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Fully complex magnetoencephalography
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Abstract

Complex numbers appear naturally in biology whenever a system can be analyzed in the frequency domain, such as physiological data
from magnetoencephalography (MEG). For example, the MEG steady state response to a modulated auditory stimulus generates a complex
magnetic field for each MEG channel, equal to the Fourier transform at the stimulus modulation frequency. The complex nature of these data
sets, often not taken advantage of, is fully exploited here with new methods. Whole-head, complex magnetic data can be used to estimate
complex neural current sources, and standard methods of source estimation naturally generalize for complex sources. We show that a general
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complex neural vector source is described by its location, magnitude, and direction, but also by a phase and by an additional pe
component. We give natural interpretations of all the parameters for the complex equivalent-current dipole by linking them to the u
neurophysiology. We demonstrate complex magnetic fields, and their equivalent fully complex current sources, with both simul
experimental data.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Physiological questions of the human brain that demand
temporal resolution commensurate with neuronal activity
require electromagnetic techniques, particularly elec-
troencephalography (EEG) (see, e.g.Gevins et al., 1995) or
magnetoencephalography (MEG) (see, e.g.Hari and Lounas-
maa, 1989; Lounasmaa et al., 1996). A compelling advantage
of MEG is that it allows simultaneous spatial localization
(“imaging”) and high temporal resolution physiology of
the neural sources (Roberts et al., 2000; Krumbholz et al.,
2003). Neural sources’ ionic currents generate measurable
magnetic fields according to the classical physical equations
of electrodynamics. The small magnetic signals (hundreds
of femtoteslas) propagate outward transparently and can
be measured with superconducting quantum interference
devices (SQUIDs) (Hamalainen et al., 1993). The types of
MEG responses whose source location and stimulus-related
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properties are commonly interpreted include evoked fiel
specific latencies, e.g. the auditory N100 response (Hari et
al., 2000) or evoked high frequency responses (Hashimoto
et al., 1996); evoked or induced oscillatory responses (Hari
and Salmelin, 1997; Lin et al., 2004); and steady sta
responses (SSR) to ongoing stimuli (Ross et al., 2000). SSR
responses are a rich source of neurophysiological dat
have received comparatively less attention.

Complex numbers arise naturally whenever any data,
as that from MEG, are analyzed with the Fourier transfo
The Fourier transform takes a real valued time-varying si
and represents the same signal by a complex valued fun
of frequency. The original signal, at a one time instant, is
resented by a single real number, but the Fourier trans
for a particular frequency, is represented by two real num
e.g. a magnitude and a phase. The magnitude is a non-ne
number, and the phase is an abstract angle that varies fro
360◦ (equivalently, 2� radians, or 1 cycle). Just as real nu
bers can be usefully generalized to complex numbers
valued fields can be generalized to complex valued fi
and in particular, real valued vector fields can be genera
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to complex valued vector fields. In the case of MEG signals,
the Fourier transform of the time-varying magnetic field gen-
erates a complex valued magnetic field, for every spatial point
(channel) the field is measured. Related transforms, such as
wavelet and other short time Fourier transforms, also result
in complex valued magnetic fields.

The utility of these complex valued responses can espe-
cially be seen in experiments and analysis that use SSR
paradigms. In such paradigms, a stationary stimulus with
periodic structure generates a neural response with the same
periodic structure. Example auditory stimuli include: narrow-
or broad-band carriers with periodically modulated ampli-
tude, and periodic trains of clicks or tone-pips. In each case,
there is a corresponding neural response with the same peri-
odicity. The MEG SSR for sinusoidally amplitude-modulated
tones has been well documented (Ross et al., 2000; Ross et
al., 2002; Schoonhoven et al., 2003) and the SSR in EEG has
a long and rich history (Galambos et al., 1981). The strongest
frequency response is at the stimulus modulation frequency
(harmonic responses are substantially weaker and so are not
treated here directly, though their generalizations are straight-
forward). The response at the modulation frequency gives a
complex magnetic field: a magnetic field with amplitude as
well as phase as information.

The amplitude simply gives the strength of the response
at the modulation frequency. The phase corresponds to the
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(Lutkenhoner, 1992) and EEG (Lehmann and Michel, 1989,
1990; Michel et al., 1992).

Several approaches are typically used in MEG analysis
to determine the neural current sources of a measured mag-
netic field (Baillet et al., 2001). One of the simplest is the
equivalent-current dipole approximation, which uses a least-
squares minimization algorithm, plus simplifications of the
physics due toSarvas (1987). The result of this method is
a set of equivalent-current source dipoles. When applied to
real magnetic field configurations, the resulting equivalent-
current dipoles are real. A real equivalent-current dipole is
defined by its location and a real dipole vectorq. Three
real numbers are needed to fully describe a real vector: the
three Cartesian components (qx, qy, qz), or equivalently, a
two-dimensional orientation (θ,φ) and an intensity (q).

