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Abstract

We have constructed a detailed biophysical model of coincidence detector neurons in the
nucleus laminaris (auditory brainstem) which are purported to detect interaural time di!erences
(ITDs). In the model, ITD coding is improved when the inputs from both ears are located on the
bipolar dendrites and segregated, over having both inputs on the soma: the model behaves like
the in vivo coincidence detectors. The model has enabled us to explore features of the
coincidence detector neurons unexplained by a simpler biophysical model (Agmon-Snir et al.,
Nature 393 (1998) 262}272), including the e!ect of synapse location and multiple den-
drites. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Neural coincidence detection is essential in sound localization, which (for frequen-
cies below a few kHz) requires the computation of interaural time di!erences (ITDs).
This task is performed by binaural cells in the avian nucleus laminaris (NL), and its
mammalian homologue, the medial superior olive (MSO).
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A `coincidence detectora neuron should "re when inputs from two independent
neural sources coincide (or almost coincide), but not when two inputs from the same
source (almost) coincide. A neuron that sums its inputs linearly would not be able to
distinguish between these scenarios. Segregating the inputs on separate dendrites
should avoid this problem: post-synaptic depolarization from a synaptic event is
reduced if the dendrite is already partially depolarized. This idea was used by
Agmon-Snir et al. [1] to model bipolar dendrites as interaural coincidence detectors
in NL. This is a more biophysical model of the same system.

The model emulates a single neuron with an axon, soma, and a variable number of
dendrites, each with a variable number of equipotential compartments. All geometric,
electrical, and channel parameters are adjustable, as are the number of
synapses/dendrite (&30), the synaptic locations, and the distribution of synaptic
locations. Channel types include potassium (high- and low-voltage activated [Kv1.1,
1.2], and delayed recti"er), sodium, and passive. The values used for all the tunable
parameters are in agreement with those in the literature [2}6]. The stimulus is a pure
tone of adjustable frequency, with variable binaural phase di!erence (or contralateral
monaural stimulus with variable ipsilateral spontaneous activity). More complex
stimuli can be easily introduced.

The synapses "re with conductance proportional to an alpha-function, with adjust-
able time constant, peak conductance, and reversal potential. The synapses "re as
individual Poisson processes, with probability rate given by the half-wave recti"ed
sinusoidal input, with adjustable amplitude and base spontaneous "ring rate. The fast
Kv 3.1 channels of the pre-synaptic neurons are incorporated in a short synaptic time
constant.

The implementation is constructed within the NEURON [7] environment and has
a graphical user interface for controlling the parameters and running the model.
NEURON allows for a real-time display of data and analysis including the potential
at various locations, the two stimuli, the synaptic "rings, spike counters, period
histograms of synaptic "rings and the action potentials, and their vector strengths.

2. Potential curves and period stimulus histograms

Fig. 1 shows typical time plots for a pair of cells each receiving the same stimulus
probability distributions (with frequency 500 Hz), with the top cell receiving its inputs
binaurally in-phase, and the bottom out-of-phase. The black curve tracks the intracel-
lular potential at soma/axon boundary and the nearby light grapy curve at the axon
tip. Below these curves are a pair of curves of the presynaptic probability distribution.
The bottom eight curves of each graph show synaptic currents (note the Poisson
distributed spread of arrival times).

Fig. 2 shows the same pair of cells tracked for 250 ms of the same stimulus. The
vector strength (VS), a measure of phase locking, ranges between 0 and 100%. The cell
receiving in-phase stimulus has enhanced its VS relative to its input; the out-of-phase
cell has substantially reduced it. Note also the number of spikes in each case: the
output spike rate in the out-of-phase case is substantially reduced (this demonstrates
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Fig. 1.

Fig. 2.

that the VS is not a good measure of phase-locking for low spike rates, because it is
much more susceptible to noise } the extreme case of a single spike, even if at
a random time, give a VS of 100%).

3. Results

Only a small volume of parameter space for this model is biologically relevant, but
due to a relative paucity of experimental data, it is not obvious where the relevant
subspace lies. Some parameters are known to have values that fall in a particular
range, and di!erent parameters, with respective ranges, may be correlated or not.
Some parameters may be particularly relevant for certain species but not for others
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(e.g. the barn owl can detect ITDs up to 8 kHz, whereas the chicken can detect only up
to 2 kHz).

To limit the search, we usually compare the performance of a pair of identical cells
receiving identical stimuli, with one set of stimuli in-phase and the other out-of phase.
Then we pick `reasonablea values for all parameters, vary the dendritic length,
compare "ring rates and observe the VS of the in-phase case. Fig. 3 plots the results
for 1 kHz stimulus. The output rate of the in-phase case is clearly always higher than
the out-of-phase case. The VS of the in-phase case is very close to 100% for all but the
longest dendrites.

