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Denoising based on time-shift PCA
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Abstract

We present an algorithm for removing environmental noise from neurophysiological recordings such as magnetoencephalography (MEG). Noise
fields measured by reference magnetometers are optimally filtered and subtracted from brain channels. The filters (one per reference/brain sensor
pair) are obtained by delaying the reference signals, orthogonalizing them to obtain a basis, projecting the brain sensors onto the noise-derived
basis, and removing the projections to obtain clean data. Simulations with synthetic data suggest that distortion of brain signals is minimal. The
method surpasses previous methods by synthesizing, for each reference/brain sensor pair, a filter that compensates for convolutive mismatches
between sensors. The method enhances the value of data recorded in health and scientific applications by suppressing harmful noise, and reduces
the need for deleterious spatial or spectral filtering. It should be applicable to a wider range of physiological recording techniques, such as EEG,
local field potentials, etc.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Magnetoencephalography (MEG) measures magnetic fields
produced by brain activity using sensors placed outside the skull.
The fields to be measured are extremely small, several orders
of magnitude below fields from unavoidable sources such as
electric power lines, ventilators, elevators, or vehicles. Envi-
ronmental noise is combatted by a combination of magnetic
and electromagnetic shielding, active noise field cancellation,
the use of gradiometers, spectral and spatial filtering, averaging
responses to repeated stimulus presentations, and various other
signal-processing methods to reduce noise. MEG signals may
also be contaminated by sensor noise arising in the quantum
devices or associated electronics, and physiological noise from
physiological activity other than of interest (a category that is
study- or application-dependent). We focus on environmental
noise, but our approach is complementary with techniques that
deal with the other two types of noise.
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Shielding, the primary method for noise reduction, involves
placing the system and subject within a chamber lined with
layers of aluminium and mu-metal. In a recent proposition,
head and sensors are surrounded by a superconducting shield
bathed in liquid helium (Volegov et al., 2004). Active shield-
ing has also been proposed (Platzek et al., 1999). However, the
cost and bulk of shielding is an obstacle to widespread deploy-
ment of MEG in scientific and health applications (Okada et
al., 2006; Papanicolaou et al., 2005). New applications such as
brain–machine interfaces (BMI), and advances in MEG tech-
nology (e.g. the non-cryogenic system of Xia et al., 2006)
make the perspective of systems without shield attractive. For
an existing system better shielding may not be an option. A
signal-processing alternative to reduce the level of noise is thus
welcome.

A second measure is the use of gradiometer sensors,
implemented in hardware or synthesized in software from mag-
netometer arrays (Baillet et al., 2001; Vrba, 2000). There are
nine components to the magnetic field gradient (three spatial
derivatives of each of the three spatial components), but typ-
ical systems sample only a few: radial gradiometers measure
the radial derivative of the radial component, and planar gra-
diometers one or two of its tangential gradients. Brain sources
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produce fields with large gradients at nearby sensors, whereas
most environmental sources are distant and produce a relatively
homogenous field, that the gradiometer discounts. Gradiometers
are also more sensitive to shallow than deep brain sources. This
property may be useful in some cases, but there is no flexibility
to tune or disable it without compromising environmental noise
rejection. Sensor geometry could more easily be optimized for
brain sensitivity if environmental noise were taken care of by
other means.

A third approach is spectral filtering. Environmental noise
is typically dominated by slowly varying fields from eleva-
tors, vehicles, etc., and by power line components at 60 Hz
(or 50 Hz outside the US) and multiples, that may be atten-
uated by hardware filters before analog-to-digital conversion.
A typical protocol involves a combination of a high-pass fil-
ter (e.g. 0.1 or 1 Hz) and a notch filter at 60 Hz, in addition
to the mandatory antialiasing low-pass filter. Further filtering
may be applied in software. Spectral filtering has two seri-
ous drawbacks. First, recordings are blind to eventual brain
activity within the frequency bands that are rejected. Second,
features of the time-course of activity are “smeared” over an
interval equal to the duration of the impulse response, which is
on the order of the inverse of the width of spectral transitions
(e.g. about 1 s for a 1 Hz high-pass or 1-Hz wide notch filter).
Temporal distortion is inconsistent with the common claim of
“millisecond temporal resolution” for MEG, although its impact
is hard to assess because impulse responses are rarely published.
Data quality would be enhanced if spectral filtering could be
avoided.

