CDS Lecture Series

Christopher Monroe
Bice Zorn Professor, Department of Physics
University of Maryland at College Park

Christopher Monroe is an experimental physicist, in the realm of atomic, molecular and optical physics. After getting his undergraduate degree from MIT in 1987, Monroe joined Carl Wieman's research group at the University of Colorado in the early days of laser cooling. With Wieman postdoc Eric Cornell, Monroe contributed in the plotting of the path to cooling a cloud of atoms to the Bose-Einstein condensation transition; Monroe obtained his PhD under Wieman in 1992. (Wieman and Cornell succeeded in their quest for BEC in 1995, and were awarded the Nobel Prize for this work in 2001.) From 1992-2000, Monroe joined the Ion Storage Group of David Wineland at the National Institute of Standards and Technology in Boulder, CO, where he was awarded a National Research Council postdoctoral fellowship from 1992-1994, and was hired as a staff physicist in the same group from 1994-2000. With Wineland, Monroe led the research team that demonstrated the first quantum logic gate in 1995, and exploited the use of trapped atomic ions for applications in quantum control and the new field of quantum information science. Monroe was awarded the 1997 Presidential Early Career Award for Scientists and Engineers and the 2000 International Award for Quantum Communications. In 2000, Monroe started a research group at the University of Michigan, where he spearheaded the use of single photons to couple quantum information between atomic ions. There he also demonstrated the first ion trap integrated on a semiconductor chip. He was awarded the I. I. Rabi Prize of the American Physics Society in 2001 for his work with trapped ions. In 2006, Monroe became Director of the FOCUS Center at the University of Michigan, a NSF Physics Frontier Center in the area of ultrafast optical science. In 2007, Monroe became the Bice Zorn Professor of Physics at the University of Maryland and a Fellow of the Joint Quantum Institute between Maryland and NIST. In 2007-2008, Monroe's group succeeded in producing quantum entanglement between two widely separated atoms, and for the first time, they teleported quantum information between atoms separated by a large distance. Monroe's general scientific interests include quantum optics, cold atomic physics, quantum information science, the interface between atomic and solid state physics, and fundamental issues in quantum physics.


Back to CDS Lecture Series
Back to Intelligent Servosystems Laboratory