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Abstract. Let H be a real Hilbert space and let Æ.,.æ denote the corre-

sponding scalar product. Given a C2 function F: HfiR that is bounded

from below, we consider the following dynamical system:

(SDC) _xx(t) + l(x(t))rF(x(t)) = 0, t$0,

where l(x) corresponds to a quadratic approximation to a linear search

technique in the direction –rF(x). The term l(x) is connected inti-

mately with the normal curvature radius r(x) in the directionrF(x). The

remarkable property of (SDC) lies in the fact that the gradient norm

|rF(x(t))| decreases exponentially to zero when tfi+O.

When F is a convex function which is nonsmooth or lacks strong

convexity, we consider a parametric family {Fe, e >0} of smooth strongly

convex approximations of F and we couple this approximation scheme

with the (SDC) system. More precisely, we are interested in the following

dynamical system:

(ASDC) _xx(t) + l(t, x(t))rxF(t, x(t)) = 0, t$0,

where l(t, x) is a time-dependent function involving a curvature term.

We find conditions on the approximating family and on e(.) ensuring the

asymptotic convergence of the solution trajectories x(.) toward a partic-

ular solution of the problem min {F(x), x˛H}. Applications to barrier
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and penalty methods in linear programming and to viscosity methods are

given.

Key Words. Gradient-like systems, asymptotic analysis, convex opti-

mization, approximate methods, optimal trajectories.

1. Introduction

Let H be a real Hilbert space with scalar product and corresponding

norm denoted by Æ.,.æ and |.| respectively. We are interested in the asymptotic

behavior at infinity of the trajectories generated by some first-order in time

dynamical systems associated with an objective function that we want to

minimize. More precisely, given a smooth function F: HfiR which is

bounded from below, we consider the following initial-value problem of the

gradient type:

_xx + l(t, x)rF(x) = 0, t$0,

x(0) = x0 ˛H,

where l(t, x) is the stepsize coefficient.

When l(t, x) ” l0 >0 (constant), this is simply the steepest descent

method with fixed stepsize. The main drawback of this method lies in the fact

that there is no influence of the shape of the function on the stepsize coeffi-

cient. A first alternative consists in taking a coefficient l = l(t) depending on

only the time. But in practice, the trajectories are not known a priori, so that

it becomes apparent that such a strategy will not be very useful.

Let us consider a coefficient of the type l = l(x). More precisely,

assuming that F is of class C2 on H and that

Ær2F(x)rF(x),rF(x)æ>0,

for all x˛H such that jrF(x)j„0,

we study the following dynamical system:

(SDC) _xx+ [jrF(x)j2=Ær2F(x)rF(x),rF(x)æ]rF(x)=0, t$0,

where SDC means steepest descent with curvature. This choice of l(x) cor-

responds to a quadratic approximation to a linear search technique in the

direction –rF(x). Of course, the trajectories of (SDC) are simply the steepest

descent ones, but they are described with different speeds. The remarkable

property of (SDC) lies in the fact that the gradient norm |rF(x(t))| decreases

exponentially to zero when tfi+O. A similar situation occurs in the case of

the continuous Newton method (Ref. 1). It is interesting to notice that our

expression of l(x) is related closely to the normal curvature radius r(x) in the
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direction rF(x). Roughly speaking, the motion on the trajectory is accel-

erated [resp. decelerated] when the normal curvature radius r(x) increases

[resp. decreases].

The numerical implementation of (SDC) is very simple because the

computation of an approximate of the Hessian term Ær2F(x)rF(x),rF(x)æ
is reduced to two evaluations of the function F. From a numerical point of

view, the coefficient l(x) in the (SDC) system is better adapted to the shape

of the function F than a simple constant coefficient l: this is due to the

influence of the second-order information contained in l(x).

When minimizing a convex function F which is nonsmooth (in con-

strained optimization problems for example) or which is not strongly convex,

it is suggested to replace F by a better behaved parametric approximation.

More precisely, let us consider the family of problems

(Pe) min {Fe(x),x˛H},

where for any e >0, the function Fe: HfiR is a smooth strongly convex

function such that FefiF as efi0. The coupling of dynamical systems

with parametric approximation schemes has been developed by Attouch-

Cominetti (Ref. 2) and Cominetti-Courdurier (Ref. 3) for the steepest descent

method and by Alvarez-Pérez (Ref. 1) for the Newton method. Our goal here

is to couple the (SDC) system with the previous approximation scheme. For

that purpose, we introduce the method of approximate steepest descent with

curvature,

(ASDC) _xx+ [ÆrxF(t, x),rxF(t, x)+r2
txF(t, x)æ=

Ær2
xxF(t, x)rxF(t, x),rxF(t, x)æ]rxF(t, x) = 0, t$0,

where for simplicity of notation we write F(t, x) instead of Fe(t)(x). The

solutions to (ASDC) satisfy

jrxF(t, x(t))j= e–tjrxF(0, x0)j:

In a relatively general setting, we obtain a weak condition on the function e(.)
ensuring the asymptotic convergence of the solution trajectories x(.) toward

a particular solution of the approximated problem. Finally, we apply our

results to barrier and penalty methods in linear programming and to viscosity

methods.