A fourth approach is spatial filtering. Linear combinations
of sensor signals are formed to attenuate noise and/or enhance
brain activity. Examples are synthetic gradiometers (already
mentioned), the Laplacian (e.g. Kayser and Tenke, 2006), princi-
pal component analysis (PCA) (e.g. Ahissar et al., 2001; Kayser
and Tenke, 2003, 2006; Spencer et al., 2001), independent com-
ponent analysis (ICA) (e.g. Barbati et al., 2004; Makeig et al.,
1996; Vigário et al., 1998), signal space projection (SSP) (Tesche
et al., 1995), signal space separation (SSS) (Taulu et al., 2005),
beamforming (e.g. Sekihara et al., 2001, 2006) and other linear
techniques (Parra et al., 2005). Spatial filtering is useful to tease
apart the activity of multiple sources within the brain. While it
can also remove environmental noise, using it for that purpose
constrains the options for brain source analysis (Nolte and Curio,
1999). Spatial filtering distorts the spatial signature of sources
of interest, and forward models (required for source modeling)
may need adjusting.

Finally, a very common procedure is to average responses
over multiple repetitions of the stimulus. Stimulus-evoked brain
activity adds constructively, while noise components tend to can-
cel each other out. Measurement of the steady-state response
(SSR) in the frequency domain obeys the same principle. Draw-
backs are that only repeatable “evoked” activity may be observed
in this way, the signal-to-noise ratio (SNR) improvement is
modest (it varies with the square root of repetitions), and the pro-
cedure is costly in experimental time. Effective denoising would
allow cheaper experiments, and possibly useful recordings of
single-trial activity.

To summarize, a wide range of noise-reduction tools is avail-
able. Together, they allow high quality measurements of brain
activity, as evident from the MEG literature. Nevertheless, some
have drawbacks that interfere with the observation of brain
response morphology. For others, prior removal of environmen-
tal noise would allow them to be optimized for the purpose of
brain source analysis.

Some MEG systems are equipped with reference sensors that
measure environmental fields. Regression of brain sensor signals
on the subspace spanned by reference sensor signals allows the
contribution of environmental noise to be attenuated without the
need for spectral filtering, or spatial filtering of the brain sen-
sor array. Several methods have been proposed for that purpose
(e.g. Adachi et al., 2001; Ahmar and Simon, 2005; Volegov et al.,
2004; Vrba and Robinson, 2001). Assuming that noise sources
are distant and their fields homogenous, three sensors should
suffice to capture the three spatial components of the noise field,
regardless of the number of sources. However a larger number of
reference sensors may be useful if field gradients differ between
noise sources. Assuming instantaneous propagation at the rela-
tively low frequencies of interest (Hämäläinen et al., 1993), the
responses of two sensors to the same noise component differ only
by a scalar factor. One should thus expect projection techniques
to be highly effective. However, electromagnetic shielding is
known to be frequency-dependent ((Hämäläinen et al., 1993),
and the electronics (flux lock loop, hardware filters) may intro-
duce convolutive mismatch between channels, in which case
scalar regression does not work well.

The method to be described extends these techniques by aug-
menting the array of reference signals by delayed versions of the
same. The linear combination of delayed signals constitutes, in
effect, a finite impulse response (FIR) filter that is applied to
each reference signal before subtraction from each brain sensor
signal. As we shall see, this greatly improves the effectiveness
of denoising.

