set α ∈ (0, 1).

2. U1 = In×n do until “convergence”:

find the smallest nonnegative integer j

such that J1(Uk+1)− J1(Uk) ≤ αβjtr(∆⊥UT
k ∆⊥U

k) where: Uk+1 = (I − βj∆⊥U
k)Uk

and ∆k =
∑

i

(
Uk Ci U

T
k − diag

(
Uk Ci U

T
k

))
Uk CiU

T
k and increment k.

3. Let U be the result of the previous step, set Ci ← UCiU
T .

4. L1 = In×n do until “convergence”:

find the smallest nonnegative integer j

such that J1(Lk+1)− J1(Lk) ≤ αβjtr(∆⊥LT
k ∆⊥L

k) where: Lk+1 = (I − βj∆⊥L
k)Lk

and ∆k =
∑

i

(
Lk Ci L

T
k − diag

(
Lk Ci L

T
k

))
Lk CiL

T
k and increment k.

5. Let L be the result of previous step, set Ci ← LCiL
T .

6. Set B ← LUB.

7. If ‖LU − I‖F is “small” stop else goto 2

Table 6.4: The pseudo code for an algorithm for joint diagonalization of {Ci}N
i=1, based on the LU factorization

of the un-mixing matrix and Armijo line search. The nonholonomic flows corresponding to L and U are discretized

using the Euler method. By construction det(Uk) = det(Lk) = 1, so the Armijo method can be used without any

restriction on µk for keeping updates on SL(n). The algorithm alternatively finds U and L and forms B from them

sequentially. The main feature of this algorithm is that detB = 1. This is a nice property, because it guarantees

that B is non-singular and ‖B‖2 ≥ 1. The unspecified parameters and qualities are to be decided in practice.

84

Chapter 7

ICA/BSS Algorithms Based on

Joint Diagonalization

In this chapter we develop ICA/BSS algorithms based on joint diagonalization

methods developed before. We introduce hybrid methods that whiten the data,

however do not restrict the subsequent search space to orthogonal matrices.

7.1 Introduction

In Chapter 5 we gave a gradient based version of the JADE algorithm for BSS/ICA.

In this chapter we will develop more general gradient based algorithms for BSS/ICA

using methods developed in the previous chapters. These algorithms do not restrict

the search space to orthogonal matrices. That is, they search for non-singular joint

diagonalizer for a set of cumulant matrix slices.

Consider the ICA model:

~x = A~s + ~n = ~z + ~n (7.1)

with standard assumptions, especially with ~n being Gaussian noise. In lack of

85

information about noise or ~z’s covariance matrix we choose to whiten the data

based on the (estimated) covariance matrix of ~x. Suppose W is a matrix that

whitens or shperes ~x, then for the white signal ~y we have:

~y = W~x = WA~s + W~n = A1~s + ~n1 (7.2)

This can be considered as a new problem with the same structure as before where

A1 = WA is non-singular and ~n1 is again a Gaussian noise. Obviously the form

of the problem has not changed and we have not lost any information. Yet this

new data is closer to independence “in most cases” (see Section 2.4.4). This is

the traditional uncorrelating step used in different contexts, but obviously we shall

proceed further!.

Note that when the noise is not very strong we expect the reduced un-mixing

matrix namely A1 = WA to be an almost orthogonal matrix. This is an important

fact because in practice it makes the subsequent nonorthogonal joint diagonaliza-

tion much easier. We elaborate more on this. As a special case consider the case

where the covariance matrix of ~n in (7.1) has the form Rnn = σ2In×n. Then it is

not difficult to show that (with the convention that Rss = In×n) for the 2-norm of

orthogonality error we have that (in the first order of approximation):

‖A1A
T
1 − In×n‖2 ≤ α(

σ

νmin

)2 (7.3)

where νmin is the smallest singular value of A and α is a positive constant. This

means that if the noise power is not strong compared to the smallest singular

value of A the matrix A1 = WA in (7.2) is close to orthogonal. However, if we

assume the orthogonality and impose that on the subsequent joint diagonalization

phase, obviously we are reducing the degree’s freedom in the search and abandon

further possible joint diagonalization. Hence we should perform non-orthogonal

86

joint diagonalization. Note that an orthogonal flow has the form Θ̇ = ∆Θ where

∆ is skew-symmetric, so we have only n(n−1)
2

degrees of freedom in updating Θ

whereas the same scheme for a nonholonomic flow can have n(n − 1) degrees of

freedom. This has the advantage that makes more minimization possible but on

the other hand the compactness of O(n) is lost. As we mentioned before and as

actual simulations show the JD methods developed in Chapter 6 work much better

in the case the sought matrix is close to orthogonal. To motivate this we recall that

if the initial condition for in the JD algorithm is the identity and the sought matrix

is close to orthogonal the required change in the norm is not significant. Note that

this can be improved if we initialize the JD algorithm with a better guess, which

can be for example the eigen matrix for one of cumulant slices. However we will

not choose this method in our simulations.