2. Preliminaries

2.1. Descent Direction and Scaling. We begin by recalling some

well-known facts about the classical steepest descent algorithm for the
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unconstrained minimization of a continuously differentiable function F:

HfiR, which consists in recursively computing

(SDA) xk+1 = xk + lkd
k,

where dk = –rF(xk) is the steepest descent direction at xk and the steplength

lk >0 is an approximate solution of the following one-dimensional mini-

mization problem:

min
l > 0

F(xk + ldk):

In practice, the stepsize lk >0 is selected by means of an inexact line search

rule with the aim of ensuring an appropriate reduction in the objective

function F. Although (SDA) is globally convergent under some conditions,

for a poorly scaled optimization problem (that is, when the corresponding

objective function has highly elongated level sets), the steepest descent

direction may not provide much reduction in the function, forcing the line

search method to choose a very small steplength. This is due to the fact that

the gradient vector may be nearly orthogonal to the direction that leads to

the minimizer, producing zigzagging iterates that converge very slowly.

Moreover, in such situations, even divergence may occur if one does not

proceed carefully with the control of the stepsize.

We remark that (SDA) is a discrete version of the first-order differential

equation

(SD) _xx +rF(x) = 0, t>0:

Indeed, the Euler polygonal method for approximating the solution trajec-

tory x(t) consists in applying successively the iterative scheme (SDA), the size

of the integration step lk being selected in order to keep the approximation

error ek = |x(tk) – xk|, with tk= �k–1
i=0 li, within prescribed bounds over a fixed

time interval. Of course, the numerical integration methods of Runge–Kutta

type and Adams type can be considered also. Nevertheless, it is important to

note that, if the objective function is poorly scaled, then (SD) is a stiff dif-

ferential system, which requires the integration step to remain small despite

slow changes in the state variable; otherwise, numerical instabilities may

produce drastic increases in the approximation error (see Refs. 4–5).

Typically, stiffness occurs when there are some components of x(t) that

decay exponentially fast with quite different speed. For instance, take a

quadratic function,

F(x) = (1=2)ÆAx, xæ,

defined on H = Rn, where A is a n · n symmetric and positive-definite real

matrix. The corresponding (SD) system is

(SD) _xx + Ax = 0,
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whose general solution is obtained as a linear combination of fundamental

solutions of the type

xi(t) = e–mi tvi,

where 0<m1# � � �#mn are the eigenvalues of A. If m1@mn, then the level sets

are very elongated, the corresponding fundamental solutions of (SD) have

quite different convergence rates, and there appears an inherent numerical

instability. This drawback holds for any descent method that is highly sen-

sitive to poor scaling; thus, an appropriate selection of the stepsize is crucial.

For comparison, let us now consider the Newton iteration

xk+1 = xk + lkd
k,

where the descent direction is given by

dk= –r2F(xk)–1rF(xk),

provided that the Hessian r2F(xk) is positive definite. The continuous

Newton method is given by the differential equation

(N) _xx +r2F(x)–1rF(x) = 0, t>0:

The scale invariance of this method can be illustrated simply by applying it to

a quadratic function,

F(x) = (1=2)ÆAx,xæ:

In fact, in such case, the discrete Newton algorithm (with unit stepsize)

converges in a single iteration, while the solutions to (N) are straight line

trajectories of the type

x(t) = e–tx0,

independently of the eigenvalues of A.

Generally speaking, algorithms that satisfy some kind of scale invari-

ance, such as the Newton method, are expected to behave better than those

that do not. We refer the reader to Refs. 6–8 for deeper discussions of descent

methods, poor scaling, and line search rules.

2.2. Asymptotic Convergence of SD. Let us recall briefly some

asymptotic results concerning the continuous steepest descent method. The

following theorem summarizes the main results about the differential sys-

tem (SD).

Theorem 2.1. Let H be a Hilbert space and let F: HfiR be a C1

function which is bounded from below on H. Assume that rF is Lipschitz
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continuous on the bounded subsets of H. Then, the following properties

hold:

(i) For every x0˛H, there exists a unique maximal solution x: R+fiH

of (SD), which is of class C1 and satisfies the initial condition

x(0) = x0.

(ii) If the trajectory x is bounded [i.e., x˛LO([0, +O); H)], then

limtfi+OrF(x(t)) = 0.

(iii) Assuming that F is convex and that Argmin F„;, then there exists

xO˛ Argmin F such that x(t)*xO weakly in H as tfi+O.

Points (i) and (ii) are classical. Point (iii) uses an argument due to Opial

(Ref. 9). We refer the reader to Refs. 10–12 for all details and more general

results in this direction.

Let us introduce in (SD) a continuous stepsize coefficient l: [0,+O)

fi(0, +O) as follows:

(SD)l(t) _xx + l(t)rF(x) = 0, t>0:

Defining

s(t) :=

ðt

0

l(t )dt ,

we have

ds

dt
(t) = l(t)>0 and s(0) = 0:

Thus, setting

sO := lim
t fi +O

s(t),

the function s: [0, +O)fi [0, sO) is onto and increasing. It is direct to verify

that, if y( . ) is the solution of

_yy(s) +rF( y(s)) = 0, s [̨0, sO),

with the initial condition y(0) = x(0), then x(t) := y(s(t)) is the solution of

(SD)l(t). In this sense, the trajectories associated with (SD)l(t) are obtained

by reparametrization in time of those generated by the standard (SD). If we

assume thatð+O

0

l(t )dt = +O,

then sO = +O and the asymptotic results at infinity for (SD) are valid for

(SD)l(t).

In the general case, however, since the trajectories are not known a

priori, it is clear that a coefficient l = l(t) depending on only t will not be
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very useful. In this direction, it is more natural to consider a space-dependent

coefficient l = l(x). This is the aim of the next section.

