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1. Introduction

Recent neurophysiological experiments have shed new light onto how various
sound features are encoded and organized in the primary auditory cortex (AI) . One such
feature is the envelope of broadband acoustic spectra, or spectral profile, the most
important physical correlate of timbre (Plomp 1976). To determine how AI units
represent complex dynamic profiles, it is essential to measure their spectro-temporal
response field (STRF). This function is analogous to the receptive field of visual neurons
in that it reflects the strength and dynamics of the unit responses to tones at different
frequencies. A more traditional response measure of auditory units is the “response area”,
defined roughly as the range of tone frequencies and intensities that just elicit excitatory
or inhibitory responses. The response area is only useful as a qualitative predictor of a
unit’s responses to arbitrary broadband spectra; its measurements is also significantly
affected by a host of experimental difficulties and nonlinear factors that render estimates
of parameters such as bandwidth and asymmetry quantitatively inaccurate (Shamma
1993, Shamma et al. 1995a, Nelken et al. 1994).

To circumvent some of these problems, we have used new techniques to measure
the spectral and dynamic properties of response areas in AI (Schreiner and Calhoun 1995,
Shamma et al. 1995a). The stimuli and techniques—adapted from vision research (De
Valois 1990) and from psychoacoustic studies (Green 1986, Hillier 1991, Summers and
Leek 1994)—apply linear system theory to measure the response area of cortical units.
Specifically, they employ broadband spectra with sinusoidally modulated profiles against
the logarithmic frequency axis—or ripples—shown in Fig.1. By varying the ripple
density (or frequency), amplitude, and drift velocity, one can measure a transfer function
to such rippled spectra, and from it by an inverse Fourier transform obtain the STRF.

A fundamental assumption of these techniques (reviewed briefly below) is that the
responses to such broadband stimuli are substantially linear with respect to spectral
profiles, that is they satisfy the superposition principle. This principle means that if a
complex spectral profile is decomposed into a sum of several simple ripple spectra, then
the unit response to the complex profile must equal the sum of the responses to each of
these ripples. Superpostion has been validated using both stationary (Shamma et al.
1995a,b) and dynamic spectra that can be decomposed into any combination of
downward moving ripples (Kowalski et al. 1996a, b).



Natural spectra such as speech, music, and various natural sounds are composed of
both downward and upward moving ripples. Consequently, linearity (or superposition)
must be validated for both directions of moving ripples. Furthermore, if linearity holds,
we can derive unit STRFs from complete measurements of the transfer functions for
ripples moving in both directions, followed by a 2-dimensional inverse Fourier transform.
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Figure 1
Computing responses with STRF. Left:  The ripple spectral profile consists of 101 tones equally spaced along the
log. frequency axis, spanning 5 octaves (e.g., 0.25–8 kHz). The sinusoidally modulated envelope has a ripple
density or frequency (Ω) given in units of cycles/octave; its constant velocity ω is defined as the number of ripple
cycles traversing the lower edge of the spectrum per second (Hz). Middle: The response of a unit is deduced
from its STRF shown here against the tonotopic axis with white representing postive amplitudes and black
negative ones. Note the STRF is a function of time, and can be convolved with the input spectrogram to compute
the expected response on the Right.

When dealing with both the temporal and spectral aspects of the responses, an
important issue is the separability of these two dimensions, i.e., whether these response
properties can be measured independently of each other. Without separability, transfer
functions must be measured at all combinations of velocities and ripple densities, an
impractical proposition given the extended times needed to hold a unit. With separabiltiy,
it is sufficient instead to measure the temporal transfer function at one ripple density, and
the spectral transfer function at one velocity; the complete transfer function is then taken
as the product of these two one-dimensional transfer functions.

In previous investigations using downward moving ripples (Kowalski et al.
1996a,b), it was demonstrated that the temporal and spectral transfer functions are indeed
separable. This is because predictions of responses to various combinations of rippled
spectra could be made from transfer functions measured at the best ripple velocity and
ripple density only. Here, the notion of separability is extended to take into account both
directions of moving ripples. To validate it, we shall assume that the complete spectro-
temporal transfer function is quadrant separable, i.e., is the product of transfer functions
measured at one ripple velocity and density, in each direction. We then proceed to derive
the corresponding unit’s STRF, and to predict the responses to various combination of
complex dynamic spectra composed of ripples moving in both directions. Fair predictions
of responses to these spectra is taken as a validation of both the linearity and separability
of the system.