Considering (7.2) and using the properties of cumulants and cumulant slices we

have that Cumy(:, :, i, j) = A1ΛijA
T
1 where Λij is a diagonal matrix from Lemma

2.1 (see also equation (3.2)). Now we can search for a non-singular matrix B that

jointly diagonalizes {Cumy(:, :, i, j)}i,j using methods developed in Chapter 6 for

non-orthogonal JD. To be rigorous we mention that this deduction was based on

the assumption that the exact correlations and cumulants of the data are avail-

able. Mainly the assumptions that Cumn1(:, :, i, j) = 0 and that Cumy(:, :, i, j)

are diagonalizable by A1 are based on using exact cumulants. Certainly deviation

from these assumptions in small sample sizes will affect the performance of the

algorithms.

There are other benefits to whitening the data, for example the whitened signal

usually is such that its cumulant matrix slices have the same dynamic range and

again this helps the numerical stability. We should also mention that covariance is

87

the most reliable statistics (compared to higher order statistics), in the sense that

it has the least amount error estimation. Therefore it is convincing to use as much

information as we can from covariance. We mention that there are methods that

rely only cumulants (see for example [De Lathauwer2]), in this view these methods

are missing the nice properties of second order statistics.

In summary, in order to do ICA, we try to reduce the mutual information

“globally or coarsely” at the first step by whitening the data and then by joint di-

agonalization of cumulant slices we reduce the mutual information further “locally

or finely”. This way we use the benefits of white data, higher order statistics and

the group structure of both orthogonal and non-singular matrices.

7.2 A Class of ICA Algorithms Based on Non-

Orthogonal JD

Here we introduce a general scheme for our algorithms. Assume that T realizations

of data in (7.1) with standard assumptions are available. We place these realiza-

tions column-wise in an n× T matrix XT . So we can also write XT = AST + NT .

The Whitening step WHT consists of computing RXX = 1
T
XXT and then W =

R
− 1

2
XX to find ~y = W~x or YT = WXT . In practice we always use vectors after we

have made their mean zero. The cumulant computing step CUM is simply com-

puting the fourth order cumulants of YT using sample estimates. We can take any

subset of the computed cumulant slices. The number of cumulant slices is n2, so

for large n using all slices maybe prohibitive. Let {Ci}N
i=1 be the subset chosen.

To proceed further we adopt the idea of sequentially minimizing the cost func-

tion:

88

J1(B, {Ci}N
i=1) =

N∑
i=1

∥∥BCiB
T − diag(BCiB

T)
∥∥2

F

in a multiplicative fashion. That is, first we find an orthogonal Θ to minimize

J1 (we call this step JDO) and we recompute Ci ← ΘCiΘ
T (we call this step

RCO) and then again minimize J1 (this time with a new {Ci}N
i=1, of course) by

a non-orthogonal matrix BJDN (step JDN). Thereafter B ← BJDNΘB. We can

proceed further and again recompute Ci ← BJDNCiB
T
JDN (step RCN) and repeat

the previous steps. The reason for orthogonal joint diagonalization is two-fold.

First as it was mentioned, after whitening we expect the un-mixing matrix to

be close to an orthogonal one; second, because of compactness of O(n) and the

theoretical assurance of convergence of the gradient flows on O(n) (presented in

Section 5.2) we may want to perform orthogonal JD. Note that the SL(n) flow

developed in Section 6.2 is a gradient flow on a non-compact set, and also the

nonholonomic flows developed in Section 6.3 are not flows on a compact set. Notice

thatsteps JDO-RCO-JDN together are equivalent to JDN when it is initialized to the

initial condition BJDN0 = Θ. This is obviously the result of the group structure of

the problem. Another point to be mentioned is that for all the algorithms developed

in the previous chapters both the initial conditions and answers are matrices with

unity determinant, so an orthogonal matrix can be used as the initial condition

for them. Of course, despite this we can avoid JDO-RCO and just do JDN with

BJDN0 = In×n.

Another approach maybe to update the data after any of the JD procedures and

then recompute the cumulants from the data samples, this way flow the data along

with the un-mixing matrix. While this approach seems plausible it is much more

costly and in practice does not offer performance increase, as it was experienced.