3. Steepest Descent with Curvature

3.1. SDC Dynamical System. The introduction of a variable step-

length coefficient in (SD) allows one to have a certain control on the speed

at which the steepest descent trajectories are described. This is particularly

relevant for those minimization problems that are poorly scaled (cf. Section

2.1) in order to prevent the numerical instabilities that are associated with

the steepest descent direction. Since in practice one has only some local

information about the objective function F, it seems natural to consider a

space-dependent coefficient l = l(x) that takes into account this kind of

data. More precisely, let us consider a differential equation of the type

_xx + l(x)rF(x) = 0, t>0,

where F: HfiR is a smooth function that is bounded from below. If x(t) is

a solution to this equation and F is of class C2, then

(d=dt)[(1=2)jrF(x)j2] = ÆrF(x),r2F(x) _xxæ
= – l(x)Ær2F(x)rF(x),rF(x)æ,

wherer2F(x) is the Hessian of F at x˛H. This suggests the following choice

for the steplength

l(x) := jrF(x)j2=Ær2F(x)rF(x),rF(x)æ, (1)

whenever Ær2F(x)rF(x),rF(x)æ„0. Indeed, if l(x) is given by (1), then

we get

(d=dt)[(1=2)jrF(x)j2] = – jrF(x)j2

over the whole trajectory, which yields

jrF(x(t))j= jrF(x0)je–t, (2)

where x(0) = x0˛H is the initial condition. This is a nice scale-invariant

property because the rate of convergence is independent of F. In some sense,

the use of second-order information about F gives a normalized exponential

decay under no strong convexity condition.

It is worth pointing out that the stepsize coefficient defined by (1) cor-

responds to a line search technique by quadratic approximation. In fact,

JOTA: VOL. 120, NO. 2, FEBRUARY 2004 253



given x˛H, define

q(l) := F(x – lrF(x)),

so that the optimal steplength along the steepest descent direction is given by

the minimum of q(l). But the second-order approximation of q(l) on a

neighborhood of 0 is given by the Taylor formula

q(l) = q(0) + lq¢(0) + (l2
=2)q†(0) + o(l2

),

where it is direct to verify that

q(0) = F(x),

q¢(0) = – jrF(x)j2,

q†(0) = Ær2F(x)rF(x),rF(x)æ:

If q†(0) >0, then the quadratic approximation of q(l) attains its minimum at

l(x) = – q¢(0)=q†(0),

which coincides with (1).

Another interesting feature of (1) is its connection with the notion of

curvature. Indeed, if M�H · R stands for the submanifold that is described

by the equation y = F(x), then the normal curvature of M at x in the direc-

tion h˛H is given by

k (x, h) = [1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + jrF(x)j2

q
]Ær2F(x)h, hæ=jhj2:

Consequently, (1) may be written equivalently

l(x) = r(x)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + jrF(x)j2

q
,

where

r(x) = 1=k (x,rF(x))

is the radius of normal curvature in the direction rF(x). According to our

previous discussion, we are interested in the following steepest descent with

curvature dynamical system:

(SDC; x0) _xx + [jrF(x)j2=Ær2F(x)rF(x),rF(x)æ]rF(x) = 0, t>0,

with initial condition

x(0) = x0 ˛H:

The first-order differential equation in (SDC; x0) may be written as

_xx = F (x)
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with

F (x)= – r(x)rF(x)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + jrF(x)j2

q
:

We remark that this vector field combines two effects simultaneously: (i) a

nondegenerate pseudonormalization of the steepest descent direction when

dividing by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + jrF(x)j2

q
; (ii) a steplength r(x) along the normalized

direction that takes into account the local geometry (curvature) of the

objective function.

In the following, we study the (SDC) system on a connected component

W of the open set H nrF–1(0) and we assume that

Ær2F(x)rF(x),rF(x)æ>0, 8x˛W: (3)

Suppose that r2F is locally Lipschitz continuous on W, so the vector field

in (SDC) is also locally Lipschitz continuous on W. Fix x0˛W. Then, the

Cauchy-Lipschitz theorem gives the existence of a unique maximal solution

of (SDC; x0), defined on an interval of the type [0, Tmax) for some Tmax >0.

We claim that Tmax = +O. To see this, define the function s(t) by setting

s(0) = 0 and
ds

dt
(t) = l(x(t)), for all t [̨0, Tmax):

By (3), we get an increasing diffeomorphism,

s :[0, Tmax)fi [0, s̄ ), for some s̄ >0:

On the other hand, given the maximal solution y: [0, +O)fiH of the steepest

descent equation

(SD;x0) _yy(s) +rF( y(s)) = 0, s>0,

with initial condition y(0) = x0, let us define x(t) := y(s(t)). It is direct to verify

that x(t) is the solution of (SDC). Suppose that s̄<+O. Consequently,

lim
t fiTmax

x(t) = lim
s fi s̄

y(s) = y( s̄ )˛W,

so that we can apply to (SDC) the Cauchy-Lipschitz theorem with initial

condition y(s̄), which allows one to extend the maximal solution to an

interval that is strictly larger than [0, Tmax), contradicting the maximality of

Tmax if we assume that Tmax<+O. On the other hand, if s̄ = +O, then

lim
t fiTmax

rF(x(t)) = lim
s fi +O

rF( y(s)) = 0:

As

jrF(x(t))j= jrF(x0)je–t, for all t [̨0, Tmax),

we obtain Tmax = + O. In any case, we deduce that Tmax=+O as claimed.
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Summarizing, we have the following result.