A complex magnetic field configuration leads to complex
equivalent-current dipoles, each of which, in addition to its
location, is described by three complex numbers, or equiva-
lently six real numbers. These can be seen as three complex
components, or equivalently the six numbers given by the
real and imaginary parts of the three Cartesian components
(Re{qx}, Re{qy}, Re{qz}, Im{qx}, Im{qy}, Im{qz}). One
may attempt to describe a complex dipole vector solely by
its orientation (two real numbers) and a complex general-
ization of the intensity (two real numbers, e.g. a magnitude
and phase), but this does not cover all six degrees of free-
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ime-delay of the response in units of the modulation
uency, when the phase is measured in cycles. Thus, a 0
elay for a 10 Hz modulation frequency gives a phas
.1 cycles (36◦, or 0.2� radians). The periodicity proper
f phase arises from the inability to distinguish time sh

onger than one cycle from the equivalent time shifts sho
han one cycle.

Beyond this simple interpretation, however, the com
ature of these data is not often exploited (some statis

echniques used in EEG do embrace the complex natu
he response, e.g.Picton et al., 2001, 2003). A simple exam
le is the spatial distribution of phase over the whole-h
ulti-channel MEG and EEG data is known for difficu

n its visualizability due to high dimensionality: many ch
els, many experimental conditions, and many repetit
ach a function of time. A greatly simplified picture res

rom replacing, for each channel, the entire dimensio
ime with the single value of the phase (of the freque
f interest). This representation has been used for
ata analysis (Herdman et al., 2002). Examples of MEG
hole-head complex fields in response to auditory sti
re shown inFig. 1. In each case, the complex whole-h
SR can be analyzed visually at once, whereas the
arable whole-head response in the time domain (a
aveform displayed over every sensor) is difficult to abs
isually.

The utility of the complex nature of the data goes bey
he field distribution. A complex magnetic field is gen
ted by its complex neural current source, a concept tha
nly been partially exploited in analysis of data from M
om. Nevertheless, a generic, complex, equivalent-cu
ipole can be described naturally and physiologically, in s
way that four of the six degrees of freedom do corresp

o orientation and a complex intensity, and the two other
escribed below.

We discuss the roles and properties of the complex m
etic fields measured by MEG and SSR, which natu

ead to a visualization tool, the “whole-head complex SS
he inverse problem is solved for a complex magnetic
istribution by determining the complex equivalent-cur
ipoles. The properties of complex dipoles are descr

ncluding all six degrees of freedom. Simulations are sho
nd the method’s utility is demonstrated with an examp
transfer function computation and an analysis of the

bility of neural sources as a function of stimulus parame
The general methods outlined here are not special to M

nly small modifications are necessary to apply sever
hese methods to EEG and related techniques.

. Methods

.1. Complex magnetic fields from MEG and SSR
nalysis

A whole-head map of complex SSR responses is obta
y Fourier transforming each channel’s response and fo

ng on the stimulus modulation frequency. For a stim
ith modulation frequencyfmod and response measurem
uration T, and an integer multiple of the cycle per
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Fig. 1. Whole-head complex MEG. The whole-head complex SSR from one subject in an auditory MEG experiment. The 157 channels are shown on the
surface of a flattened head. Each arrow represents the complex field value at a sensor. (a) The whole-head SSR for a 2-octave broadband stimulus, amplitude
modulated at 32 Hz. Each hemisphere is dominated by a classic pattern of dipole-like generated activity, but in this case, the field is complex. (Inset)The same
whole-head complex SSR but without the contour map, making the dipolar patterns much harder to discern. (b–e) Responses from the same subject and carrier
for four modulation frequencies: 16 Hz, 32 Hz (also shown twice in a), 48 Hz, and 64 Hz. In every case, both hemispheres are dominated by a classic pattern
of dual-dipole-like generated activity, with variation in location, size, and strength across stimuli. Phasor arrows in all four examples are all scaled to the same
(arbitrary) strength. Contour map colors are scaled individually to emphasize their patterns. Subject R0292.

(T = Ncyc/fmod), the SSR complex response is componentNcyc
of the discrete Fourier transform of the response time wave-
form (the DC response is component zero). We assume that
the MEG sensors are simple (not vector) magnetometers or
gradiometers, giving one sampled time-waveform per chan-
nel.

One whole-head response pattern is shown inFig. 1a. Each
sensor’s complex response is depicted by a “phasor”, an arrow
whose magnitude is proportional to the response magnitude
and whose direction corresponds to the phase. The phase
convention used here is the standard Cartesian convention: 0◦
phasors point to the right, and increasing phase corresponds to
counterclockwise rotation.Fig. 1b–e shows the whole-head
SSR for four separate modulation frequencies.

