
'

&

$

%

Some Gradient Based Joint Diagonalization Methods for ICA
Bijan Afsari, P.S.Krishnaprasad

Institute for Systems Research, University of Maryland

College Park, Maryland 20742, USA

Email:{bijan, krishna}@isr.umd.edu'

&

$

%

�
�

�

Abstract

We present a set of gradient based orthogonal and non-orthogonal
matrix joint diagonalization algorithms. Our approach is to use
the geometry of matrix Lie groups to develop continuous-time flows
for joint diagonalization and derive their discretized versions. We
employ the developed methods to construct a class of Independent
Component Analysis (ICA) algorithms based on non-orthogonal
joint diagonalization. These algorithms pre-whiten or sphere the
data but do not restrict the subsequent search for the (reduced) un-
mixing matrix to orthogonal matrices, hence they make effective use
of both second and higher order statistics.

�
�

�

Introduction

• Many problems in Blind Signal Processing can be reduced to

approximate Joint Diagonalization (JD) of a set of estimated

statistics matrices.

• In the standard ICA model with Gaussian noise:

~x = An×n~s + ~n = ~z + ~n (1)

for the fourth order matrix cumulant slices of the observed data

~x we have:

Cumx(:, :, i, j) = AΛijA
T , Λij = diagonal (2)

or equivalently:

∀B ∈ GL(n), BA = permuted diagonal⇒ BCumx(:, :, i, j)B
T = Λ

(3)

where GL(n) denotes the Lie group of n × n non-singular ma-

trices and Λ is diagonal matrix.

• (JADE Algorithm) In the absence of noise:

– Whitening step: Find a whitening matrix W such that

WRxxW
−T = In×n and whiten ~x as:

~y = W~x = A1~s (4)

We can assume that the unknown matrix A1 is in the Lie

group of n× n orthogonal matrices O(n).

– JD step: Let {Ci}
N
i=1 be a subset of the fourth order cumu-

lant matrix slices of ~y. Find Θ ∈O(n) such that:

Θ = arg min
B∈O(n)

J1(B)

where:

J1(B) =
N

∑

i=1

‖BCiB
T − diag(BCiB

T)‖2F (5)

and compute the overall un-mixing matrix as Â = ΘW .

• O(n) is a compact manifold so J1(B) has a minimum on it.

Therefore J1 is a suitable cost function for orthogonal JD.

• In the presence of noise the reduced mixing matrix in (4) can

not assumed to be orthogonal anymore. What is a suitable

JD cost function in the case that the joint diagonalizer is non-

orthogonal?.

• A “good” cost function J(B) in terms of the un-mixing matrix

B for non-orthogonal JD should be scale invariant as mutual

information is:

Λ = non-singular diagonal, B ∈ GL(n)⇒ J(ΛB) = J(B) (6)

• J1 defined in (5) is not a suitable cost function for non-

orthogonal JD:

J1(ΛB) 6= J1(B) and J1(ΛB)→ 0 as ‖Λ‖ → 0 (7)

• How can we still use J1(B) for non-orthogonal JD?.

Answer: By restricting the gradient of J1(B) such that it does

not reduce the cost function in certain un-wanted directions.

�

�

�

�
Gradient Flow for Orthogonal Joint

Diagonalization

• At any point Θ equip O(n) with the (Natural) Riemannian

metric:

〈ξ, η〉Θ = tr((ξΘT)TηΘT) = tr(ξTη), ∀ξ, η ∈ TΘO(n) (8)

• A gradient flow for minimization of J1(Θ) on O(n) is given by:

Θ̇ = −∆Θ =
N

∑

i=1

[diag(ΘCiΘ
T), ΘCiΘ

T] Θ, Θ(0) = In×n

(9)

where [X, Y] = XY − Y X is the Lie bracket.

• Discretization of (9) is not a trivial task, however an Euler

scheme with small step-size is promising.