Theorem 3.1. Let F: HfiR be a C2 function such that rF and r2F
are locally Lipschitz continuous on H. Suppose that F is bounded from

below and that W„; is a connected component of HnrF–1(0) satisfying

(3). Then, for each x0˛W, there exists a unique global solution

x: [0, +O)fiH of (SDC; x0), which is of class C1 and satisfies x(t)˛W for all

t [̨0, +O). Furthermore, the decay property (2) holds.

Remark 3.1. We have proved actually that there exists an increasing

diffeomorphism s: [0, +O)fi [0, +O) such that x(t) = y(s(t)), where y(s) is

the maximal solution to (SD; x0). Therefore, the trajectories generated by

(SD; x0) and (SDC; x0) are the same in the geometric sense, but they are

described with different speeds. Consequently, the asymptotic convergence

properties of (SD) can be extended immediately to (SDC). In particular, if

F is convex with Argmin F„;, then there exists xO˛ Argmin F such that

x(t) * xO, weakly in H as tfi+O:

Remark 3.2. For one-dimensional problems (H = R), the (SDC; x0)

system coincides with the continuous Newton method,

(N; x0) _xx +r2F(x)–1rF(x) = 0, t>0,

with initial condition x(0) = x0. In higher dimensions, (N) has the advantage

of satisfying scale invariance. Furthermore, it is easy to see that the Newton

trajectory satisfies

rF(x(t)) =rF(x0)e
–t,

which ensures that all the components of the gradient decay at the same

exponential rate. On the other hand, (SDC) gives only (2), which is also a

scale invariant property but may not eliminate completely the intrinsic

instability associated with the steepest descent direction.

3.2. Some Variants of the SDC System. In this section, we study the

asymptotic properties of some variants of the (SDC) system.

SDCa System. Given any a >0, consider the following more general

dynamical system:

(SDC)a _xx + la (x)rF(x) = 0, t>0,
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where the stepsize coefficient la(x) is given by

la (x) = jrF(x)ja=Ær2F(x)rF(x),rF(x)æ: (4)

Theorem 3.2. Under the hypotheses of Theorem 3.1, for each x0˛W
there exists a unique maximal solution x: [0, Tmax)fiH of (SDC)a, which is

of class C1 and satisfies x(0) = x0 and x(t)˛W for all t [̨0, Tmax). Moreover,

for all t [̨0, Tmax),

d

dt

� �
jrF(x(t))j2 = – 2jrF(x(t))ja and lim

t fiTmax

rF(x(t)) = 0:

More precisely, the following estimates hold.

(i) Polynomial Decay: If a >2, then Tmax = +O and

jrF(x(t))j = [C + (a – 2)t]–1=(a – 2),

with

C = jrF(x0)j–(a – 2)
:

(ii) Exponential Decay: If a = 2, then Tmax = +O and

jrF(x(t))j = jrF(x0)je–t:

(iii) Finite-Time Convergence: If a<2, then

Tmax = jrF(x0)j(2 – a)
=(2 – a)<+O

and

jrF(x(t))j = [(2 – a)(Tmax – t)]1=(2 – a):

Proof. We follow the proof of Theorem 3.1, where the case a = 2 was

treated. The Cauchy-Lipschitz theorem gives the existence of a unique

maximal solution x( . ) of (SDC)a, defined on [0, Tmax) for some Tmax >0.

On the other hand, it is direct to verify that

d

dt

� �
jrF(x(t))j2 = – 2jrF(x(t))ja :

Integrating this equation, we obtain

jrF(x(t))j= jrF(x0)je–t

in the case where a = 2; when a„2, we get

jrF(x(t))j= [C + (a – 2)t]1=(2–a), (5)
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with

C = jrF(x0)j2–a :

Let us define the function s( . ) by s(0) = 0 and, for all t [̨0,Tmax),

ds

dt
(t) = jrF(x(t))ja=Ær2F(x(t))rF(x(t)),rF(x(t))æ:

It is clear that

s: [0, Tmax)fi [0, s(Tmax))

is an increasing diffeomorphism of class C1. If y( . ) is the solution of

(SD) _yy(s) +rF( y(s)) = 0, s>0,

with initial condition y(0) = x0, then x(t) := y(s(t)) is the solution of (SDC)a.

Let us now prove that s(Tmax) = +O. Let us argue by contradiction and

assume that s(Tmax)<+O, so that

lim
t fiTmax

x(t) = lim
s fi s(Tmax)

y(s)

= y(s(Tmax))˛W: (6)

We now distinguish the cases where Tmax<+O and Tmax = +O.

Case Tmax<+O. In view of (6), we can apply to (SDC)a the Cauchy-

Lipschitz theorem with initial condition (Tmax, y(s(Tmax)))˛R+ · W, which

allows one to extend the solution x( . ) to an interval that is strictly larger than

[0, Tmax), contradicting the maximality of the solution.

Case Tmax = +O. In view of (5), it is clear that Tmax = +O implies a$2

and then we have

lim
t fi +O

rF(x(t)) = 0,

which contradicts (6).

Finally, we have

lim
t fiTmax

jrF(x(t))j = lim
s fi +O

jrF( y(s))j = 0;

therefore, if a$2, then Tmax = +O; if a<2, then

Tmax = C=(2 – a) = jrF(x0)j2–a
=(2 – a): u

Corollary 3.1. Under the hypotheses of Theorem 3.2 with a$1, if

there exists M >0 such that, for all x˛W,

Ær2F(x)rF(x),rF(x)æ$MjrF(x)j2, (7)
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then there exists xO˛rF–1(0) such that

lim
t fi Tmax

x(t) = xO,

where x: [0,Tmax)fiW is the maximal solution of (SDC)a. Furthermore:

(i) if a >2, then | _xx(t)| = O(t–(a–1)=(a–2)) in the neighborhood of +O;

(ii) if a = 2, then | _xx(t)| = O(e–t) in the neighborhood of +O;

(iii) if a ]̨1, 2[, then limtfiTmax
| _xx(t)| = 0;

(iv) if a = 1, then | _xx| is bounded on [0, Tmax).