89

Table (1) summarizes the steps mentioned above and possible algorithms that

can be used in each of them. Note that in step RCO we have included the original

Jacobi based Algorithm 3.1 for orthogonal JD, and also in both RCO and JDN we

can use any other ODE solver, such as the popular MATLABr’s “ode45” routine.

WHT: Whiten the data, let B = W be the whitening matrix and ~y the whitened

data.

CUM: Compute C = {Ci}N
i=1 a subset of forth order Cumulant matrix slices for ~y.

JDO: Jointly Diagonalize C by an Orthogonal matrix

using any of Algorithms 3.1, 5.1, 5.2 or any other ODE solver.

RCO: Re-Compute Ci ← ΘCiΘ
T and B ← ΘB, where Θ is the (Orthogonal)

answer to step JDO.

JDN: Jointly Diagonalize C by a Non-orthogonal matrix using any of Algorithms

6.1,2,3,4 or any other ODE solver.

RCN: Re-Compute Ci ← BJDNCiB
T
JDN and B ← BJDNB, where BJDN

is the (Non-orthogonal) answer to step JDN.

Table 7.1: The core steps used in ICA/BSS algorithms for model (7.1).

The usual JADE, EG-JADE or RKG-JADE algorithms can be coded as:

1. do WHT

2. do CUM

3. do JDO and RCO

4. If not satisfactory go to step 3

We can generalize this to a class of algorithms in the form:

90

1. do WHT

2. do CUM

3. do (JDO and RCO) and do (JDN and RCN)

3’. do (JDN and RCN)

4. If “not-satisfactory” goto 3 or 3’ else END

Table 7.2: The general scheme for a class of ICA/BSS algorithms based on the JD criterion.

Note that step 3 has two versions. In the first version an orthogonal and a unity

determinant matrix are sought and in the second version only a unity determinant

matrix is found. As we mentioned they can be equivalent if we initialize JDN with

the answer of JDO. In practice we refrain from repeating steps 3 or 3’ because it is

unlikely to be fruitful unless the stop criteria chosen is large so that major further

improvement was possible.

7.3 Numerical examples

In this section we shall consider applying the developed ICA/BSS algorithms to

some BSS/ICA problems. As it is evident we have developed a class of algorithms

that can have lots of members. For implementation of each step we can have dif-

ferent algorithms with different parameters (for example µ and ε in all discretized

gradient or the number of iterations in Algorithm 6.3). Hence comparing all these

methods will be tedious and even not very useful, because these algorithms are

to work with stochastic data, hence their performance also depends on the source

probability distribution as well. Therefore we try to give few examples that cap-

91

ture different aspect of the algorithms.

Example 1: Let us consider ~x = A~s + σ~n where ~s is a n = 5 dimensional ran-

dom vector for which the first element is exponentially distributed by parameter

λ = 1 and mean one, the second one has the two sided exponential distribution and

the last three are uniformly distributed in [−1
2
, 1

2
], and ~n is a standard Gaussian

noise and σ2 indicates the actual power of noise at each sensor. The mixing matrix

is randomly generated as:

A =




−0.42438571607 −1.03974356765 0.85444609063 0.20440694544 −1.42107846008

−0.9210520223 −0.00242328109 −1.40278316492 −0.54986431848 −0.12122193071

1.01156524988 0.20298091664 −0.12445806045 0.39315798257 0.56608725333

−0.35265942639 0.74153122094 0.43137720844 −0.84647982436 −1.62052834709

−0.27103430011 0.05900889251 0.59195584499 1.29681290480 0.17889884891




We generate T = 2000 independent samples of ~x with σ = 0. For the non-

orthogonal JD step in this example we only consider nonholonomic flows (equation

(6.8) and not gradient flow on SL(n) (equation (6.6). In the first experiment we

apply steps 1,2,3 from Table (2) using JDO and JDN by the Euler method (Algo-

rithms 5.1 and 6.1, respectively) with µ = .01 and ε = .01. Next we do the same

by using fourth order RK method (Algorithms 5.2 and 6.2) with the same values

of µ and ε. After that we use the LU based methods with both Euler and RK

methods. We set ε = .0001 and use the same µ to replace the Euler JDN by an

Euler LU JDN step. Note that decreasing ε is necessary now because the matrix

that its norm is considered for stop criteria is a triangular matrix. We repeat the

LU steps 5 times. Next we do step 3’ only, that is we only do JDN and we forget

about an orthogonal diagonalizer. Table (7.3) shows the result of these experi-

ments. We have computed the performance index Index(P) for P = BΘWA(see

equation (2.6)). Note that when we do only JDN then Θ = In×n in computing P .