�

�

�

�
Restricted Gradient Flows for Non-Orthogonal

Joint Diagonalization

• Equip the Lie Group GL(n) with the (Natural) Riemannian

metric:

〈ξ, η〉B = tr((ξB−1)T ηB−1) = tr(η(BTB)−1ξT), ∀ξ, η ∈ TBGL(n)

(10)

• The gradient of J1(B) with respect to the Riemannian metric

defined in (10) is:

∇J1 = 4∆B, ∆ =
N

∑

i=1

(BCiB
T − diag(BCiB

T))BCiB
T (11)

• Unless {Ci}
N
i=1 have a common joint diagonalizer ∇J1 can not

vanish on GL(n), i.e. J1(B) does not have a minimum on

GL(n), which is a result of non-compactness of GL(n).

• If we restrict the gradient flow for minimization of J1 such that

the cost is not reduced in the directions that correspond to

“scaling” we can achieve joint diagonalization.

• Restriction to SL(n): Project ∆ in (11) to the space of

zero trace matrices hence obtain a gradient flow for minimiza-

tion of J1 on SL(n)the Lie group of n × n matrices with unity

determinant:

Ḃ(t) = −∆0B(t), B(0) = I, ∆0 = ∆−
tr(∆)

n
In×n (12)

• A Non-Holonomic Flow: Project the gradient to the

orthogonal complement of the tangent space of the orbit of the

left-action of the group of non-singular diagonal on GL(n) , i.e.

set the diagonal of ∆ to zero:

Ḃ(t) = −∆⊥B(t), B(0) = I, ∆⊥ = ∆− diag(∆) (13)

• Both (12) and (13) are flows on SL(n) and they do not converge

to the global infimum of J1(B) at B = 0:

det(B(t)) = 1 =⇒ ‖B(t)‖2 ≥ 1 (14)

�
�

�

Discrete Schemes

• (12) and (13) can be discretized by the Euler scheme which is

equivalent to steepest descent for small step-size as:

Bk+1 = (I − µkXk)Bk, B0 = I k ≥ 0 (15)

where Xk is computed accordingly.

Algorithm 1:

1.set µ and ǫ.

2.set B0 = In×n or “to a good initial guess”.

3.while ‖Xk‖F > ǫ do

Bk+1 = (I − µXk)Bk

if ‖Bk+1‖F is “big” then “reduce” µ and goto 2. 4.end

• We need to have large step-size for faster convergence, whereas

small step-size to keep det(Bk) close to one.

• How can we keep the updates on SL(n) independent of step-

size?

�
�

�

An LU Based Discrete Scheme

• Let L(U) denote the group of lower(upper) triangular matrices

with all diagonal elements equal to unity.

• Restrictions of flow (13) to L and U are:

U̇ = −∆⊥UU, U(0) = I (16)

L̇ = −∆⊥LL, L(0) = I (17)

where ∆⊥U and ∆⊥L are the upper and lower triangular parts

of ∆⊥, respectively.

• Observation: If we discretize the flows in (16) and (17) as in

(15) then det(Uk) = 1 and det(Lk) = 1for all k, by construction.

This is similar to what happens in Jacobi Rotations.

• Based on the LU factorization of matrices we can consider

the joint diagonalization problem as an iterative optimization

scheme in which each iteration has two phases: upper and

lower triangular joint diagonalization. After each phase the

matrices Ci should be updated.
Algorithm 2:

Consider the set {Ci}
N
i=1 of symmetric matrices and set B = In×n.

1. Minimize J1(U) over U by using Algorithm 1 to find a solution

U to U̇ = −∆⊥UU, U(0) = I.

2. set Ci ← UCiU
T .

3. Minimize J1(L) over L by using Algorithm 1 to find a solution

L to L̇ = −∆⊥LL, L(0) = I.

4. set Ci ← LCiL
T .

5. set B ← L UB

6. if ‖LU − I‖F is “small” end, else goto 1

• det(B) = 1 independent of the step-size used.

• Because the updates never leave SL(n) we can incorporate usual

step-selection methods.

�

�

�

�
A Class of ICA Algorithms Based on

Non-Orthogonal JD

• In the presence of noise in (1) after whitening we have:

~y = W~x = WA~s + W~n = A1~s + ~n1 (18)

where A1 is only close to orthogonal and its distance to orthogo-

nality depends on the power of noise and the condition number

of the mixing matrix.

• Observations:

– The gradient based algorithms developed perform better if

the sought matrix is close to orthogonal.

– Usually by whitening the data the mutual information is

reduced so the whitened data is closer to independence.