Proof. It follows from (7) that we obtain

j _xx(t)j = jrF(x(t))ja+1=Ær2F(x(t))rF(x(t)),rF(x(t))æ

# (1=M)jrF(x(t))ja–1: (8)

We are going to use (8) by distinguishing the cases a >2, a = 2, and a [̨1, 2[.

(i) Case a >2. By Theorem 3.2,

jrF(x(t))j � Ct–1=(a – 2), tfi+O:

In view of (8), then we have

j _xx(t)j = O(t–(a–1)=(a–2))

in the neighborhood of +O. On the other hand,

(a – 1)=(a – 2)>1 implies j _xxj˛L1(0, +O):

As a consequence s – limtfi+Ox(t) exists. Denoting by xO this limit, we have

rF(xO) = lim
t fi +O

rF(x(t)) = 0,

i.e.,

xO ˛rF–1(0):

(ii) Case a = 2. By Theorem 3.2,

jrF(x(t))j � Ce–t:

Hence, | _xx(t)|= O(e–t) in the neighborhood of +O. Then, we conclude as in

the case a >2.

(iii)–(iv) Case a [̨1, 2[. By Theorem 3.2,

lim
t fiTmax

jrF(x(t))j = 0:
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Then, in view of (8), it is clear that

lim
t fiTmax

j _xx(t)j = 0, if a >1,

and that | _xx| is bounded if a = 1. In both cases, the function | _xx| is bounded

on [0, Tmax), which combined with Tmax<+O yields immediately the exis-

tence of

xO = lim
t fiTmax

x(t): u

SDPC System. We now turn to the steepest descent with pure curva-

ture system,

(SDPC) _xx + r(x)rF(x) = 0, t>0,

where

r(x) = 1=k (x,rF(x))

is the radius of normal curvature in the direction rF(x).

Proposition 3.1. Under the hypotheses of Theorem 3.1, for each x0˛W
there exists a unique solution x: [0, +O)fiW of (SDPC) satisfying

x(0) = x0; moreover,

jrF(x(t))j = 1= sinh (t + C), (9)

with

C = argsinh(1=jrF(x0)j):

Proof. We give only the proof of (9). Define the Lyapunov function

L(t) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + jrF(x(t))j2,

q

which satisfies

_LL(t) = – jrF(x(t))j2;
since

jrF(x(t))j2 = L(t)2 – 1,

L(t) solves the differential equation

_LL(t) = 1 – L(t)2:

But

L(t)$1, for all t$0,
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so we have classically

L(t) = coth (t + C), for some C ˛R:

Therefore,

jrF(x(t))j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L(t)2 – 1

q

= 1= sinh(t + C):

By taking t = 0 in the previous formula, we find that

C = argsinh(1=jrF(x0)j): u

4. Coupling SDC with Parametric Approximation in Convex Optimization

When the objective function F is nonsmooth or has lack of strong

convexity, a standard technique consists in replacing F with a family of

better behaved parametric approximations (Fe)e>0 such that FefiF in a

suitable variational sense.

Let us consider an abstract family of problems,

(Pe) min {Fe(x):x˛H},

where for each e >0, Fe: HfiR is a smooth convex function such that FefiF
as efi0+. Moreover, we suppose that Fe is b (e)-strongly convex with

b(e) >0; that is to say,

ÆrFe(x) –rFe( y),x – yæ$b(e)jx – yj2, 8x, y˛H: (10)

We assume also that there exists an optimal path of the optimal solutions xe

of (Pe) that satisfies the following statement:

there exists x*˛Argmin F such that lim
efi 0+

xe = x*: (11)

Observe that xe is characterized as the unique solution to the stationary

condition rFe(xe) = 0, which together with the strong convexity condition

(10) yields

jx – xej# jrFe(x)j=b(e), 8x˛H: (12)

4.1. Coupling SD and the Newton Method with Approximation. In the

sequel, we consider a parametrization e: [0, +O)fiR+, which is supposed

to be strictly positive and decreasing to 0; for simplicity of notation, we

write F(t, x) instead of Fe(t)(x). Concerning the coupling of (SD) with para-

metric approximation schemes, the so-called descent and approximation
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dynamical asymptotical method

(DADA) _xx +rxF(t, x) = 0, t>0,

was introduced in Ref. 2, where it is proved that, if e(t) converges to 0 suf-

ficiently slow, then the solution x(t) of (DADA) approaches asymptotically

the optimal path xe(t) and is attracted toward x* = limefi0xe. The speed of

convergence of e(t) is measured in terms of the strong convexity parameter

b (e). See also Ref. 13. In the framework of convex programming, Cominetti

and Courdurier (Ref. 3) couple a general penalty scheme with the steepest

descent method and they prove that, under very mild conditions on e [e
measurable with e(t)fi0 as tfi+O], the trajectory x(t) converges toward

some element of the optimal set, which may be different to x*, the limit of the

optimal path.

