
Boston University--Harvard University--University of Illinois--University of Maryland

Collaborative Control of Moving Agents Collaborative Control of Moving Agents 
Under Communication and Functionality Under Communication and Functionality 

ConstraintsConstraints

John S. Baras*

Electrical and Computer Engineering Department, 
Computer Science Department

and the Institute for Systems Research
University of Maryland College Park

* with Xiaobo Tan, Chang Zhang, Pedram Hovareshti, Wei Xi

October 21, 2002
CNCS MURI Review



Boston University--Harvard University--University of Illinois--University of Maryland

Control with Communication ConstraintsControl with Communication Constraints
• Control problems where information used for feedback needs to 

be transmitted across communication channels with rate 
constraints:
– Explicit data compression
– Bits associated with key features of the on-line measurements
– Adaptive modulation to “squeeze” more data through the channel
– Adaptive error coding for variable quality channels (“booster” protocols)

• Data compression, modulation and coding (CMC) schemes     
are themselves  decision variables and should be optimized

• Design jointly the communication and control scheme in a 
way that asynchronous and distributed operation results in 
acceptable performance
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Intelligent Control of Communicating Intelligent Control of Communicating 
Networked Control SystemsNetworked Control Systems

• Distributed and asynchronous schemes pose foundational 
challenges (e.g. local states, multiple threads)

• Architecture/organization
• Framework aims to link together in a trade-off analysis

– the performance quality of the control systems
– the communication constraints and the quality of the communications 
– the inherent uncertainty of these systems (architecture, models, data) 
– the computational complexity (especially under asynchronous and 

distributed operations)
• Learning is an important component (reinforcement 

learning)
• Need for implementable solutions 
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Organization  via  AggregationsOrganization  via  Aggregations

• Central idea: need to “organize” the network of communicating 
control systems in some systematic way, to achieve efficiency in 
communication without sacrificing much performance

• Leads to performance driven aggregation: either in the physical 
layer or in the abstractions and models used by the control schemes

• We investigated aggregation/approximation via state aggregation
• We developed learning algorithms with state aggregation
• Distributed and asynchronous (partially) such schemes are needed
• Aggregations lead naturally to communicating architectures, in 

addition to establishing trade-offs between control performance and 
communication resources needed to achieve it

• Steps of our methodology lead to the design of self-organization 
schemes for the intelligent control of networked control systems
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Value Level Sets / Aggregation / OrganizationValue Level Sets / Aggregation / Organization
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Outline 

• Goal
– To explore a general framework for trade-off analysis 

and decision making in networked control systems

• Joint quantization and estimation

• Joint quantization and control

• Conclusions
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The setup for joint quantization, estimation, and control of an HMM.
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Joint Quantization and Estimation

Vector quantization with variable block length is considered. 
The total cost to be minimized is a weighted sum of three terms:

where ? 0 is the a priori PMF for X0, and ? is the quantization decision.
•Jq(n): Communication cost at time n. Entropy coding is assumed.
•Jd(n): Delay cost (due to block coding) evaluated at time n.
•Je(n): Estimation error for Xn.

The value function:
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Numerical Solution of the 
Dynamic Programming Equation

• The separation principle holds, and the value function 
satisfies a special type of dynamic programming 
equation

• Enumeration and comparison of all partition 
(encoding) schemes are required in numerically solving 
the DP.

– A tree-structured algorithm is developed to find all the 
partition patterns

– “characteristic numbers” of partitions are used to eliminate 
redundant partitions
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Numerical Results

Weighted combination of communication cost vs. estimation error (points with 
lower estimation error corresponding to higher ?e );

Two states, two outputs, maximum block length=2.
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Weighted combination of communication cost and estimation error vs. 
delay (points with smaller delay corresponding to higher ?d ).

Numerical Results (continued)
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Joint Quantization and Control
The total cost to be minimized is a weighted sum of two terms:

where ? 0 is the a priori PMF for X0, and ? is the quantization/control 
decision.