2. Methods

The data used here were collected from AI of 2 Ketamine/Xylazine anesthetized
domestic ferrets (Mustela putorius). Details of the surgery are as in (Shamma et al 1993).

Moving ripples can be used to measure the temporal and ripple transfer function of
cells, and hence derive their STRFs (Kowalski et al 1996a,b). The basic procedure is
summarized here for ripple transfer function measurements. Fig.2 illustrates the response
to moving ripples at a fixed ω = 8 Hz, and ripple frequency Ω  from –1.6 to +1.6
cycles/octave (Fig.2A), i.e. upwards and downwards moving ripples. The magnitude and
phase of the synchronized response at each Ω is derived and plotted as the magnitude and
phase of the ripple transfer function Tω Ω( )(= T j

ω
ωΩ Φ Ω( ) ( )e ) (Fig.2B). The temporal

transfer function TΩ(ω) are measured similarly, with the result shown in Fig 2C.
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Figure 2
Transfer function measurements using moving ripples. A: Raster responses to a ripple moving at ω = 8 Hz with

ripple frequencies Ω = –1.6 to 1.6 cycle/octave (or, equivalently, ripples moving at ω = 8 Hz with ripple

frequencies Ω = 0 to 1.6 cycle/octave, and ripples moving at ω = –8 Hz with ripple frequencies Ω = 0.2 to 1.6

cycle/octave). B, C: The amplitude and phase of the fitted responses as a function of Ω and ω. A straight line fit
of the phase data points is also shown.

The transfer functions Tω Ω( )  and TΩ ω( )  are valid at one ripple frequency or
velocity, as indicated by the subscripts ω and Ω. In principle, one must measure the two
dimensional transfer function at all Ω and ω within each quadrant and compute a two
dimensional STRF from the inverse transform. However, if we assume that, apart from a
scale change, these functions remain unchanged over the most responsive range of Ω and
ω , the temporal and ripple transfer functions can be treated as separable from each other,
and measured at one Ω and ω , respectively.



There is a stronger (and more strict) notion of separability, independent of direction,
i.e., applying uniformly across all quadrants (McLean and Palmer 1994, Watson and
Ahumada 1985). This full separability occurs if the responses to downward and upward-
moving ripples are identical, implying a symmetric transfer function about the ω axis,
and a symmetric STRF. These issues have already been the subject of theoretical and
experimental studies in visual cortex, where quadrant-separability and a significant
measure of linearity have been demonstrated (McLean and Palmer 1994).

For a fully separable unit, the transfer function is a direct product
T T T T Tj jΩ Ω Ω Φ Ω Φ, e eω ω ω ω( ) = ( ) ( ) = ( ) ( )( ) ( ) . For a unit that is only quadrant separable,
the transfer function is a sum of direct products for the right quadrants on the Ω−ω plane:
T T TΩ Ω Ω, , , .ω ω ω( ) = ( ) ( ) ± > >± ± 0 0   Fig.3 illustrates the full STRF obtained from the
inverse Fourier transform of the compound transfer function T Ω,ω( ) for three units.
Apparent structure in the plot far away from the main body of the STRF are simply due
to aliasing and noise effects. The STRF example in the middle panel is asymmetric with
strong inhibition from the high frequency side. The unit in the third panel is almost fully
separable. as can be seen from the spectral symmetry of its STRF at all times.
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Figure 3
Examples of STRFs. Left: Response field computed from the inverse fourier transform of the full two-
dimensional transfer function of the unit in Figs.2 and 3. Middle and Right:  Two more examples of a highly
asymmetric STRF (middle) and a relatively broad bandwidth and slow symmetric STRF (right)

A periodic stimulus composed of a linear sum of ripples of different ripple
frequencies and velocities is predicted to give a response which is a linear sum of
sinusoids with amplitudes and phases weighted by the transfer fucntion
T T jΩ Ω Φ Ω, , e ,ω ω ω( ) = ( ) ( ) . Applying such superposition to predict responses to complex
stimuli is only meaningful if the system is essentially linear; so accurate predictions are a
verification of linearity. Furthermore, the transfer function is calculated under the
assumption of (quadrant) separability, so accurate predictions are also a verification of
separability.

