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ABSTRACT

Speech intelligibility is currently measured by scoring
how well a person can identify a speech signal. The
results of such behavioral measures reflect neural
processing of the speech signal, but are also influ-
enced by language processing, motivation, and mem-
ory. Very often, electrophysiological measures of
hearing give insight in the neural processing of sound.
However, in most methods, non-speech stimuli are
used, making it hard to relate the results to behavioral
measures of speech intelligibility. The use of natural
running speech as a stimulus in electrophysiological
measures of hearing is a paradigm shift which allows
to bridge the gap between behavioral and electro-
physiological measures. Here, by decoding the speech
envelope from the electroencephalogram, and corre-
lating it with the stimulus envelope, we demonstrate
an electrophysiological measure of neural processing
of running speech. We show that behaviorally mea-
sured speech intelligibility is strongly correlated with
our electrophysiological measure. Our results pave

the way towards an objective and automatic way of
assessing neural processing of speech presented
through auditory prostheses, reducing confounds
such as attention and cognitive capabilities. We
anticipate that our electrophysiological measure will
allow better differential diagnosis of the auditory
system, and will allow the development of closed-
loop auditory prostheses that automatically adapt to
individual users.

Keywords: Neural decoding, Auditory evoked
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Speech understanding

INTRODUCTION

The human auditory system processes speech in
different stages. The auditory periphery converts the
sound pressure wave into neural spike trains, the
auditory cortex segregates streams, and finally special-
ized language processing areas are activated, which
interact with short and long term memory. Each of
these subsystems can be impaired, so in diagnostics it
is crucial to be able to measure the function of the
auditory system at the different levels. The current
audiometric test battery consists of behavioral tests of
speech intelligibility and objective measures based on
electroencephalogram (EEG).

In behavioral tests of speech intelligibility, the
function of the entire auditory system is measured. A
fragment of natural speech is presented and the
subject is instructed to identify it. When the goal is
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to assess the function of the auditory periphery, such
as fitting auditory prostheses, language knowledge
and cognitive function such as working memory are
confounds. Additionally, behavioral testing requires
active participation of the test subject, which is not
always possible and leads to another confound:
motivation and attention. With current EEG-based
objective measures, it is possible to measure the
function of intermediate stages of the auditory system,
but unnatural periodic stimuli, such as click trains,
modulated tones, or repeated phonemes are used
(e.g., (Anderson et al. 2013; McGee and Clemis 1980;
Picton et al. 2005)), which are acoustically different
from natural running speech, and are processed
differently by the brain (Hullett et al. 2016). While
these measures yield valuable information about the
auditory system, they are not well-correlated with
behaviorally measured speech intelligibility. Another
practical downside of non-speech stimuli is that they
may be processed differently from speech by modern
auditory prostheses which take into account the
statistics of speech signals (Dillon 2012). This is
problematic when assessing a subject’s hearing
through an auditory prosthesis such as a hearing aid
or cochlear implant.

The missing link between behavioral and objec-
tive measures is a measure of neural processing of
the acoustic cues in speech that lead to intelligibility.
The most important acoustic cue for speech intelli-
gibility is the temporal envelope (Peelle and Davis
2012; Shannon et al. 1995) and especially modula-
tion frequencies below 20 Hz (Drullman et al. 1994a,
b). Recently, it has been shown with non-invasive
magnetoencephalography (MEG) and EEG record-
ings that neural processing of the speech envelope
can be inferred from the correlation between the
actual speech envelope and the speech envelope
decoded from the neural signal (Aiken and Picton
2008; Ding and Simon 2011). Even for running
speech in a single-trial paradigm, i.e., presenting
the stimulus only once the speech envelope could
reliably be reconstructed (Di Liberto et al. 2015;
Ding and Simon 2012, 2013; Horton et al. 2014;
O’Sullivan et al. 2015). A decoder transforms the
multi-channel neural signal into a single-channel
speech envelope, by linearly combining amplitude
samples across MEG sensors and across a post-
stimulus temporal integration window. Based on
training data, the decoder is calculated as the linear
combination that maximizes the correlation with the
actual speech envelope. This method has also been
shown to work with electroencephalography (EEG)
recordings (O’Sullivan et al. 2015). Furthermore,
using surface recordings of the cortex, the full
stimulus spectrogram can be decoded (Pasley et al.
2012), and inversely the full spectrogram and even

phoneme representation can be used to predict the
EEG signal (Di Liberto et al. 2015).