92

We also computed det B and ‖ΘΘT −I‖F as measures of staying on the manifolds.

Note that all methods perform almost equally. Of course this can not be a exact

way of comparing them. Next we repeat the same experiments by adding noise to

Index(P) det(B) ‖ΘΘT − I‖F

Euler JDO/JDN 1.0319 0.9998 0.0397

RK JDO/JDN 1.0326 0.9999 0.0235

Euler JDO/LU-JDN 1.0376 1 0.0397

RK JDO/LU-JDN 1.1262 1 0.0235

Euler JDN 1.081 1.0065 -

RK JDN 1.1159 1.0072 -

Table 7.3: This table gives the performance measures from applying ICA/BSS methods schemed in Tables

(1) and (2) to Example 1, when σ = 0. The parameters for each method are specified in Example 1. All the

discretized flows are nonholonomic ones.

~x with σ = .1. Table (7.4) shows the results for the same parameters as before.

Obviously Index(P) has increased by noise. Another point is that the required

time to perform the computation is more, which shows that the problem becomes

more difficult in noise.

Example 2: In this example we again consider the same mixing matrix A as in

Example 2 and the same sources. We compare the performance of four differ-

ent methods in noise: steps (1,2,3) with Euler discretization, steps (1,2,3) with

RK discretization steps (1,2,3) but this time using the MATLABr ODE solver

“ode45” which uses a complicated adaptive step size in RK method, and lastly

the JADE algorithm. All flows used are nonholonomic flows. We use two values

T = 2000, 5000 for sample size. We use µ = .001 and ε = .01 for all Euler and

RK methods. Figure (1) shows their performance. The plots show that the de-

93

Index(P) det(B) ‖ΘΘT − I‖F

Euler JDO/JDN 1.3874 0.9998 0.0389

RK JDO/JDN 1.3848 0.9998 0.0230

Euler JDO/LU-JDN 1.4725 1 .0389

RK JDO/LU-JDN 1.3872 1 0.0230

Euler JDN 1.4140 1.0046 -

RK JDN 1.414 1.0072 -

Table 7.4: This table is the same as the previous one, except that σ = .1.

veloped algorithms outperform JADE. On the other hand the experiments show

that the computation time for these methods is much longer then JADE’s. Hence

the better performance of the developed algorithms is at the expense of more com-

putation time. Interestingly the fix-step size methods perform on average slightly

better than “ode45” but still at the expense of more time. Yet we should say

that a MATLABr implementation in M-files does not give a good assessment of

the computation cost of these methods, because the developed algorithms are only

loops of addition-multiplication operations, and this can not be implemented via

MATLABr interpreter in an efficient manner. One advantage of the developed

JD methods is that they only require additions and multiplications and no divi-

sion, so they are suitable for fixed point implementation on DSP processors.

Example 3: In this example we compare the performance of nonholonomic

flow and gradient flow on SL(n) for ICA. That is we perform steps WHT, CUM,

JDN. For the JDN step we use both Euler and RK discretizations of equations (6.6)

and (6.8). We apply these algorithms (Algorithm 6.1 and 6.2) to the data produced

94

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.5

1

1.5

2

2.5

3
T=2000,Euler
T=2000,RK
T=2000, ode45
T=2000,JADE
T=5000,Euler
T=5000,RK
T=5000,ode45
T=5000,JADE

 The average performance Index of 4 different ICA methods with respect to noise σ for T=2000,T=5000
 (µ=.001,ε=.01)

σ

Figure 7.1: (Example 2)This figure shows the average in-noise-performance index (every point is averaged

over 100 trials) of algorithms of the form WHT, CUM, JDO-RCO, JDN implemented in three methods: Euler, RK,

and “ode45” function in MATLABr. The standard JADE algorithm is also used. These algorithms are applied

to the data introduced in Example 1 in the presence of noise. The average Index(P) is plotted versus σ. We

consider two sample sizes T = 2000, 5000. The parameters for the discretized algorithms are set to µ = .001 and

ε = .01.