– In most cases whitening the data reduces the dynamic

range of ‖Ci‖’s and enables better convergence for numer-

ical methods thereafter.

– Although estimation of the correlation matrix of ~z in (1)

from observation data ~x is biased it has less variance than

the estimated higher order cumulant slices (this is pro-

nounced especially in small sample sizes). Therefore it is

meaningful to use as much information as possible from this

correlation matrix provided we can avoid the harm of the

“bias” it introduces.

• Based on the above observations we have this class of Non-

Orthogonal JD based ICA:

1. Whiten ~x, let W be a whitening matrix, compute ~y = W~x

and set B = W .

2. Estimate C = {Ci}
N
i=1 a subset of the fourth order cumulant

matrix slices of ~y.

3. Jointly diagonalize C = {Ci}
N
i=1 by an orthogonal matrix Θ

and set Ci ← ΘCiΘ
T .

4. Jointly diagonalize C = {Ci}
N
i=1 by a non-orthogonal matrix

BJDN (using any algorithm such as Algorithms 1 or 2), set

Ci ← BJDNCiB
T
JDN and set B ← BJDNΘB.

5. If necessary goto step (3)

6. Compute the recovered signal ~̂x = B~x

• Steps (1-3) comprise the JADE algorithm. Orthogonal joint

diagonalization can be dropped in most cases.

• Steps 1,2,4 can be summarized as:

~x
-

W = R
− 1

2

xx

-

~y = W~x Non-Orthogonal JD

of {Cumy(:, :, i, j)}i,j

BJDN

-

~̂x = BJDN~y

�
�

�

Numerical Simulations

• We compare the performance of the proposed Non-orthogonal

JD based ICA algorithms in presence of Gaussian noise with

the JADE algorithm.

~x = A~sn×1 + σ~n (19)

with the assumption that the covariance of noise is identity,

σ2 measures the power of noise.(all random variables are zero

mean)

• We estimate an un-mixing matrix B and compute the mixing-

unmixing matrix P = BA and use its distance to diagonality

up to-permutation as:

Index(P) =
n

∑

i=1

(
n

∑

j=1

|pij|

maxk |pik|
− 1) +

n
∑

j=1

(
n

∑

i=1

|pij|

maxk |pkj|
− 1)

(20)

• The mixing matrix is:

A =







−4 11 −1 1 2

−16 11 7 10 −13

1 0 −5 0 7

2 3 21 0 16

−11 1 −1 −8 −6







and sources:

– Two of them uniform in [−1
2 ,

1
2]

– Two of them two-side exponentially distributed with pa-

rameter λ = 1

– one is one-side exponential with parameter λ = 1

• T = 3500 data samples are generated for each experiment and

for each value of σ

• Three gradient based non-orthogonal JD methods are used for

joint diagonalization of the cumulant slices of the whitened

data:

– SL(n)-JD which is an implementation of (12) through Al-

gorithm1 (with µ = .01 and ǫ = .01)

– NH-JD which is an implementation of (13) through Algo-

rithm1 (with µ = .01 and ǫ = .01)

– LU-JD which is an implementation of Algorithm 2.(with

µ = .05, ǫ = .01 and the LU iteration repeated 5 times)

• As the graph below shows, the non-orthogonal JD based ICA

methods proposed outperform JADE in separation performance

in the presence of noise:

0 0.5 1 1.5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Noise σ

(A
ve

ra
ge

d)
 p

er
fo

rm
an

ce
 in

de
x

 NH−JD
SL(n)−JD
LU−JD
JADE

 The average performance index for different methods v.s noise σ

• These gradient algorithms are slower than JADE, however they

require only addition and subtraction.

�
�

�

Conclusion

We introduced gradient based flows for orthogonal and non-
orthogonal JD of a set symmetric matrices and developed a family of
ICA algorithms based upon non-orthogonal JD. The developed ICA
algorithms have the property that after whitening the data they do
not confine the search space to orthogonal matrices. This way we
can take advantage of both second order statistics (which has less
variance) and higher order statistics which are blind to Gaussian
noise. Numerical simulations show better performance for the pro-
posed algorithms than for the standard JADE algorithm in Gaussian
noise.

• For demos and MATLABr codes please visit the URL:

http://www.isr.umd.edu/Labs/ISL/ICA2004/