Using these techniques, previous research has
compared the correlation between the speech enve-
lope and the reconstructed envelope, with speech
intelligibility (Ding and Simon 2013; Kong et al.
2015). However, the interpretation of the results is
complicated by the fact that speech intelligibility
could fluctuate over time due to the use of non-
standardized running speech as a stimulus, and
because subjective ratings were used as a measure of
speech intelligibility instead of standardized speech
audiometry. Standardized audiometric speech mate-
rials are carefully optimized for precision and reliabil-
ity, something which is difficult, if not impossible with
running speech and subjective ratings.

Therefore, we developed an objective measure of
neural processing of the speech envelope based on
the stimulus reconstruction method and compared it
with behaviorally measured speech intelligibility. We
do not expect these measures to correspond exactly,
as there are some inherent differences, in particular
the higher level functions such as working memory
and cognitive function that are relied upon for the
behavioral measure and not so much for the objective
one. However, on the one hand we reduced those
differences by the choice of materials and methods,
and on the other hand it remains important to
compare our novel objective measure to the current
gold standard for measuring speech intelligibility. We
used EEG rather than MEG, as it is ubiquitous, can be
implemented on a large scale, and is often available
for clinical application.

METHODS

An overview of our methods is shown in Fig. 1.
Briefly, in a behavioral and EEG experiment, we
used the same speech stimuli, from a standardized
speech test, combined with spectrally matched
stationary noise at different signal-to-noise ratios
(SNRs). In the behavioral experiment, we deter-
mined the speech reception threshold (SRT). In the
EEG experiment, we determined neural entrain-
ment of the speech envelope as a function of SNR,
and derived an objective measure. We then com-
pared the SRT with the objective measure on an
individual subject basis.

The objective measure is obtained by on the one
hand determining the slowly varying temporal enve-
lope of the speech signal (bottom row of Fig. 1),
which can be thought of as the signal power over
time, and on the other hand attempting to decode
this same envelope from the EEG signal (middle row
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of Fig. 1). To this end, for each subject, a decoder is
trained on speech in quiet, which decodes the speech
envelope as a linear combination of EEG samples,
across a temporal integration window, and across the
EEG recording electrodes. The actual and decoded
envelopes are then correlated with each other, which
yields a measure of neural entrainment of the speech
envelope. After repeating this process for a number of
SNRs, a sigmoid function is fitted to the results. The
midpoint of the resulting sigmoid function is our
objective measure, which we call the correlation
threshold (CT).

Participants

We tested 24 normal-hearing subjects, 7 male and 17
female, recruited from our university student popula-
tion to ensure normal language processing and cogni-
tive function. Their age ranged from 21 to 29 years with
an average of 24.3 years. Every subject reported normal
hearing, which was verified by pure tone audiometry
(thresholds lower than 25 dB HL for 125 Hz until
8000 Hz using MADSEN Orbiter 922–2). They had
Dutch (Flemish) as their mother tongue and were
unpaid volunteers. Before each experiment, the sub-
jects signed an informed consent form approved by the
Medical Ethics Committee UZ KU Leuven/Research
(KU Leuven) with reference S59040.

Behavioral Experiments

The behavioral experiments consisted of tests with the
Flemish Matrix material (Luts et al. 2015) using the
method of constant stimuli at three SNRs around the
SRT. This material is divided in lists of 20 sentences
which have been shown to yield similar behavioral
speech intelligibility scores. Such validated tests,
consisting of a standardized corpus of sentences, are
currently the gold standard in measuring speech

intelligibility, both in research and clinical practice.
Sentences were spoken by a female speaker and
presented to the right ear. They have a fixed structure
of Bname verb numeral adjective object,^ where each
element is selected from a closed set of ten possibil-
ities, e.g., BSofie ziet zes grijze pennen^ (BSofie sees six
gray pens^). These sentences sound perfectly natural,
but are grammatically trivial and completely unpredict-
able, thus minimizing the effect of higher order
language processing.

The experiments were conducted on a laptop
running Windows using the APEX 3 (version 3.1)
software platform developed at ExpORL (Dept.
Neurosciences, KU Leuven) (Francart et al. 2008),
an RME Multiface II sound card (RME, Haimhausen,
Germany), and Etymotic ER-3A insert phones
(Etymotic Research, Inc., IL, USA) which were
electromagnetically shielded using CFL2 boxes from
Perancea Ltd. (London, UK). The speech was pre-
sented monaurally at 60 dBA and the setup was
calibrated in a 2-cm3 coupler (Brüel & Kjaer 4152)
using the stationary speech weighted noise corre-
sponding with the Matrix speech material. The
experiments took place in an electromagnetically
shielded and soundproofed room.