When the approximate function Fe is of class C2, it is natural to

consider second-order descent methods such as Newton’s. In Ref. 1, the

following approximate continuous Newton method is studied:

(ACN) _xx +r2
xxF(t, x)–1[rxF(t, x) +r2

txF(t, x)] = 0, t>0:

Here, the vector field combines a Newton correction with an extrapolation

direction that takes into account the changes in the objective function F(t, .)

as t increases. It is direct to verify that, if x(t) is a solution of (ACN), then

d

dt

� �
rxF(t, x) = –rxF(t, x);

consequently,

rxF(t, x(t)) = e–trxF(0, x0) = e–trFe0(x0), (13)

and by (12), we get

jx(t) – xe(t)j# jrFe0(x0)je–t=b(e(t)):

Therefore, under the condition

lim
t fi +O

e–t=b(e(t)) = 0, (14)

we have that, thanks to (11),

lim
t fi +O

x(t) = lim
efi 0+

xe = x*˛ Argmin F: (15)

4.2. Approximate Steepest Descent with Curvature. We begin by

observing that there is not a standard extension of the (SDC) system to the

parametric approximation setting. The most straightforward alternative
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seems to be the nonautonomous differential equation

_xx + [jrxF(t, x)j2=Ær2
xxF(t, x)rxF(t,x),rxF(t, x)æ]rxF(t, x) = 0,

where F(t, x) stands for Fe(t)(x) and the parametrization e(t) is as before.

However, there is no reason for this equation to be the most efficient way of

combining (SDC) with an approximation scheme. Instead, the dynamical

system that we propose is the following:

(ASDC) _xx + l(t, x)rxF(t, x) = 0, t>0,

where

l(t, x) = ÆrxF(t, x),rxF(t, x) +r2
txF(t, x)æ=Ær2

xxF(t, x)rxF(t, x),rxF(t, x)æ:
(16)

We refer to (ASDC) as the approximate steepest descent with curvature

method. From now on, when dealing with (ASDC), we assume that F is of

class C2, which imposes a differentiability condition on e. The remarkable

property of this system is that, if x(t) denotes its solution, then

jrxF(t, x(t))j= jrxF(0, x0)je–t: (17)

Indeed, setting

E(t) = (1=2)jrxF(t, x(t))j2,

we obtain

_EE(t) = ÆrxF(t, x),r2
xxF(t, x) _xx +r2

txF(t, x)æ
= – l(t, x)ÆrxF(t, x),r2

xxF(t, x)rxF(t, x)æ + ÆrxF(t, x),r2
txF(t, x)æ

= – jrxF(t, x)j2 – ÆrxF(t, x),r2
txF(t, x)æ + ÆrxF(t, x),r2

txF(t, x)æ
= – 2E(t),

from which (17) follows immediately. Therefore, under the condition (14),

we have (15) as well as with (ACN), but for a simpler evolution problem

from the computational point of view.

4.3. Examples. In the sequel, we take a differentiable parametrization

e(.)˛C1([0, +O); R+) that satisfies e(t)fi0+ as tfi+O.

Example 4.1. Tikhonov Approximation. The Tikhonov approxima-

tion of a closed, proper, and convex function F: HfiR¨{+O} is given by

Fe(x) = F(x) + (e=2)jxj2,
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which regularizes F by adding a strongly convex term. If Argmin F„;, then

the unique minimizer xe of Fe converges as efi0+ to the element of minimal

norm in Argmin F (see Ref. 14). This approximation scheme is known also

as the viscosity method (see Ref. 15). Assume that F˛C2(H; R) and set

F(t, x) = F(x) + [e(t)=2]jxj2:

In this case,

rxF(t, x) =rF(x) + e(t)x,

r2
xxF(t, x) =r2F(x) + e(t)I ,

r2
txF(t, x) = _ee(t)x,

and (ASDC) corresponds to

_xx + l(t, x)[rF(x) + e(t)x] = 0, t>0,

x(0) = x0,

with

l(t, x) = ÆrF(x) + e(t)x,rF(x) + e(t)x + _ee(t)xæ=
Æ(r2F(x) + e(t)I)(rF(x) + e(t)x),rF(x) + e(t)xæ:

Of course, the strong convexity condition (10) holds in this situation with

b (e) = e. Therefore, the convergence condition (14) is

lim
t fi +O

e–t=e(t) = 0: (18)

Take for instance

e(t) = e–at, with 0<a <1,

or

e(t) = (1 + t)–r, with r>0:

Example 4.2. Log-Barrier in Linear Programming. Let us consider

the linear program

(LP) min
x ˛Rn

{cTx: Ax#b},

where c˛Rn, A˛Rm · n is a full-rank matrix, and b˛Rm. Assume that the

open set

W = {x˛Rn: Ax<b}
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is nonempty and bounded. The log-barrier associated with (LP) is given by

Fe(x) = cTx – e �
m

i=1
log(bi – AT

i x),

where Ai˛Rn denotes the ith row of A. It is well-known that the approximate

problem minx˛RnFe(x) has a unique solution xe which converges toward the

so-called analytic center of the optimal set S(LP), a particular solution of

(LP) that is characterized as the unique solution of

max �
i ˇI0

log (bi – AT
i x):x˛S(LP)

� �
,

where

I0 = {i:AT
i x = bi, for all x˛S(LP)}: (19)

Defining

F(t, x) = Fe(t)(x),

we have that F(.,.)˛CO((0,+O) · W; R). A straightforward computation

yields that, for every x˛W,

rxF(t, x) = c + e(t)ATd(x),

r2
txF(t, x) = _ee(t)ATd(x),

r2
xxF(t, x) = e(t)ATD(x)2A,

where the vector-valued function d: WfiRm is defined by

d(x) = (1=(bi – AT
i x): i = 1, . . . , m)

and D(x) is the diagonal matrix

D(x) = diag(d(x)):