In the avian NL, the dendritic length varies (roughly) inversely with the best
frequency of the cell. By directly covarying the stimulus frequency with the dendritic
length, we can attempt to capture a central subspace of the entire parameter space.
Covarying the stimulus frequency with the dendritic length gives us a curve that is
relatively #at, but by covarying one additional parameter, the maximum dendritic
conductance of the high-voltage activated potassium channel (K

HVA
), we can get a rate

curve that matches the nominal rate quite closely (at least at 250 Hz and above). This
is justi"ed since the e!ect of higher K

HVA
conductance is qualitatively similar to the

e!ect of adding (shunting) inhibition from a feedback loop, and this model does not
yet include inhibition. The upper graph of Fig. 4 plots the same values as Fig. 3, but in
the case that stimulus frequency is covaried with dendritic length (by a simple inverse
relationship) and with K

HVA
conductance, according to the relationship plotted in the

lower graph in Fig. 4.
Typically the synapses might be uniformly distributed along the dendrite. The e!ect

of moving all synapses to the centre of the dendrite is relatively small: the in-phase rate
is moderately reduced, worsening at large dendrites/low frequencies. The ratio of
in-phase rate to out-of-phase rate remains large in the same range. One might have
expected the cell to perform better with all the synapses together, to reduce jitter from
the di!ering travel times of the signals to the soma, but the dendrites are (electroni-
cally) relatively compact.

We also varied the location of the `concentrateda synapses. With all synapses at the
base, the coincidence detector performs poorly for large dendrites/low frequencies,

Fig. 3.
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Fig. 4.

giving many false positive. The advantage of inputs adding sublinearly in the den-
drites (which are much smaller compartments than the soma) is lost.

The bene"t of sub-linear addition of the synaptic inputs can also be seen by varying
the synaptic reversal potential. When the reversal potential is arti"cially raised, the
sub-linear addition of the inputs is suppressed, and the coincidence detectors become
e!ective over a smaller range of frequencies/lengths.

This model supports the claim that dendrites are aiding in neural computation.
How well does it perform compared to the same model without dendrites? In the
previous trials, where the synapses are located at the dendrite/soma boundary, the
performance is compromised, but the dendrites are still present and can still act as
current sinks, which can increase coincidence detection ability. When the dendrites
are removed, the "ring rates rise dramatically, but they do so for both the in-phase
and out-of-phase cases. The ratio of the rates is near 1, however, indicating poor
discrimination.

Coincidence detection is robust against varying the number of synapses/dendrite
from 20 to 40. Real NL Neurons vary in dendritic diameter from 2 to 4 mm. Changing
the model's dendritic diameter from 4 to 2 lm decreases the input impedance to the
synaptic current and increases the electrotonic length (it also decreases the transmis-
sion coe$cient from the dendrite to the soma, but this is negligible here). Since it
increases the "ring rate in both the in-phase and out-of-phase cases, the decrease input
impedance outweighs than the electrotonic lengthening.
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In this model, the input VS is determined by the spontaneous activity. When there is
no spontaneous activity, the stimulus probability function is proportional to a half-
wave recti"ed sinusoid, giving VS"p/4+79%. Our nominal spontaneous activity
gives VS+60%, and saturating spontaneous activity gives VS"0%. In the chick
NL, VS varies from the above 90% at the lowest frequencies, decreasing to below 50%
above 1 kHz, and losing all phase-locking by 2 kHz. The model is robust against
increasing the spontaneous activity (and so decreasing the VS of the inputs), but there
is a decreased in-phase "ring rate at the highest frequencies/shortest dendrites. This
explains why the model above outperforms the chick at high frequencies.

The NL contains arrays of coincidence detectors tuned to a wide range of phase
di!erences, more than just 03 and 1803 presented above. Fig. 5 shows responses to
a 3603 range of phase di!erence. The "ring rate and VS are both strong functions of
phase di!erence, but the "ring rate is more sharply tuned (and the VS is not reliable at
low rates).

Fig. 5.
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Real NL neurons also respond to periodic stimuli presented only in one ear.
Presumably this is due to coincidence detection between the monaural stimulus one
side and the spontaneous activity on the other side. The model cell locks well to this
monaural input, with a VS of near 100% for a broad range of inputs, though its "ring
rate is well below the nominal best rate for binaural input.

4. Conclusions

The model has parameter ranges that give behavior corresponding to the behavior
of real NL neurons. The dendrites aid in the ability of the cell to perform coincidence
detection, especially from sublinear addition and dendritic current sinks. The high-
voltage activation potassium channels are important for coincidence detection at high
frequencies. Coincidence detection is robust against the number of incoming synapses.
The model predicts that vector strength is very robust (at fast "ring rates), but is not as
sharply tuned as "ring rate as a function of phase di!erence. The model locks well to
monaural stimulus.
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