EEG EXPERIMENTS
Setup

To measure auditory evoked potentials, we used a
BioSemi (Amsterdam, Netherlands) ActiveTwo EEG
setup with 64 electrodes and recorded the data at a
sampling rate of 8192 Hz using the ActiView software
provided by BioSemi. The stimuli were presented
with the same setup as the behavioral experiments,
with the exception of diotic stimulation and
adapting the noise level instead of the speech level
for the EEG experiment.

Fig. 1. Overview of the experimental setup. We used the Flemish Matrix sentences to behaviorally measure speech intelligibility. In the EEG
experiment, we presented stimuli from the same Matrix corpus while measuring the EEG. By correlating the speech envelopes from the Matrix
and the envelopes decoded from the EEG, we obtained our objective measure
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Speech Material

We presented stimuli created by concatenating two
lists of Flemish Matrix sentences with a gap between
the sentences. This length of this gap was uniformly
distributed between 0.8 and 1.2 s. The total duration
of this stimulus was around 120 s. It was presented at
3, 5, or 7 different SNRs with the speech level fixed at
60 dBA. The order of SNRs was randomized across
subjects. Each stimulus was presented three or four
times. The total duration of the experiment was 2 h.
To keep the subjects attentive, questions about the
stimuli were asked before and after the presentation
of the stimulus. The questions were typically counting
tasks, e.g., BHow many times did you hear Bgray
pens^?^. These Matrix sentences were used to objec-
tively estimate the speech understanding.

Speech Story

The subjects listened to the children’s story BMilan,^
written and narrated in Flemish by Stijn Vranken.1 It
was 15 min long and was presented at 60 dBA without
any noise. The purpose of this stimulus was to have a
continuous, attended stimulus to train the linear
decoder. No questions were asked before or after this
stimulus.

Signal Processing

Speech

We measured envelope entrainment by calculating
the bootstrapped Spearman correlation (see below)
between the stimulus speech envelope and the
envelope reconstructed by a linear decoder. All
implementations were written in MATLAB R2016b.

The stimulus speech envelope was extracted ac-
cording to (Biesmans et al. 2017), who investigated
the effect of the envelope extraction method on
auditory attention detection, and found best perfor-
mance for a gammatone filterbank followed by a
power law. In more detail, we used a gammatone
filterbank (Søndergaard et al. 2012; Søndergaard and
Majdak 2013) with 28 channels spaced by 1 equivalent
rectangular bandwidth (ERB), with center frequencies
from 50 Hz until 5000 Hz. From each subband, we
extracted the envelope by taking the absolute value of
each sample and raising it to the power of 0.6. The
resulting 28 subband envelopes were averaged to
obtain one single envelope. The power law was
chosen as the human auditory system is not a linear
system and compression is present in the system. The
gammatone filterbank was chosen as it mimics the

auditory filters present in the basilar membrane in the
cochlea.

The speech envelope and EEG signal were band-
pass filtered. We investigated performance for a range
of filter cut-off frequencies. The same filter (a zero
phase Butterworth filter with 80 dB attenuation at
10 % outside the passband) was applied to the EEG
and speech envelope. Before filtering, the EEG data
were re-referenced to Cz and were downsampled from
8192 to 1024 Hz to decrease processing time. After
filtering, the data were further downsampled to
64 Hz.

A decoder is a spatial filter, over EEG electrodes
and a temporal filter, over time lags which optimally
reconstruct the speech envelope from the EEG. The
decoder linearly combines EEG electrode signals and
their time shifted versions to optimally reconstruct the
speech envelope. In the training phase, the weights to
be applied to each signal in this linear combination
are determined. The decoder was calculated using the
mTRF toolbox (version 1.1) (Lalor et al. 2006, 2009)
and applied as follows. As the stimulus evoked neural
responses at different delays along the auditory
pathway, we define a matrix R containing the shifted
neural responses of each channel. If g is the linear
decoder and R is the shifted neural data, the
reconstruction of the speech envelope ŝ tð Þ was
obtained as follows:

ŝ̂ tð Þ ¼ ∑
N

n¼1
∑
τ
g n; τð ÞR t þ τ ; nð Þ

with t the time ranging from 0 to T, n the index of the
recording electrode, and τ the post-stimulus integra-
tion-window length used to reconstruct the envelope.
The matrix g can be determined by minimizing a
least-squares objective function:

g ¼ arg min E ŝ̂ tð Þ−s tð Þj j2
� �

where E denotes the expected value, s(t) the real
speech envelope, and ŝ tð Þ the reconstructed envelope.
In practice, we calculated the decoder by solving:

g ¼ RRT� �−1
RST� �

where R is the time-lagged matrix of the neural data
and S a vector of stimulus envelope samples. The
decoder is calculated using ridge regression on the
inverse autocorrelation matrix.