•Jq(n): Communication cost at time n. Sequential (but time-
varying) quantization is considered.

• Jp(n): Cost related to control performance at time n, in general a 
function of state and control.

Separation principle also holds. The jointly optimal scheme can 
be obtained through solving a dynamic programming equation.
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An Example Problem 
• A machine can be in two states: P (proper) or I (improper)

• An inspection produces one of two possible outcomes: G (good) or B (bad)
with the following prob.:

P
G

B

3/4

1/4

I
G

B

1/4

3/4
• The outcome can be sent to a remote site (with communication cost ?q per bit) 

for decision;

• One of two actions are possible: R (run the machine for one period) or S 
(perform maintenance and run the machine). “S” resets the state to be “P” but 
costs 1 unit. Running machine in “I” costs 2, and running it in “P” costs 0.

• State transition after running one period:

P I1/3
2/3

1
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An Example Problem (continued)
A two-stage problem is solved explicitly. One of four joint quantization 
and control strategies becomes optimal depending on ?q.

Running and maintenance cost vs. 
Communication bits for jointly 
optimal strategies (fewer 
communication bits corresponding 
to higher ?q).

The thresholds of for switching 
of the optimal strategy 
correspond to the negative 
slopes of the line segments.
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Conclusions and Future Work

• A framework for joint quantization/estimation/control was 
studied for a hidden Markov chain

– A weighted combination of different costs is minimized;

– Separation principle holds, and the problem is solved through DP;

– Tradeoffs among competing goals can be captured by adjusting the
weights.

• “Curse of dimensionality” presents a hurdle when the 
number of states is large. Approximation methods need 
to be developed for solving the DP equations.

• Application of the approach to “steady-state” problems 
(or asymptotic limits) may yield interesting insights for 
general problems while waived from actually solving DP. 



Boston University--Harvard University--University of Illinois--University of Maryland

Decentralized Control of Autonomous Vehicles

John S. Baras, Xiaobo Tan, and Pedram Hovareshti

Institute for Systems Research and
Department of Electrical and Computer Engineering

University of Maryland, College Park, MD 20742



Boston University--Harvard University--University of Illinois--University of Maryland

Overview

• Objective
– To explore a decentralized approach for multi-vehicle control;

– To study the collective behavior arising from local interactions.

• A battlefield scenario

• Path generation based on potential functions

• Analysis of vehicle behaviors

• Simulation results

• Conclusions and future work
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A Battlefield Scenario

• Mission
– To maneuver a group of vehicles to cover a target area.

• Constraints
– Maintaining a desired inter-vehicle distance (for good area coverage 

and collision avoidance);

– Avoiding obstacles; 

– Avoiding threats (stationary ones and moving ones);

• Requirement 
– Using only local information about neighbors/threats or static (global) 

information about obstacles/target.
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Potential Functions

• Target potential Jg

• Neighboring potential Jn

• Obstacle potential Jo

• Potential Js due to stationary threats
• Potential Jm due to moving threats
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The neighboring potential and the moving threat potential are designed in such 
a way that they have no effect on the vehicle dynamics beyond the 
communication/detection range. This enables decentralized decision making.
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An example of the neighboring potential function and its 
corresponding attractive/repulsive effect.
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Equilibrium Formations under Inter-vehicle 
Interactions 

• For N=2, or 3, there is a unique 
asymptotically stable equilibrium, 
where the optimal inter-vehicle 
distance is achieved;

• For N>3, there may exist multiple 
locally asymptotically stable equilibria, 
and the specific formation the group 
achieves depends on the initial 
condition;

• Extensive simulation appears to 
support that final formations are 
usually “well organized” under the 
purely local interactions.

Formation of 30 vehicles under 
local interactions starting from a 
random initialization.
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Behavior under Attraction and Repulsion (I)
This is to study the behavior of a vehicle under both the attraction from a 
target and the repulsion from obstacles (J = ? Jg+Jo); in particular, how the 
behavior is affected by the weighting coefficient ?. 