2. Methods

2.1. Signal model

We observe K brain sensor signals and J reference sensor sig-
nals. For example the MEG system described below has K = 157
gradiometers placed over the brain and J = 3 reference magne-
tometers placed far from the brain and oriented orthogonally to
each other. Denoting vectors with bold-faced letters, S(t) = [s1(t),
. . ., sK(t)]T, the K brain sensor signals reflect a combination of
brain activity, environmental noise and sensor noise:

S(t) = Sb(t) + Se(t) + Ss(t) (1)

whereas the J reference sensors R(t) = [r1(t), . . ., sJ(t)]T reflect
only noise. Signals are sampled and we use t to represent the time
series index. Environmental noise in both sensor arrays origi-
nates from L noise sources within the environment, E(t) = [e1(t),
. . ., eL(t)]T. If the relation between each noise source and each
sensor were scalar (no filtering or delay), the dependency could
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be described in matrix notation as

Se(t) = AE(t)

R(t) = BE(t) + Rs(t)
(2)

where A = [akl] and B = [bjl] are mixing matrices with akl and
bjl scalar and Rs(t) is reference sensor noise. Sensor noise is
supposed negligible (the question is discussed further on). If the
relation between noise and sensor signals is convolutive (filtering
and/or delay) the same notation can be used supposing that each
element akl or bjl of the mixing matrices A or B represents an
impulse response, and replacing multiplication by convolution
in Eq. (2). For example:

rjl(t) = (bjl ∗ el)(t) (3)

where rjl(t) is the contribution of noise source l to sensor j. The
brain activity term Sb(t) in Eq. (1) presumably also reflects mul-
tiple sources within the brain, however we do not need to detail
this dependency. To summarize the signal model, brain sensors
and reference sensors pick up the same environmental noise
sources, but the relation between noise and sensor may have
convolutive properties that differ between brain and reference
sensors.

2.2. Algorithm

The TSPCA algorithm is straightforward. First, the refer-
ence channels R(t) are time-shifted by a series of multiples
of the sampling period, both positive and negative: R(t + n),
n = −N/(2 + 1), . . ., N/2. Second, the set of time-shifted reference
signals is orthogonalized by applying PCA, to obtain a basis of
JN orthogonal time-domain signals. Third, each brain sensor
signal is projected onto this basis, and the projection removed.
The result is the “clean” signal.

For brain sensor k the overall process can be described as

ŝk(t) = sk(t) −
J∑

j=1

N∑
n=1

αkj(n)rj

(
t − n − N

2

)
(4)

where ŝk(t) is the cleaned signal and the [αkj(n)] emerge from
the combination of orthogonalization and projection. Coeffi-
cient αkj(n) can be understood as the nth coefficient of an
N-tap finite impulse response (FIR) filter applied to reference
signal j before subtraction from brain signal k. This filter is
optimal, in a least-squares sense, to minimize the contribution
of noise components to the brain sensor signal. Note that the
brain sensor signals sk(t) are not filtered, and thus there is no
spectral distortion of brain activity sb(t) (we return to this ques-
tion later). Processing can be summarized in matrix notation
as

Ŝ = IS − AR̃ (5)

where I is the identity matrix, A = [αkj] the matrix of coefficients
found by orthogonalization and projection, and R̃ represents the
set of time-shifted reference channel signals.

2.3. Implementation

The algorithm was implemented in Matlab. The number of
taps is an arbitrary tradeoff: effectiveness, computational cost,
and risk of overfitting, all increase with N. The value N = 200
(shift range of ±200 ms for a 500 Hz sampling rate) was chosen
for our simulations yielding 600 time-shifted reference channels.
After PCA, components with variance (relative to the first) below
an arbitrary threshold (10−6 in our simulations) were discarded
to avoid numerical problems in the next steps. The algorithm can
be applied to data blocks or files of arbitrary size: smaller blocks
allow the algorithm to accommodate eventual fluctuations in
reference/brain sensor relations, while larger blocks reduce the
risk of overfitting. We typically used a block size of 105 samples
(200 s), but we did not observe ill effects with larger or smaller
sizes.

3. Results

We first evaluate the method with MEG data from one partic-
ular system to illustrate its effectiveness as a practical tool. Next
we use synthetic data to quantify eventual side-effects. Later on
we give more examples with data from other systems.