Thus,

l(t, x) = Æc + e(t)ATd(x), c + (e(t) + _ee(t))ATd(x)æ=

e(t)ÆATD(x)2A(c + e(t)ATd(x)), c + e(t)ATd(x)æ:

Furthermore, it is simple to verify that the strong convexity hypothesis holds

with b (e) = b0e for a suitable constant b0 >0 so that the convergence condi-

tion (14) is also given by (18). Figure 1 shows the (ASDC) trajectory and the

optimal path in the case of a two-dimensional problem with the following

data:

c =
0

1

" #
, (20a)
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AT =
0 1 1 1=2 – 4=3 – 2

– 1 – 2 0 1 1 – 1

" #
, (20b)

bT = (0, 1, 2, 3, 3, 2): (20c)

The control parameter is taken equal to

e(t) = 1= log (t + 2)

and the initial condition satisfies x0
T = (1, 2).

Example 4.3. Exponential Penalty and Dual Convergence. The

exponential penalty for the linear program (LP) is given by

Fe(x) = cTx + e �
m

i=1
exp [(AT

i x – bi)=e]:

If we assume that S(LP) is nonempty and bounded, then there exists a unique

optimal path xe of the minimizers of Fe which converges to a particular point

x*˛S(LP) called the centroid (see Ref. 16). Defining

F(t, x) = Fe(t)(x),

we have

rxF(t, x) = c + ATm(t, x),

r2
txF(t, x) = – (_ee(t)=e(t))ATS(m(t, x)),

r2
xxF(t, x) = (1=e(t))ATD(t, x)A,

Fig. 1. Log-barrier in linear programming: optimal path and trajectory of the (ASDC) system.

Convergence toward the analytic center x# of S(LP).
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where m(.,.): [0,+O) · RnfiRm is defined by

m(t, x) := (exp[(AT
i x – bi)=e(t)]: i = 1, . . . , m),

the diagonal matrix by

D(t,x) :=diag(m(t, x)),

and S: R+
mfiRm by

S(m) := (mi log mi: i = 1, . . . , m),

with the convention that 0 log 0 = 0. Thus,

l(t, x) = Æc + ATm(t, x), e(t)c + e(t)ATm(t, x) – _ee(t)ATS(m(t, x))æ=
ÆATD(t, x)A(c + ATm(t, x)), c + ATm(t, x)æ:

The approximate Fe is strongly convex with

b(e) = (a=e)e–M=e

for suitable positive constants a and M. If we have

lim
t fi +O

e(t)e–t+M=e(t) = 0, for all M > 0,

then x(t) converges toward the centroid x* of S(LP); moreover, there exists a

constant C >0 such that

jx(t) – xe(t)j#Ce(t)e–t+M=e(t): (21)

Figure 2 illustrates the convergence of the (ASDC) trajectory toward the

centroid x* of S(LP). The data are the same as in (20), the control parameter

Fig. 2. Exponential penalty in linear programming: optimal path and trajectory of the (ASDC)

system. Convergence toward the centroid x* of S(LP).
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equals

e(t) = 1 log (t + 2)

and the initial condition is given by x0
T = (– 1, 3).

On the other hand, the Fenchel duality theory applied to this situation

permits to associate with (Pe) the following dual problem:

(De) min{bTm + e �
m

i=1
mi( log mi – 1):ATm = – c, m $0},

which is a penalized version of the classical dual problem of (LP), namely,

(D) min{bTm:ATm = – c, m $0}:

This dual parametric scheme was studied in Ref. 16, where it is shown that, if

xe denotes the optimal solution of (Pe), then the dual optimal path,

me = (exp [(AT
i xe – bi)=e]: i = 1, . . . , m),

gives the unique optimal solution of (De). Moreover, me converges toward a

particular solution m* of the dual problem (D), characterized as the unique

solution of

(D0) min �
i Į0

mi( log mi – 1): A¢m = – c, mi = 0iˇI0, mi $0i˛I0

� �
,

with I0 given by (19). Define

m(t) = (exp [(AT
i x(t) – bi)=e(t)]:i = 1, . . . , m),

with x(.) being solution of (ASDC). Since

mi(t) = exp [AT
i (x(t) – xe(t))=e(t)](me(t))i, for all i = 1, . . . , m,

if we have

lim
t fi +O

jx(t) – xe(t)j=e(t) = 0, (22)

then

lim
t fi +O

m(t) = lim
efi 0+

me = m*:

But

jx(t) – xe(t)j=e(t)# jrxFe0(x0)je–t=(b(e(t))e(t))

= Ce–t + M=e(t),

so that, in order to have (22), it suffices to verify that

lim
t fi +O

e–t+M=e(t) = 0,
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or equivalently,

lim
t fi +O

t – M=e(t) = +O, (23)

for all M >0. For example,

e(t) = (1 + t)–r, with 0<r<1:

Finally, since (22) implies

lim
t fi +O

jx(t) – xe(t)j = 0,

we get

(x(t), m(t))fi (x*, m*), as tfi+O:

In this case, the dual convergence for (ASDC) is a consequence of a

sharp estimate for the distance between x(t) and the optimal trajectory xe(t).

A similar analysis for the corresponding (DADA) trajectories is more

involved; in fact, it is proved in Ref. 13 that, for the convergence of the

(DADA) dual trajectories in the exponential penalty framework, it is suffi-

cient to have

lim
t fi +O

ea=e(t) _ee(t) = 0, for all a >0,

for instance,

e(t) = 1= log (log (t)),

which is much restrictive than (23). Less stringent conditions for dual con-

vergence are given in Ref. 3 by means of a completely different approach.