Predictions can equivalently be made by a simple convolution of the STRF with the
spectrogram of the stimulus as illustrated in Fig.4. In each case, the predicted waveform
is plotted together with the response for visual comparison. The scale of the predicted
waveform is arbitrary; however, its (zero) baseline is set at the rate of firing of the
stationary stimulus at ω=0 in Fig.2C. Three more examples of predictions with multiple
ripples are shown in Fig.4B.
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Figure 4
Predictions of the responses to complex dynamic spectra using the STRF. (A) The predicted response is
computed by a convolution (along the time dimension) of the STRF with the spectrogram. The stimulus shown is
composed of two ripples (0.4 c/o at 12 and –4 Hz). Same cell as in Fig.2. The predicted waveform (dashed line)
is juxtaposed against the actual response (solid line) over one period of the stimulus. (B) Three additional
examples of predictions using: (right and left panels) three ripples (0.4 c/o at 12,–4 Hz, and 0.2 c/o at –8 Hz) in 2
units; (middle panel) two ripples (0.6 c/o at –8 Hz, and 0.2 c/o at 24 Hz) for the same unit as the left panel.

3. Results

Recordings so far have been made from 70 units in 2 animals. Many different types
of STRFs have been observed as illustrated in Fig.3. They include symmetric (left and
right panels) and asymmetric (middle panel), slow (right panel) and fast dynamics (left
panel). We have not obtained yet an large enough sample of units to describe the
statistical distribution of these properties in AI.

AI responses to spectra composed of a few ripples can be reasonably well predicted
from responses to single ripples by applying the superposition principle. This is shown
earlier in Fig.4 using 2 and 3 ripple stimuli. Fig.5 illustrates additional examples on
dynamic spectra composed of up to 16 moving ripples with different velocities, phases,
and ripple frequencies. In all cases, predicted responses assuming linearity and quadrant-
separability, compare well with those measured experimentally.

4. Discussion

Linearity and separability are validated by the successful prediction of responses
using the superposition principle and spectro-temporal transfer functions measured at one



velocity and ripple density. These properties have allowed us to derive STRFs for all
units recorded, illustrating their diverse and complex structure.

−20

0

20

Prediction

Response – baseline

0 100 200 300 400 500
time (ms)

0 200 400 600 8001000

Stimulus Spectrogram

 0.5

 1

 2

 4

 8

0.25

Spectro-Temporal RF

 0.5

 1

 2

 4

 8

0 200 400

fr
eq

ue
nc

y 
(k

H
z)

 0.25

21
9/

26
c

* =

0 100 200 300 400 500

−20

0

20
Response – baseline
Prediction

time (ms)
0 200 400 600 8001000 0 200 400

time (ms)

 0.5

 1

 2

 4

 8

0.25

 0.5

 1

 2

 4

 8

time (ms)

fr
eq

ue
nc

y 
(k

H
z)

 0.25

21
9/

26
c

* =

21
9/

26
c0

8.
a1

(3
)

21
9/

26
c0

8.
a1

(2
)

Figure 5
Predicting the final response to large combinations of moving ripples in the same unit. A: Spectrograms of the
stimulus, along with the ripple content. B: STRF of the cell (computed as described in Fig.5). All other details of
the figure are as in Fig.4.

Linearity and separability simplify enormously the measurement and prediction of
responses to complex dynamic spectra and reflect certain fundamental operational
principles of the auditory, and perhaps other sensory systems. The persistence of response
linearity to broadband stimuli suggest that the operative nonlinearities are those that do
not destroy the basic linear character of the responses, such as threshold, half-wave
rectification, and saturation in the early auditory stages. These limit significantly the
dynamic range of the linear responses to ripple stimuli, but do not severely distort the
overall gross shape of the responses (Shamma et al, 1995a; Kowalski et al, 1996a). It
should be emphasized here, however, that all ripple stimuli are broadband in nature, and
hence response linearity cannot be confirmed for narrowband stimuli such as stationary,
AM, or FM tones.

At first glance, the finding that separability holds for complex dynamic spectra is
surprising, given the intertwining of temporal and spectral processing along the auditory
pathway up to the cortex. One possible implication of this finding is that cortical
temporal and spectral processing occur as two essentially separate sequential stages. In
such a model, the first stage would have a purely spectral transfer function, followed by
temporal filtering in the second stage. The overall spectro-temporal transfer function



would then be the product of the two transfer functions. This model is plausible if one
assumes that response area shape (or the spectral cross-section of the STRF), e.g.,
asymmetry and bandwidth, is due to the organization of the thalamic (MGB) input
projections to the AI or earlier stages. The slow temporal responses (rates mostly under
12 Hz) are likely to be related to the cortico-thalamic feedback loops. It is also likely that
visual and other sensory pathways share the linearity and separability since none of the
above physiological features are unique to AI.
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