3.1. MEG data

3.1.1. Setup
Magnetic signals were recorded using a 160-channel, whole-

head system with 157 axial gradiometer sensors that measure
fields from the brain and 3 magnetometer reference sensors
oriented along orthogonal directions (KIT, Kanazawa, Japan;
Kado et al., 1999). The system is situated within a magnetically
shielded room to reduce magnetic fields from the environ-
ment. Except where noted, dc and very low-frequency fields
are removed by a high-pass filter in hardware at 1 Hz, line noise
is suppressed by a notch filter at 60 Hz, and aliasing is prevented
by a low-pass filter at 200 Hz (for 500 Hz sampling) or 400 Hz
(for 1 kHz sampling).

3.1.2. Empty machine
Fig. 1(a) (red) illustrates the power spectrum averaged over

channels in normal conditions but with no subject within the
system. It consists essentially of environmental power that has
eluded magnetic shielding, cancellation by the gradiometers,
and attenuation by hardware filters. The power spectrum is
dominated by several sharp components at 120 Hz and beyond,
several narrow modes at intermediate frequencies (10–120 Hz),
and a diffuse distribution of low-frequency power below 10 Hz
[expanded in Fig. 1(d), red].

Fig. 1(a) (blue) shows the power spectrum after applying
our algorithm to the same data as in Fig. 1(a) (red). Ninety-
eight percent of the variance has been discarded, leaving only
2% of residual noise power. Sharp high-frequency components
are virtually eliminated, and mid-frequency peaks are greatly
reduced. The dip near 60 Hz reflects the hardware notch filter,
not noticeable in raw data because it coincides with the 60 Hz
line power component (see below). The low-frequency region is
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Fig. 1. MEG responses before and after denoising. (a) Power spectrum recorded
from an empty machine averaged over all channels, before (red) and after (blue)
denoising. (b) Same, with an enlarged abscissa. (c) Same, in the presence of
a subject. (d) Estimated signal-to-environmental noise ratio (SNRE) of brain
fields before (black) and after (green) denoising. The estimate of SNRE before
denoising was made by comparing power recorded with and without a subject in
the MEG machine. The estimate of SNRE after denoising was made by compar-
ing power after denoising to power before denoising. Both estimates are rough
approximations.

expanded in Fig. 1(b). Noise power in this region is reduced by
a factor of about 100 (20 dB).

3.1.3. Brain activity
Fig. 1(c) illustrates data recorded with a subject performing

an auditory task (Chait et al., 2005), before (red) and after (blue)
denoising. Before denoising, the brain activity of the subject is
hard to distinguish from environmental noise. After denoising
the brain activity emerges more clearly. Assuming that brain
activity and environmental noise are orthogonal, we can estimate
the approximate power of the brain response by subtraction,
and thus derive a rough estimate of the power ratio of the sig-
nal (defined in this context as activity other than environmental
noise) to the estimated environmental noise (SNRE). Note that
this definition of signal includes all activity other than environ-
mental noise. After denoising, SNRE approaches 10 dB over the
0–20 Hz frequency range that includes many important compo-
nents of brain activity, with a peak of about 20 dB just below
10 Hz (Fig. 1(d)). It should be stressed that these are “single-

Fig. 2. Effect of denoising on data recorded in the absence of hardware high-
pass and 60 Hz band-reject (notch) filters. (a) Waveform of one channel before
(red) and after (blue) denoising. (b) Power spectrum averaged over channels
before (red) and after (blue) denoising.

trial” data, without spatial filtering, spectral filtering other than
in hardware, or averaging over epochs.

3.1.4. Recording without hardware filters
The previous responses were recorded with hardware high-

pass and 60 Hz notch filters, as is standard in most MEG studies.
As mentioned in Section 1, filtering distorts the observations
and it would be useful to avoid it, if possible. Fig. 2 shows data
recorded with high-pass and notch filters deactivated (in red).
The waveform (Fig. 2(a)) is dominated by a 60 Hz component
visible as a peak in the power spectrum (Fig. 2(b)), as well as
slower fluctuations visible in Fig. 2(b) as a prominent peak at
very low frequencies. After denoising, both are greatly reduced,
by about 40 dB for the former and 35 dB for the latter. On average
over the spectrum, the power has been reduced by about 99%.
This suggests that, with adequate denoising, hardware filters
could be omitted (however filters may still be required to avoid
overloading of analog-to-digital converters by noise components
if the resolution of the converters is insufficient).