95

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

E−Nonholonomic
E−SL(n)
RK−Nonholonomic
RK−SL(n)

The performance of ICA for SL(n) and Nonholomoc ICA algorithm of the form WHT, CUM, JDN in noise
(T=3500,µ=.01,ε=.01)

σ

Figure 7.2: (Example 3) This figure shows the average in-noise-performance index (every point is averaged

over 100 trials) of algorithms of the form WHT, CUM, JDN based on Nonholonomic flow on GL(n) and gradient

flow on SL(n), discretized in both Euler and RK methods. These algorithms are applied to the data introduced

in Example 1 in the presence of noise. The average Index(P) is plotted versus σ. We consider two sample sizes

T = 3500 and all implementation have the same parameters µ = .01 and ε = .01. Note that no orthogonal JD

(JDO) is applied.

in the same way as in Example (1). We set µ = ε = .01 for all methods and we use

T = 3500 samples. Figure (7.2) shows the average performance index with respect

to noise σ. From the figure it is understood that SL(n) and nonholonomic flows

perform almost the same in this problem.

96

Chapter 8

Summary and Suggestions for

Future Work

In summary, after introducing necessary tools and concepts we developed orthog-

onal and non-orthogonal flows for joint diagonalization of a set of symmetric ma-

trices. This derivation was based on defining a suitable Riemannian metric that

matches the group structure of the underlying Lie group (i.e. O(n) and GL(n)).

In the case of orthogonal JD, the cost function J1(Θ) in equation (3.3) is mini-

mized with respect to Θ ∈ O(n) resulting in the flow in equation (5.4). Due to

compactness of the group O(n) this cost function has a minimum on O(n) and

hence the gradient minimization of it is a legitimate process whereas in the case

of non-orthogonal JD the cost function J1(B) with B ∈GL(n) does not have this

property. J1(B) can be reduced by diagonal B with small norm and it is not ac-

ceptable in the context of ICA/BSS. On the other hand as we showed in Chapter

6 unless all the symmetric matrices to be diagonalized have an exact common di-

agonalizer J1(B) has no minimum on GL(n) and its only minimizer is the trivial

B = 0 which of course is not in GL(n). To combat this (or to achieve some sort

97

of compactification of GL(n)), we followed the idea of identifying B and its mul-

tiples to keep ‖B‖F large enough so that the minimization becomes non-trivial.

If we identify αB, α ∈ R − {0} with B then we will have the gradient flow (6.6),

which is a flow on SL(n). If we identify ΛB where Λ is a non-singular diagonal

matrix we will have flow (6.8) which is a nonholonomic flow with respect to the

Natural Riemannian metric on GL(n). These two flows were derived by projecting

(restricting) the gradient of J1(B) on (to) appropriate spaces. Instead of this pro-

jection we could use another cost function introduced in equation (3.7), and this

can be one idea for further work.

We also gave local point convergence proofs for the orthogonal and SL(n) gradi-

ent flows. In the case of the nonholonomic flow still there is room for investigating

convergence properties of the flows.

Proper discretization of flows on a manifold is not a trivial task. There are

sophisticated methods to do this, we did not follow this path, instead we used

Euler and fourth order Runge-Kutta methods with suitable modification and small

enough step-size to have discretization schemes that stay on the manifold to a good

extend. However, we gave an iterative discretization scheme for flow (6.8) based on

the LU decomposition of B. This method has the property that for the resultant

B, det B = 1 regardless of the step-size used. We also did not seek adaptive

step-size selection schemes in discretization. This can be a possible, but yet little

bit dubious path for further work. These gradient based algorithms are sensitive

to scaling mismatches in data. Proper pre-conditioning can be very useful in the

general case, for as we mentioned in the case of the developed ICA/BSS algorithms

the matrices to be diagonalized (i.e. cumulant slices of a white signal) are in general

properly scaled.

98

The JD algorithms based on gradient are very slow, as other gradient methods

are, specially if the level curves of the cost functions are not nice, and this is the

case when the matrices are far from having a joint diagonalizer. Therefore a very

major development would be to devise Newton based methods for this optimiza-

tion problem, that take the group structure and the issue of non-compactness of

GL(n) in to account. For the case of orthogonal JD the so-called JADE algorithm

(Algorithm 3.1) [Cardoso1] is a simple and fast solution.

Based on the developed flows we proposed a class of ICA/BSS algorithms that

whiten the data first but do not confine the search for an un-mixing matrix to

O(n) as the JADE algorithm does. In a more elegant language we can say that the

developed algorithms solve the ICA problem in two steps: first by a whitening step

we get closer to an independent answer (globally) and then by looking for a non-

orthogonal joint diagonalizer for the fourth order cumulant slices of the whitened

signal we locally solve the ICA problem. The celebrated JADE algorithm does the

same except that the sought matrix is confined to be orthogonal. Our methods

are also different from only-HOS based methods because we use the second order

statistics to whiten the data. Our argument for doing this is that in general a

signal becomes closer to independence by whitening (see Section 2.4.4 for more

details). We neither gave a precise statement of this fact nor a proof, which can be

a subject for further work as well. It should be noted that by whitening the data we

will not lose any information due to the group structure of the ICA/BSS problem.