We trained a new decoder for each subject on the
story stimulus, which was 15 min long. After training,1 http://www.radioboeken.eu/radioboek.php?id=193&lang=NL
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the decoder was applied on the EEG responses to the
Flemish Matrix material.

To measure the correspondence between the
speech envelope and its reconstruction, we calculated
the bootstrapped Spearman correlation between the
real and reconstructed envelope. Bootstrapping was
applied by Monte Carlo sampling of the two enve-
lopes. Some examples of actual and reconstructed
envelopes and the corresponding correlations are
shown in Fig. 2.

Our goal is to derive an objective measure of
speech intelligibility, similar to the SRT for behavioral
tests. Therefore, the correlation between real and
reconstructed envelope needs to increase with SNR,
just like the percentage correctly repeated words
increases with SNR in behavioral measures. To allow
quantitative comparison between the different condi-
tions of band pass filter and decoder temporal
integration window, we defined a measure of mono-
tonicity of the stimulus SNR versus correlation func-
tion. For each subject, it indicates the percentage that
the following comparisons are true: the correlation at
the lowest SNR is lower than the correlations at the
middle and highest SNR, and the correlation at the
highest SNR is higher than the correlation at the
lowest SNR. The band pass filter and temporal
integration window were chosen to maximize this
measure across all subjects.

RESULTS

As different roles are attributed to different EEG
frequency bands, we first investigated the effect of the
cut-off frequencies of the band-pass filter that is
applied to both the envelope and EEG signal. Next,
we investigated the effect of the integration window of
the decoder. This can be understood as the number
of EEG samples following the acoustic stimulus that
are taken into account. For both the filter and the
integration window, we selected the parameter values
that yielded optimal monotonicity of the entrainment
versus SNR. Finally, using the optimal parameters, we
calculated the correlation between the actual speech
envelope and the reconstructed envelope for each
SNR, derived our objective measure of speech intelli-
gibility, and compared it to the behavioral SRT.

Filter Band

Neural responses are mostly analyzed in specific filter
bands. Much of the speech-related EEG research
focuses on the delta band (0.5–4 Hz) and theta band
(4–8 Hz) (Ding and Simon 2013; Doelling et al. 2014;
O’Sullivan et al. 2015). We systematically investigated

the effect of low- and high-pass frequency of the band
on monotonicity of the reconstruction quality as a
function of stimulus SNR. We found best monotonic-
ity using only the delta band (Fig. 3a). Best perfor-
mance was found when low frequencies are included.
As a result, we used a filter band from 0.5 until 4 Hz.

Integration Window

We systematically varied the temporal integration
window of the decoder, and found best monotonicity
of the reconstruction quality using an integration
window focusing on early responses, from 0 ms up to
75–140 ms, see Fig. 3b. Other research has shown that
early responses yield a more gradual decline in
correlation with decrease in SNR (Ding and Simon
2013), compared to later responses, and that earlier
responses are less modulated by attention (Ding and
Simon 2012; O’Sullivan et al. 2015). Based on these
findings and our results, we used an integration
window from 0 ms until 75 ms.

Behavioral Versus Objective

Behavioral speech intelligibility was characterized by
the speech reception threshold (SRT), i.e., the SNR
yielding 50 % intelligibility. It was obtained by fitting a
sigmoid function with the formula S SNRð Þ ¼ γ
þ 1−γ−λð Þ 1

1þe
−SNR−α

β
with γ the guess-rate, λ the lapse-

rate, α the midpoint, and β the slope, to the SNR-
versus-intelligibility points for each subject individual-
ly (e.g., Fig. 4a). For the behavioral data, γ and λ were
fixed to 0, leaving two parameters to be fitted to three
data points, as is common for obtaining the SRT. The
mean of the individual SRTs was − 7.4 dB with an
inter-subject standard deviation of 1.3 dB, ranging
from − 9.9 to − 4.7 dB.