5. Numerical Experiments in the Unconstrained Case

Given a C2 function F: HfiR, with r2F being locally Lipschitz con-

tinuous and such that, for all x˛HnrF–1(0),

Ær2F(x)rF(x),rF(x)æ„0,

consider the following discrete version of the (SDC) system:

(DSDC) xk+1 = xk – lkrF(xk),

where

lk = jrF(xk)j2=jÆr2F(xk)rF(xk),rF(xk)æj:
The absolute value |Ær2F(xk)rF(xk),rF(xk)æ| yields a strictly positive

stepsize lk >0 whenever rF(xk)„0. This permits us to deal with objective

functions that are either convex or concave in a neighborhood of xk.
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From the numerical point of view, the main drawback of (DSDC) seems

to be the computation of the stepsize lk, because of the Hessian term. In fact,

it is possible to approximate Ær2F(x)rF(x),rF(x)æ. by a simple finite-

difference technique. Like in Section 3.1, we fix x˛H and define

q(l) = F(x – lrF(x)), for l ˛R,

so that

q†(0) = Ær2F(x)rF(x),rF(x)æ:

As r2F is Lipschitz continuous on a neighborhood of x, so is the function q

on a neighborhood of 0; under these conditions, it is well-known that

q†(0) = [q(e) – 2q(0) + q(– e)]=e2 + O(e),

and consequently,

Ær2F(x)rF(x),rF(x)æ» [F(x – erF(x)) – 2F(x) + F(x + erF(x))]=e2,

for e sufficiently small. Since the value F(x) is supposed to be already known,

we just have to compute F(x – erF(x)) and F(x + erF(x)), which represents

only two extra evaluations. As a consequence, the (DSDC) algorithm can be

implemented easily without any excessive computational cost.

We are now going to test the (DSDC) algorithm and compare it with the

fixed stepsize(DSD),

(DSD) xk+1 = xk – lrF(xk),

where l is a fixed constant. We use two objective functions that are well-

known in optimization theory: the Beale function (Ref. 17) and the Shekel

function (Ref. 18).

Example 5.1. Two-Dimensional Example. Let us start with the

Beale function,

F(x1, x2) = (1:5 – x1 + x1x2)
2 + (2:25 – x1x

2
2)

2 + (2:625 – x1 + x1x
3
2)

2:

This function admits a unique global minimum point xmin = (3, 0.5) on the

subset [ – 5, 5] · [ – 5, 5] and its minimum value is F(xmin) = 0. It is very rough

and steep, especially at the point (– 5, – 5), leading (DSD) to fail; see Fig. 3

where we have represented the isocontours of the Beale function. Generally

speaking, if one chooses a small stepsize l@1, the discrete trajectory associ-

ated with (DSD) is described very slowly and does not converge toward xmin

because the function is very flat in a neighborhood of this point. On the other

hand, the choice of a large stepsize in (DSD) gives trajectories that are very

unstable and strongly oscillating. On the contrary, when using the (DSDC)

method, the trajectory converges to xmin very fast (see Figs. 3 and 4).
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Example 5.2. Four-Dimensional Example. We consider now the

Shekel function,

F(x) = – �
5

i=1
1=(jx – dij2 + ci),

where x [̨0, 10]4. The coefficients ci and di are respectively given by

(c1, c2, c3, c4, c5) = (0:1, 0:2, 0:2, 0:4, 0:4),

d1 = (4, 4, 4, 4), d2 = (1, 1, 1, 1),

d3 = (8, 8, 8, 8), d4 = (6, 6, 6, 6), d5 = (3, 7, 3, 7):

The Shekel function has four local minima and one global minimum

xmin = (4, 4, 4, 4); the minimum value is F(xmin)» – 10.15. This function is

very flat, except in the neighborhoods of the points d1, d2, d3, d4, d5 where it

Fig. 3. Minimization of the Beale function. Starting point x0 = (– 4, – 5). Minimum point

xmin = (3, 0.5). Left: (DSD) trajectory. Right: (DSDC) trajectory.

Fig. 4. Convergence history for |x – xmin| during the optimization process. Dashed line: (DSD)

algorithm with l = 2.10–5; continuous line: (DSDC) algorithm.
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is very steep. We have tested the (DSD) and (DSDC) methods and we have

represented on Fig. 5 the evolution of the function values (left) and |x – xmin|
(right). As in the previous example, (DSD) does not converge, while (DSDC)

converges very fast.
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Posés, MIR, Moscow, Russia, 1974.

15. ATTOUCH, H., Viscosity Solutions of Minimization Problems, SIAM Journal on

Optimization, Vol. 6, pp. 769–806, 1996.

16. COMINETTI, R., and SAN MARTIN, J., Asymptotic Analysis of the Exponential

Penalty Trajectory in Linear Programming, Mathematical Programming, Vol. 67,

pp. 169–187, 1994.

17. WALSTER, G. W., HANSEN, E. R., and SENGUPTA, S., Test Results for a Global

Optimization Algorithm, Numerical Optimization, SIAM, Philadelphia, Pennsyl-

vania, pp. 272–287, 1984.

18. PINTER, J., Extended Univariate Algorithms for n-Dimensional Global Optimization,

Computing, Vol. 36, pp. 91–103, 1986.

JOTA: VOL. 120, NO. 2, FEBRUARY 2004 273