3.1.5. Is the target distorted?
An obvious concern is whether denoising distorts brain activ-

ity. It was already mentioned that brain activity does not undergo
spatial or spectral filtering (Eq. (4)) as long as reference channels
do not pick up brain activity. Spurious correlations might con-
ceivably appear by chance between brain and delayed-reference
subspaces, in which case genuine brain components might be
stripped together with the noise. However, given that brain and
environmental activity are unrelated, the power of any such
components should be small.

We tested this conclusion with synthetic data for which the
target and noise were both known. In a first simulation we used
a target consisting of wide-band Gaussian noise independent
between channels. For “noise”, we used data recorded in the
absence of a subject in the MEG machine, modified by sub-
tracting the residual power (about 2%) leftover after denoising.
This is very similar to real environmental noise, but with the
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Fig. 3. (a) The top plot shows the effect of denoising on synthetic data. Green:
synthetic “brain activity”. Red: same after addition of synthetic “noise”. Blue:
same after denoising. (b) The bottom plot illustrates estimating leakage of brain
activity into reference channels. Blue: power spectrum of reference channels
recorded in the absence of a subject. Red: same in the presence of a subject. The
lack of a systematic difference between reference power spectra (red, blue) at
frequencies where brain activity is intense suggest that leakage is weak.

nice property that denoising removes it completely so that target
distortion may be observed in isolation. Target and noise were
added in sensor space to produce synthetic “noise-contaminated
data” that were then processed by the TSPCA algorithm to obtain
“denoised data”. After denoising, target power was reduced (uni-
formly over the spectrum) by less than 1 dB as N was varied from
1 to 200 (not shown).

A second simulation used as a target data recorded from the
MEG with a subject performing an auditory task, denoised by
application of TSPCA. This is our best approximation, in terms
of amplitude and spectral content, of brain activity as measured
in sensor space (real brain activity being obviously inaccessible).
Fig. 3(a) shows the power spectrum of the brain activity (green,
thick), the noise-contaminated activity (red), and the denoised
activity (blue) plotted over a 0–50 Hz range. Denoising supresses
noise components, but the target itself is not seriously distorted:
comparing the green and blue plots, the differences are small.
Our target is the result of a denoising process and thus conceiv-
ably less susceptible to distortion than “real” brain activity, but
it is our best approximation in the absence of direct access to
brain source activity.

Taken together, these arguments suggest that it is safe to
assume that brain activity is not significantly distorted by
TSPCA. Note that the assumption of uncorrelated brain and envi-
ronmental noise might not hold if, say, the stimulus apparatus
produced a magnetic field synchronized to the stimulus, or if ref-
erence sensors picked up appreciable brain activity. Overfitting

could occur if the number of data samples were small relative to
the number of free parameters in the model (600 for N = 200).
In those cases, target distortion could be significant.

3.1.6. Is it reasonable to assume that reference sensors pick
up no brain activity?

If the reference sensors pick up fields from the brain, it is
possible that some brain components are removed together with
the noise. For data from a real system this possibility cannot be
ruled out completely, but two arguments suggest that leakage of
brain activity into reference channels is too small to be of practi-
cal concern for our setup. First, if there were significant leakage,
we would expect the power spectrum of the reference channel
signals to differ according to whether a subject is present or not.
Fig. 3(b) compares reference channel power spectra measured
without (blue) and with a subject (red). The spectra differ in
detail, as expected from different samples of ongoing environ-
mental noise, but the difference does not follow the shape of
the brain power (Fig. 3(a), green). Second, significant leakage
should show up as brain-like characteristics within the residual
(noise) signal removed by denoising, for example after averag-
ing over many repetitions of a stimulus. No such characteristics
were found (not shown).

Leakage of brain activity into reference channels appears to
be negligible for our setup. However, if the reference sensors
picked up more brain activity, or less environmental noise as
might occur with better shielding, leakage could lead to signif-
icant subtraction of brain activity. This should be checked for
before introducing the method to a particular machine.