The objective measure was inspired by the
behavioral one in the sense that we obtained a
single-trial score for each of a range of SNRs and
then fitted a sigmoid function. The score was
calculated as the absolute value of the Spearman
correlation between the actual and the decoded
speech envelope. In Fig. 5, the scores for each
subject and SNR are shown.

For the objective data, γ was fixed to 0.03, the
chance level of the correlation. The chance level was
computed by correlating the reconstructed envelope
with a different part of the actual envelope. As a
result, we fitted the remaining three parameters to at
least five data points. After fitting the function, we
derived its midpoint, and used this as our objective
measure, which we will refer to as the correlation
threshold (CT), e.g., Fig. 4b. The benefit of this
measure, compared to using the correlation value at a
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single SNR directly, is that the target SNR, which is
subject specific, does not need to be known a priori

and that it is robust to inter-subject differences in
correlation magnitude.
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Fig. 2. Examples of actual and reconstructed envelopes and the corresponding correlations
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Fig. 3. The monotonicity of envelope entrainment as a function of
frequency bands and temporal integration window. a Monotonicity
of envelope entrainment as a function of lower and upper bound of
the pass band filter. More green colors reflect a higher percentage
correct. Best performance is seen when low frequencies (0.5 until

4 Hz) are included. b Monotonicity of envelope entrainment as a
function of lower and upper bound of the temporal integration
window of the decoder. More green colors reflect a higher
percentage correct. Best performance is seen for integration windows
including early responses from 0 ms up to 75–140 ms.
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Using individual decoders, we were able to obtain a
good fit of the sigmoid function for 19 of the 24
subjects, i.e., no fitted parameter was equal to its lower
or upper bound, and consequently derived the CT.
We found a significant Pearson correlation of 0.69
between SRT and CT (p = 0.001, Fig. 6). Given the
relatively small range of behavioral results for these
normal-hearing subjects, from −9.9 dB SNR to −4.7 dB
SNR, and a typical test-retest difference of 1 dB of the

behavioral measure, this indicates that our objective
measure is sensitive to small changes in SRT.

DISCUSSION

We compared a new objective measure of speech
intelligibility (the CT) to the behaviorally measured
SRT for 24 normal-hearing subjects. The objective
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measure is based on the correlation between the
actual speech envelope and the speech envelope
reconstructed from the EEG signal, a measure of
neural entrainment to the speech envelope. We fitted
a sigmoid function to the resulting entrainment versus
stimulus SNR data, and derived the CT as its
midpoint. We found a significant correlation between
the objectively measured CT and behaviorally mea-
sured SRT.

Filter Band

We found highest monotonicity in the delta band.
This band encompasses the main information in the
modulation spectrum of speech which exhibits peaks
at the sentence rate (0.5 Hz) and word rate (2.5 Hz)
(Edwards and Chang 2013). It contains the prosodic
information which is known to be important for
speech intelligibility (Woodfield and Akeroyd 2010).
For the Matrix sentences, sharp peaks can be ob-
served in the modulation spectrum at 0.5, 2.5, and
4.1 Hz, due to low variation among the sentences.
Note that the delta band does not include the syllable
rate of the Matrix sentences (4.1 Hz). (Ding and
Simon 2013; Ding et al. 2014; Doelling et al. 2014)
also found that the neural responses in delta band

were a predictor of how well individual subjects
recognized speech in noise.

Integration Window

We found best monotonicity of correlation as a
function of SNR for an integration window from 0
until 75 ms. This may be counter-intuitive as higher
correlation values, but not monotonicity are obtained
using a longer integration window, such as 0 until
500 ms (Ding and Simon 2013) and other studies
focus more on later responses (Di Liberto et al. 2015;
O’Sullivan et al. 2015). However, recent work (Ding
and Simon 2012; O’Sullivan et al. 2015) shows that
early responses (0 to 75 ms) are less modulated by
attention compared to later responses (later than
75 ms). Our stimulus is unpredictable and not
particularly engaging, so it is likely that the subjects
were not attentive throughout the entire experiment
(in spite of the instructions). By using only the early
responses, we limit the attentional effects.