Moreover whitening has the advantage that scales the data properly for further

processing (a concept comparable to pre-conditioning in numerical analysis). This

is also a vague statement that can be made more rigorous and investigated further.

We applied the developed methods to few cases of synthetic data, a more general

99

pace would be to examine the performance of these core ICA/BSS methods in

more sophisticated and specific-purpose ICA/BSS schemes. The non-orthogonal

JD algorithms could also be examined in the context of non-stationary BSS where

a set of correlation matrices are to be jointly diagonalized [Pham1].

100

Appendix A

Derivations and Some Proofs

In some cases we will use these easy-to-prove identities about n × n matrices

A,B, C:

tr(ABC) = tr(CAB) = tr(BCA) (A.1)

tr(A diag(B)) = tr(diag(A) B) = tr(diag(A) diag(B)) (A.2)

and if A and B are symmetric the Lie Bracket is skew-symmetric:

[A,B]T = (AB −BA)T = BA− AB = −[A,B] (A.3)

A.1 Proof of Theorem 5.1

We name each single term in the summation as Ji(Θ) that is:

J1(Θ) =
N∑

i=1

Ji =
N∑

i=1

∥∥ΘCi0Θ
T − diag(ΘCi0Θ

T)
∥∥2

F
(A.4)

then note that using the above identities and the symmetry of Ci0 and ΘCi0Θ
T

and orthogonality of Θ we have:

Ji = tr

((
ΘCi0Θ

T − diag(ΘCi0Θ
T)

)(
ΘCi0Θ

T − diag(ΘCi0Θ
T)

))
=

101

tr(C2
i0)− 2tr

(
ΘCi0Θ

T diag(ΘCi0Θ
T)

)
+ tr

(
diag(ΘCi0Θ

T) diag(ΘCi0Θ
T)

)
=

tr(C2
i0)− tr

(
ΘCi0Θ

T diag(ΘCi0Θ
T)

)
(A.5)

In the next step we compute the time derivative of Ji, i.e. J̇i. By using (A.1,A.2)

we have:

J̇i = −2tr
(
Θ̇Ci0Θ

T diag(ΘCi0Θ
T)

)− 2tr
(
ΘCi0Θ̇

T diag(ΘCi0Θ
T)

)
(A.6)

As it was mentioned in Chapter 4 we can write Θ̇ = Θ∆ where ∆n×n is a skew-

symmetric matrix. With this in mind we continue (A.6) as:

J̇i = −2tr
(
Θ∆Ci0Θ

T diag(ΘCi0Θ
T)

)− 2tr
(
ΘCi0∆

T ΘT diag(ΘCi0Θ
T)

)
= (A.7)

−2tr
(
Θ∆Ci0Θ

T diag(ΘCi0Θ
T)

)
+ 2tr

(
ΘCi0∆ΘT diag(ΘCi0Θ

T)
)

Then using (A.1),(A.2),(A.3) and orthogonality of Θ we have:

J̇i = −2tr
(
ΘT ΘCi0Θ

T diag(ΘCi0Θ
T)Θ∆

)
+ 2tr

(
ΘT diag(ΘCi0Θ

T)ΘCi0Θ
T Θ∆

)

= 2tr

(
ΘT

[
diag(ΘCi0Θ

T), ΘCi0Θ
T
]
Θ∆

)
= 2tr

(
ΘT

[
diag(ΘCi0Θ

T), ΘCi0Θ
T
]
Θ̇

)

where [A,B] = AB −BA is the matrix Lie Bracket. By definition of the Rieman-

nian metric in equation (5.2) and the definition of gradient with respect to this

metric we have:

∇Ji = 2
(
ΘT

[
diag(ΘCi0Θ

T), ΘCi0Θ
T
])T

= −2
[
diag(ΘCi0Θ

T), ΘCi0Θ
T
]
Θ =

−2Θ
[
ΘT diag(ΘCi0Θ

T)Θ, Ci0

]

Accordingly:

∇J =
N∑

i=1

Ji = −2 Θ
N∑

i=1

[
ΘT diag(ΘCi0Θ

T)Θ, Ci0

]
= −2

N∑
i=1

[
diag(ΘCi0Θ

T), ΘCi0Θ
T
]
Θ

Then the gradient flow for minimization of J(Θ) will be:

Θ̇ = −1

2
∇J (A.8)

which proves the second part of the theorem.