3.1.7. Are delays useful?
With N = 1 the method defaults to scalar regression (see Sec-

tion 1). The amount of residual environmental noise as a function
of N is plotted in Fig. 4 (top, full line). As N is increased from 1
to 200, the residual noise power drops from about 20% to about
2% while the power of the target (dashed line) is almost constant,
with the result that the signal-to-environmental noise ratio (dB)
becomes positive for about N > 8. Multiple delays are obviously
useful. Crucially, this shows that TSPCA is not indiscriminate
as to how it removes power from a noisy signal. The power
decrease affects only the noise (full line) but not significantly
the target (dashed line).

The middle panels of Fig. 4 show the three reference-brain
impulse responses for one particular brain channel for N = 200,
and the bottom panels of Fig. 4 show the amplitude and phase
transfer functions of the third of these filters. The shapes, result-
ing from the automatic regression procedure, are not easily
interpretable. Non-zero values of the impulse response at lags
other than the origin reflect the fact that the corresponding lags
contribute to reduce noise.

As described above, the power of the delays to better isolate
and remove noise can arise simply from non-instantaneous mix-
ing of noise across channels. Additionally, multiple delays can
further aid noise reduction if some independent noise compo-
nents are differentially spectrally filtered with respect to another
(since the effect of summing and delaying noise channels can
also create spectral filtering).



302 A. de Cheveigné, J.Z. Simon / Journal of Neuroscience Methods  165 (2007) 297–305

Fig. 4. Top, full line: percentage of noise power remaining after denoising as
a function of number of taps, N. Dotted line: target power. Symbols are data
for algorithms CALM (Adachi et al., 2001) and Fast-LMS (Ahmar and Simon,
2005). Intermediate: impulse responses of filters applied to each of the three
reference sensor signals, for one particular brain sensor. Bottom: magnitude and
phase plot of the rightmost filter.

3.1.8. Are MEG data typically that noisy?
Our illustrations were based on data from one rather noisy

MEG system, and one might wonder whether other systems
would also benefit. Fig. 5 shows data from a variety of sys-
tems from different makers and installed in different locations
(details in caption). For each system, the power spectrum of a
single channel is shown before (red) and after (blue) denoising.
In each case the spectrum of the raw MEG data comprises low-
frequency and line frequency harmonics that denoising removes.
The benefit of TSPCA is not restricted to one particular system.

Reference channels were unavailable for two systems (MEG
systems 2 and 3). To apply TSPCA nevertheless, we derived
“synthetic reference channels” by applying ICA and selecting
the three components with the largest proportion of dc and line
noise. This appears to be effective, but it amounts to a form of
spatial filtering and shares its potential drawbacks. Real refer-
ence sensors would be preferable. The green line in the plot for
system 3 is the result of applying the SSS algorithm available
with that system. TSPCA appears to be competitive with this
implementation of that denoising method. The purpose of these
examples is to show that TSPCA may be of use for a range of

Fig. 5. Data from a selection of systems. For each, the power spectrum of one
arbitrary channel is plotted with a logarithmic frequency axis and a dB ordinate
(with arbitrary origin). MEG system 1 is a 157-channel axial gradiometer system
with 3 reference channels, built by Yokogawa and installed in a high-quality
MSR (60 dB at 0.01 Hz) in a quiet suburban environment. MEG system 2 is a
440-channel system also built by Yokogawa. Reference channel data were not
available for this recording; instead, “synthetic reference” signals were obtained
by applying ICA and selecting the three components most strongly dominated
by dc and power line harmonics. MEG system 3 is a 306-channel system built
by Elekta Neuromag, for which 6 synthetic references were derived by ICA. The
green line represents the result of applying instead the SSS algorithm provided
with the system. MEG system 4 is a 151-channel system built by CTF with 29
reference channels. The EEG system was a 16-channel system installed within an
electromagnetically shielded booth. Four channels were devoted to ‘reference’
channels: two were attached to the subject’s wrists and the other two were
attached to the metallic floor and wall of the booth.