Vector field on the y-axis.

x
Target

Obstacle 1 Obstacle 2

y

Vehicle

y*
y1

?

y2
?

• Scenario I: one target, two obstacles 
located symmetrically about the y-axis. A 
vehicle initially on y-axis.

• Question: can the vehicle pass the 
obstacle potential valley and get to the 
target?

• Answer: there exists ?* such that

– when ?> ?*, the vehicle can pass the 
valley;

– when ?<?*, there is [y2
? ,y1

?] dependent 
on ? where the vehicle is pushed away 
from the target. As ? approaches ?*, this 
interval collapses into a single point y*.
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Behavior under Attraction and Repulsion (II)

• Scenario II: one target, one obstacle. No 
restriction on the initial position of the 
vehicle. 

• Question: can the vehicle move toward the 
target? How does ? affect the behavior in 
this case? 

• Answer:
– The only equilibrium which might trap 

the vehicle is unstable. Hence the 
vehicle will not be trapped by any local 
minimum of the potential function;

– However, there is a detour region 
(shaded area) where the vehicle 
needs first to move in a direction 
opposite to the target. The larger ?, the 
smaller this region.

Target

Obstacle

Vehicle

1/ λ

Vector field on the plane.
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Simulation Scenario

• 10 vehicles randomly 
initialized

• 2 obstacles

• 1 circular target area

• 8 moving threats 
guarding the target 
with a speed 1.5 
times that of the 
vehicles
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Effect of the weighting constant ?m for the moving 
threats (other weighting constants held fixed)

(a) ?m =10 (very small). The vehicles 
paid little attention to the threats and 
four of them were killed. 

(b) ?m =50. The vehicles paid more 
attention to the threats and only one of 
them was killed. 
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Effect of the weighting constant ?m for the moving threats 
(other weighting constants held fixed)--continued

(c) ?m =200. All vehicles entered the 
target successfully and in a timely 
manner. 

(d) ?m =2000 (very large). Some 
vehicles were not able to enter the 
target since most attention was on 
evasion from the threats.
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Effect of the weighting constant ?o for the obstacles (other 
weighting constants held fixed)

(a) ?o =1000. One group of vehicles took 
the shorter path and passed the 
obstacle valley.

(b) ?o =5000. No vehicle took the 
shortcut (some actually took the detour).
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Conclusions
• A decentralized approach to coordination and control of 

multi-vehicles was explored using potential functions
– Simple (only local /static information needed)

– Flexible and robust (of vital importance in dynamic/uncertain 
environments)

• Analysis was conducted on 
– Stability of equilibrium formations

– Single vehicle behavior under attraction and repulsion (in 
particular, effect of the weighting constant)

• Simulation results demonstrated that
– Emergent behaviors arise from local interactions

– The behaviors can be modified through the weighting constants
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Future Work

• Take into account the dynamics of vehicles (with various 
constraints)

• Explore a hybrid sensing/decision/control architecture

• Quantify the effect of weighting constants, and 
streamline the design of potential functions given mission 
requirements.
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Technology TransferTechnology Transfer

• We continued interacting with researchers from Telcordia, Johns 
Hopkins, BBN, and FCS, in an effort to further develop the 
application of our dynamic clustering methods using value-function 
non-variation in autoconfiguration and routing. 

• After several meetings with ARL personnel, very knowledgeable and 
leading the FCS program, in an effort to understand and 
characterize mobility patterns of future Objective Force and FCS
systems, we have adopted a more appropriate mobility description
which utilizes trajectories for each node in the network of control 
systems according to their mission and capabilities.

• These adjustments were incorporated in the formulation of swarm 
intelligence based coordination algorithms and in the problem 
involving the coordination, collaboratively and in a distributed and 
asynchronous manner, of a set of mobile vehicles equipped with 
sensors and communications towards achieving a specific goal 
described in terms of geographic advancement and territory control. 
Results will be transferred to the ARL and the FCS program.
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