102

A.2 Proof of Theorem 5.2

From Cj = ΘCj0Θ
T and by (A.8) we have:

Ċj = Θ̇Cj0Θ
T + ΘCj0Θ̇

T =
N∑

i=1

([
diag(ΘCi0Θ

T), ΘCi0Θ
T
]
ΘCj0Θ

T−

ΘCj0Θ
T
[
diag(ΘCi0Θ

T), ΘCi0Θ
T
])

=
N∑

i=1

[
[diag(ΘCi0Θ

T), ΘCi0Θ
T
]
, ΘCi0Θ

T

]

=
N∑

i=1

[
[diag(Ci), Ci], Ci

]
=

[N∑
i=1

[diag(Ci), Ci], Cj

]

In deriving the last expression we used the definition of the Lie Bracket.

A.3 Proof of Theorem 6.1

We name each single term in the summation as Jj(B) that is:

J1(B) =
N∑

i=1

Ji(B) =
N∑

i=1

∥∥BCiB
T − diag(BCiB

T)
∥∥2

F
(A.9)

then note that using identities (A.1), (A.2) and the symmetry of Ci’s we have:

Ji = tr

((
BCiB

T −diag(BCiB
T)

)(
BCiB

T −diag(BCiB
T)

))
= tr(BCiB

T BCiB
T)

−2tr(BCiB
T diag(BCiB

T)) + tr(diag(BCiB
T)diag(BCiB

T)) = tr(BCiB
T BCiB

T)

−tr
(
BCiB

T diag(BCiB
T)

)

Next we compute the time derivative of Ji(B) in terms of the time derivative of B

i.e. Ḃ ∈ TBGL(n). Using the symmetries and the same identities we will have:

J̇i(B) = 4tr(CiB
T BCiB

T Ḃ)− 4tr
(
CiB

T diag(BCiB
T)Ḃ

)
=

4tr

((
CiB

T BCiB
T − CiB

T diag(BCiB
T)

)
Ḃ

)
= tr(XḂ) (A.10)

103

Now from the definition of the Natural Riemannian metric in equation (6.2) and

the corresponding gradient we have that:

J̇i = tr((BT B)−1∇JT
i Ḃ)

hence from (A.10) we have that: ∇Ji = XT BT B, therefore:

∇Ji = 4
(
(BCiB

T − diag(BCiB
T))BCiB

T
)
B

and ∇J1 =
∑N

i=1∇Ji yields:

∇J1(B) = 4

(N∑
i=1

(
BCiB

T − diag
(
BCiB

T
))

BCiB
T

)
B

which is the first statement of the theorem and the next statement is simply letting

Ḃ = −1
4
∇J1(B).

104

BIBLIOGRAPHY

[Amari 1] S. Amari, “Differential-geometrical methods in statistics”, Lecture notes
in statistics, Springer-Verlag, Berlin, 1985 ,
[Amari 2]S.Amari, T.-P Chen, A. Chichoki, “Non-holonomic constraints in learn-
ing algorithms for blind source separation” , preprint, 1997.
[Brockett] R.W. Brockett, “Differential Geometry and the Design of Gradient Al-
gorithms”, Proceedings of Symposia in Pure Mathematics, Vol. 54, pp 69-92,
American Mathematical Society, 1992.
[Bunse-Gerstner] A. Bunse-Gerstner, R. Byers and V. Mehrmann, “Numerical
Methods For Simultaneous Diagonalization”, SIAM Journal on Matrix Analysis
and Applications, vol. 4, pp. 927-949, 1993.
[Calvo] M.P. Calvo, A. Iserles and A. Zanna, “Runge-Kutta methods for orthogo-
nal and isospectral flows”, Appl. Num. Maths 22 (1996).
[Cardoso1] J.F. Cardoso and A. Soulumiac, “Blind Beamforming For Non-Gauusian
Signals”, IEE-Proceedings, Vol.140, No 6, Dec 1993.
[Cardoso2] J.F Cardoso and B Laheld. “Equivariant adaptive source separation”,
IEEE Transactions on Signal Processing, vol. 44, no 12, pp. 3017-3030, Dec.
1996.
[Cardoso3] J.F. Cardoso, “Infomax and maximum likelihood for source separa-
tion”, IEEE Letters on Signal Processing, vol. 4, no. 4, pp. 112-114, April, 1997.
[Comon1] P.Comon, “Independent Component Analysis, A New Concept?”, Signal
Processing, Vol.36, No 3, Special issue on High-order Statistics, April 1994.
[Cover] T.M. Cover and J.A. Thomas, “Elements of Information Theory”, Wiley
Inter-Science, 1991.
[De Lathauwer1] L. De Lathauwer, “Signal Processing Based on Multilinear Alge-
bra”, Ph.D dissertation, Katholiecke Univ. Leuven, Belgium, 1997.
[De Lathauwer2] L.De Lathauwer, P.Comon, B. De Moor, “A contrast-Based In-
dependent Component Analysis without Second-Order Moments”, Submitted to:
8th IEEE SP workshop on Statistical Signal and Array Processing, Corfu, Greece,
1996.
[Devore] R. Devore, A. Iserles and E. Sli, “Foundations of Computational Mathe-
matics”, Cambridge University Press, 2001.
[Golub], G.H. Golub, C.F. Van Loan, “Matrix Computations”, Johns Hopkins Se-