MEG systems. They should not be interpreted as reflecting the
relative quality of systems or sites.

3.1.9. How does TSPCA compare with other methods?
Methods differ in their requirements and side-effects, and a

level ground for comparison is hard to find. Easiest to compare
are methods that use reference channels. Setting N = 1, TSPCA
is equivalent to scalar regression, a standard technique used in
different forms (e.g. Volegov et al., 2004). From Fig. 4 (top) it
is clear that TSPCA is superior to scalar regression for N > 1.
We compared TSPCA with two other methods, CALM (Adachi
et al., 2001) that is widely used with KIT/Yokogawa systems,
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Fig. 6. MEG responses of one subject to an auditory stimulus, averaged over 100
repetitions (Chait et al., 2005). (a) Time-course of RMS over all channels before
(red) and after (blue) denoising. (b) Topography of field over subject’s head
before denoising at ∼100 and ∼200 ms post-stimulus onset. (c) Topographies
after denoising.

and Fast-LMS (Ahmar and Simon, 2005), a state-of-the-art LMS
algorithm developed by our group. TSPCA surpasses both meth-
ods (Fig. 4, top). Many other signal-processing techniques can
make use of reference channels (Haykin, 1991) but a compre-
hensive review is beyond the scope of this paper. Suffice to
say that we are not aware of a method in widespread use with
performance comparable to TSPCA.

Comparison with techniques that do not engage reference
channels is of limited use because TSPCA can be used together
with them. TSPCA alters neither spectral nor spatial characteris-
tics, and it is fully compatible with noise reduction measures that
precede it (passive or active shielding) or follow it (spectral or
spatial filtering). Of interest is whether combining those methods
with TSPCA offers an advantage over applying them alone. Data
in Fig. 1 were recorded from gradiometers with hardware filters
(1 Hz high-pass and 60 Hz notch): obviously applying TSPCA
is an improvement over mere filtering, and Fig. 2 suggests that
TSPCA might even replace such filters. Similar arguments can
be made for spatial filtering, which is involved in a wide range
of techniques (PCA, ICA, SSS, etc.).

Another standard approach to reduce noise (environmental
and physiological) is to average responses over multiple rep-
etitions of the same stimulus. Fig. 6 shows responses from an

auditory study (Chait et al., 2005) averaged over 100 repetitions.
Plotted in (a) is the root-mean-square field RMS averaged over
channels before (red) and after (blue) denoising. The stimulus
onset is at 0 ms and at about 100 ms appears the typical ‘M100’
onset response (Roberts et al., 2000). The field distribution
over the sensor array shows a typical ‘auditory’ configuration
(hemispherically antisymmetric pair of magnetic dipoles) that
is visible in the raw data (b, left), but is much more clear in the
denoised data (c, left). At about 200 ms post-onset, an additional
peak is visible in the denoised data, with a similar ‘auditory’
configuration of opposite polarity. In the raw data, however, that
peak is no more prominent than spurious peaks at other times
(e.g. 400 ms), and the distribution in Fig. 6(b, right) is dominated
by noise. TSPCA followed by averaging offers improvement
over averaging alone.

3.1.10. Reference sensor noise
Reference sensor noise is typically small compared to the

amplitude of the environmental fields, and unlikely to affect the
outcome of the calculation of orthogonalization and projection
matrices. However, reference sensor noise is injected into the
denoised data via Eq. (5), and may contribute to the new noise
floor remaining after TSPCA. Therefore it is especially impor-
tant that the reference sensors exhibit minimal sensor noise.
Another way to reduce the impact of reference sensor noise is
to increase the number of reference sensors beyond the number
(usually 3) required to describe the environmental noise field,
as redundant sensors allow sensor noise to be reduced (see de
Cheveigné and Simon, submitted for publication).

4. Discussion

The TSPCA algorithm has the following useful features:

• It is effective in removing environmental noise: in our simu-
lations the single-trial SNRE improved from −10 dB to about
+10 dB overall.

• It does not involve spectral or spatial filtering, and thus does
not distort brain activity.

• It is relatively efficient and easy to implement, and should be
suitable for a real-time implementation in BMI applications.