Behavioral Versus Objective

We found a significant correlation between the
behaviorally measured SRT and our new objective
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CT) is the midpoint of each psychometric function. The behavioral measure (speech reception threshold, SRT) is the stimulus SNR at which the
subject can understand 50 % of the words
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measure (CT). (Ding and Simon 2014) reviewed a
number of studies in which similar comparisons are
made. They concluded that in many cases stimuli
which differ in intelligibility also differ in acoustic
properties, making it difficult to determine if changes
in cortical entrainment arise from changes in speech
intelligibility or from changes in acoustic properties.
We addressed this by using stimuli with similar
statistics in all conditions. Additionally, in previous
work, subjective ratings of intelligibility of a non-
standardized story were used as the behavioral mea-
surement. The problem is that such measures are
prone to large inter-subject differences and larger
variability than for standardized speech audiometry.
We addressed this by using standardized speech
material as the stimulus for both the behavioral and
EEG experiments. Moreover, the correlation between
actual and reconstructed envelope can differ widely in
magnitude across subjects, due to differences in
recording SNR of the EEG signal. Therefore, we
avoided using it directly and instead captured the
trend across SNRs by fitting a sigmoid function.

(Ding and Simon 2013) found a correlation
between subjectively rated intelligibility and recon-
struction accuracy in an MEG experiment. When
assessing reconstruction accuracy as a function of
SNR across subjects, they found that it was relatively
unaffected down to a certain SNR and then sharply
dropped. Possible explanations for the difference with
our results, where we found a more gradual decrease
in reconstruction accuracy with SNR, are the type of
speech material used (low-context Matrix sentences
versus a story) and the decoder integration window
length (75 versus 250 ms).

The correlation between the SRT and the CT only
explains 50 % of the variance. The remainder can be
attributed to limitations of our model, state of the
subject, and limitations of the behavioral measure.
In our model, we only used the speech envelope,
which is a crude representation of a speech signal,
and indeed the auditory system uses many other
cues such as frequency-dependent envelopes and
temporal fine structure. For instance, (Di Liberto
et al. 2015) have shown that including the entire
spectrogram or even a phoneme representation of
the stimulus can improve performance. Also, our
simple linear decoder is probably not able to cope
with all the complexity of the auditory system and
brain, and the EEG technique has inherent prob-
lems, such as a low SNR of the signal of interest.
Therefore, in the future, non-linear techniques such
as artificial neural networks may yield improved
performance (e.g., (Yang et al. 2015)).

Even with perfect reconstruction of the envelope
from the EEG, differences between the CT and SRT
can still be expected. First of all, the SRT obtained in

a behavioral experiment is not infinitely precise,
with a typical test-retest difference of around 2 dB.
Second, the two measures do not reflect exactly the
same thing: the CT presumably reflects relatively
early neural coding of the speech envelope, while
the SRT is the product of much more extensive
processing, including remembering and repeating
the sentence. Another difference is procedural in
nature: in the behavioral experiment, we collected a
response after each sentence was presented, ensur-
ing the subject’s continuous attention. In the EEG
experiment, we continuously recorded the EEG
during the stimulus, and it is likely that the subject’s
attention lapsed once in a while. We attempted to
mitigate these differences by selecting young, cogni-
tively strong listeners, using low-context speech
material, clear instructions, and asking the subjects
regular questions during the EEG experiment to
ensure they remained attentive.

To translate this method to the clinic, it first needs
to be further validated with a more diverse population
with a wider age range, including children, various
degrees of hearing impairment, different languages,
etc., as it is possible that the optimal signal processing
parameters depend on these factors (Presacco et al.
2016). It also needs to be investigated to what extent
attention influences the results.

Conclusions

There is a missing link between the current behav-
ioral and electrophysiological methods to assess
hearing. The behavioral methods can yield a precise
measure of speech intelligibility, but suffer from
several confounding factors when the goal is to
assess how the auditory periphery processes supra-
threshold sounds. Current objective methods do not
have this confound and can address specific areas in
the auditory pathway. However, they do not give
much insight in how well the patient understands
speech due to the use of simple repetitive stimuli.
The proposed measure (CT) is based on running
speech stimuli and is fully objective. It can on one
hand provide valuable information additional to
behaviorally measured speech intelligibility in a
population where cognitive factors play a role, such
as in aging individuals, or during auditory rehabili-
tation after fitting an auditory prosthesis. On the
other hand, it enables completely automatic mea-
surement, which is invaluable for testing individuals
who cannot provide feedback, for automatic fitting
of auditory prostheses, and for closed-loop auditory
prostheses that continuously adapt their function to
the individual listener in a specific and changing
listening environment.
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