105

ries in the Mathematical Sciences, 1996.
[Grellier] O. GRELLIER and P. COMON, “Blind Separation of Discrete Sources”,
IEEE Signal Processing Letters, 5(8):212–214,1998.
[Haykin] S. Haykin (Editor), “Unsupervised Adaptive Filtering, Vlume I, Blind
Source Separation”, Wiley Interscience, 2000.
[Helmke] U.Helmke and J.B. Moore, “Optimization and Dynamical Systems”,
Springer-Verlag, 1994.
[HOWE] R. Howe, “Very Basic Lie Theory”, American Mathematical Monthly, pp
600-623, Nov 1983.
[Hyavarinen] A. Hyvarinen, J. Karhunen and E. Oja, “Independent Componenet
Analysis”, Wiley Inter-Science, 2001.
[Iserles] A. Iserles, “On Cayley-transform methods for the discretization of Lie-
group equations”, Found. Comp. Maths 1 (2001).
[Khalil] H.K.Khalil, “Nonlinear Systems”, Prentice Hall, 2002.
[Mahony], R. Mahony and Ben Andrews, “Convergence of the Iterates Descent
Methods for Analytic Cost Function”, preprint
[Marcus] M. Marcus and H. Minc, “A Survey of Matrix Theory and Matrix In-
equalities”, Dover Publications, 1964.
[Marsden] J.E. Marsden and T.R Ratiu, “Introduction to Mechanics and Symme-
try”, Second Edition, Springer-Verlag, 1999.
[McCullagh] p. McCullagh, “Tensor methods in statistics”, Chapman and Hall,
1987.
[Moreau] E.Moreau , “A generalization of joint-diagonalization criteria for source
separation”, IEEE Transactions on Signal Processing , vol. 49 , n 3 , 2001.
[Papoulis] A. Papoulis, S.U. Pillai,“Probability, random variables, and stochastic
processes”, McGraw-Hill, 2002.
[Pham1] D.T. Pham and J.F Cardoso, “Blind Separation of Instantaneous Mix-
tures of Non Stationary Sources”, IEEE Transactions on Signal Processing, pp
1837-1848, vol 49, no 9, 2001.
[Pham2] D.T. Pham, “Joint Approximate Diagonalization of Positive Definite Her-
mitian Matrices”, SIAM Journal of Matrix Analysis and Applications, Vol. 22, No.
4, pp. 136-1152.
[Porat] B. Porat, “Digital Processing of Random Signals”, Prentice Hall, 1993.
[Stuart] A.M. Stuart and A.R. Humphries, “Dynamical Systems and Numerical
Analysis”, Cambridge University Press, 1996.
[Tits] A. Tits, “Notes for Optimal Control”, Lecture notes for ENEE 664 course,
University of Maryland, College Park, 1998.
[Yeredor] A.Yeredor,“Non-Orthogonal Joint Diagonalization in the Least-Squares
Sense With Application in Blind Source Separation”, IEEE Transactions on Signal
Processing, Vol 50, No.7.July 2002.
[Zhang]L. Zhang, A. Cichocki and S. Amari, “Natural gradient algorithm for blind
separation of overdetermined mixture with additive noise”, IEEE Signal Process-

106

ing Letters, Vol. 6 , No. 11, 1999.
[Ziehe], A.Ziehe, P. Laskov, K. Muller, G. Nolte,“Linear Least-squares Algorithm
for Joint Diagonalization”, 4th International Symposium on Independent Compo-
nent Analysis and Blind Signal Separation (ICA2003), April 2003, Nara, Japan

107