• Once it has been validated for a system, it is suitable as
a systematic unsupervised data preprocessing tool. It does
not require tuning, calibration, component selection, or other
expert intervention.

• It is applicable to recordings other than MEG. So far only
EEG has been tested, but it is expected that the technique
might benefit electrophysiology in general.

• It is complementary (and compatible) with other methods of
noise reduction and source analysis.

The method does not address other sources of noise such as
sensor noise or unwanted physiological activity such as heart-
beat, eyeblinks, muscle activity, brain activity other than of
interest, etc. Other noise-reduction or data analysis techniques
are available for that purpose, with which TSPCA is complemen-
tary. Note that, if an independent measurement of a physiological
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artifact is available, TSPCA may be used to optimize the rejec-
tion of that artifact, and that it is possible to include non-linear
transforms in addition to delays, for example to compensate for
eventual sensor non-linearities.

Effective denoising can replace spectral and spatial filter-
ing, but hardware high-pass or notch filters may nevertheless be
necessary to preserve dynamic range. Eq. (4) suggests, and sim-
ulations confirm, that the method does not appreciably distort
brain activity. This implies that forward models do not need to be
modified, and the method can be used together with techniques
such as source modeling, PCA, ICA, SSA, etc. (Ahissar et al.,
2001; Baillet et al., 2001; Makeig et al., 1996; Parra et al., 2005).
Indeed, removing a major source of noise may help make those
techniques more effective.

Reference sensors must be available, although we saw that
TSPCA can make use of a “synthetic reference”. Regression on a
synthetic reference amounts to a form of spatial filtering, and real
reference sensors should be preferred if available. References
should not be sensitive to physiological fields of interest. This
should be verified when the method is applied to a new system,
either directly with phantom sources, or indirectly by looking
for traces of brain activity in the reference signals.

Our method extends previous methods that perform regres-
sion on reference sensor signals (Adachi et al., 2001; Volegov et
al., 2004; Vrba and Robinson, 2001). It is superior to those meth-
ods in that it augments the reference signals with time-shifted
versions of the same, thus allowing the synthesis of filters that
compensate for eventual latency or filtering mismatches. In this
respect it resembles frequency-domain regression (e.g. Vrba,
2000; Woestenburg et al., 1983). It can be understood loosely as
a way to enhance the effectiveness of regression by compensat-
ing for convolutional mismatch. It should be applicable to other
sources of artifact for which a brain-independent measurement
is available, such as heartbeat or eye movements, and to other
measurement techniques such as EEG.

This new MEG denoising technique is related to dynamic
PCA used in process control (Ku et al., 1995), singular spectrum
analysis (SSA) used in geophysics (Allen and Smith, 1997; Ghil
et al., 2002; Vautard and Ghil, 1989), the delayed coordinate
methods of Gruber et al. (2006), or the delayed correlation ICA
methods of Ziehe et al. (2000) or Sander et al. (2002). All of these
techniques involve augmenting a set of signals with delayed
versions. To the best of our knowledge this is the first application
of such ideas to MEG or EEG noise suppression (see however
He et al., 2004).

5. Conclusions

The TSPCA method is effective for denoising MEG signals
on the basis of reference channels that pick up environmental
noise. Sensor channels are projected on a subspace spanned by
the time-shifted reference signals. This effectively synthesizes
filters that are optimal (in a least-squares sense) to compensate
for any mismatch between data and reference sensor channels.
Tests with data recorded from an empty MEG system found
that 98% of noise variance was removed, in particular within
frequency bands important for the study of brain responses.

While recording from a subject during an auditory task, esti-
mated single-trial signal-to-noise ratios approaching 10 dB were
obtained across the low-frequency band (0–20 Hz), with a peak
of 20 dB at about 10 Hz. The method is of considerable practi-
cal interest, as it may allow MEG systems to be designed more
cheaply, to be deployed in less controlled (especially clinical)
environments, and require less time per experiment. It may be
of use to improve the quality of information about the brain that
is gathered by this brain imaging technique, as well as other
recording techniques sensitive to noise.
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