The whole-head complex SSR can optionally add mag-
netic field contours by projecting the complex values onto
a line in the complex plane of constant phase: the complex
numbers are turned into real numbers by rotating them by
the line’s phase and then taking the real part. This visual aid
can greatly increase a viewer’s ability to see natural struc-
tures, such as dipolar configurations. To underscore this, the
inset ofFig. 1a shows the whole-head complex SSR with-
out the magnetic field contours, and the dipolar patterns are
substantially more difficult to see (compared to the other-
wise identical graphic inFig. 1c). The line’s phase can be
chosen in several ways, but one method is to use the phase
o lf the

modulation cycle. This results in strong peaks (or troughs)
of the projection whenever the phases strongly coincide (or
anti-coincide) with that phase giving the most typical strong
response. Only half the modulation cycle is used since the
variance of a periodic signal has two peaks over an entire
cycle.

There is an unavoidable ambiguity that a line with any
particular phase is the same as that with the same phase plus
180◦, which is equivalent to swapping positive and negative
values of the projected field values. For auditory responses,
this ambiguity can be often fixed by choosing a particular con-
vention, e.g. that the positive/negative projected distribution
has the same overlay of that of the source/sink distribution of
a classic M100 response.

Another ambiguity that has been fixed is how thephasor
directions correspond to phase. This ambiguity is important
because of the unavoidable feature in this visual representa-
tion that directions on the printed page correspond to anatom-
ical directions (i.e. the sensor layout) and, independently, to
phase angles. The Cartesian coordinates used for the phasors
in Fig. 1 are standard but arbitrary, and they may imply a
vector flow where none exists. For instance inFig. 1a, there
appears to be a medial and posterior flow from the right frontal
quadrant. This is entirely an artifact, and if the phases were
plotted with the standard compass convention (0◦ upward
and increasing phase rotates clockwise), the visual impres-
s
f the maximal spatial variance as measured over ha
 ion would instead be a divergence.
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2.2. The complex equivalent-current dipole

2.2.1. The complex inverse problem
A commonly used technique that determines neural cur-

rent sources from their generated magnetic field data can be
straightforwardly generalized to complex fields. The result-
ing neural current source is a complex equivalent-current
dipole (Lutkenhoner, 1992).

For example, the forward problem (the magnetic field due
to a current dipole source) uses the complex version of the
spherical head model (Sarvas, 1987; Mosher et al., 1999):
outside a spherical conductor, thecomplex magnetic fieldb
at a sensor with locationr is generated by acomplex cur-
rent dipoleq at locationrq. The complex magnetic field due
to multiple current dipoles is the linear sum of the multi-
ple contributions. Since the complex magnetic field is linear
with respect to the complex dipole momentq and non-linear
with respect to the locationrq, we can generalize the lin-
ear model of the first stage of the inverse problem (Baillet
et al., 2001) to complex quantities. For measurements made
at N sensors byp dipoles, we can obtainM = AST, where
M is a columnar array of complex magnetic field measure-
ments,ST is a columnar array of complex dipole strengths,
andA, the lead field matrix, is implicitly defined by the linear
relationship betweenb andq, and is always real. In the pres-
ence of measurement errors, the model may be represented as
M res
(
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Fig. 2. Ellipse swept by a complex vector. The ellipse swept out by a complex
vector as phase (or time) increases throughout an entire cycle. At the start
of the cycle, the vector is equal tovRe, changing direction and length until
it is equal tovIm after one-quarter cycle, and then continuing around the
ellipse. When the phase has advancedθMax, the length of the vector is at its
maximum, corresponding to the semimajor axisvMax. When the phase has
advanced toθMin = θMax + 90◦, the length of the vector is at its minimum,
corresponding to the semiminor axisvMin . Note that the portrayed angles
arephase angles, not spatial angles.

Its magnitude is given by the sum of its component magni-
tudes,|v|2 = |vRe|2 + |vIm|2. A real vector has three degrees
of freedom: a spatial orientation (two degrees of freedom)
and a length (one degree of freedom), so a complex vector
has six degrees of freedom.

From the complex vector, it is convenient to define a phase-
parameterized real vector

v(θ) = vRecos(θ) + vImsin(θ) (3)

which defines the family of vectors swept out over the course
of one cycle. The swept curve is an ellipse; an example is
illustrated inFig. 2.

At the start of the cycle, the vector is given entirely by its
real component vectorvRe. As θ moves through the cycle,
the vector mixesvRe andvIm, until by θ = 90◦ the vector is
given byvIm. Note that, as shown inFig. 2, the phaseθ does
not correspond to a spatial angle, sincevRe andvIm are sep-
arated by 90◦ of phase but are not in general perpendicular.
An ellipse can also be characterized by its semimajor and
semiminor axes,vMax andvMin, which are the swept vectors
whenv(θ) reaches its maximum and minimum magnitudes,
i.e. at the phasesθMax andθMin. It can be shown that

θMax = 1

2
(arg[−2vRe · vIm − j(|vRe|2 − |vIm|2)] + π) (4)

andθ = θ + 90◦. In the special case of the difference
b -
s i-
= AST + ε, for ε a complex error matrix. The least-squa
LS) method defines a cost function to minimize,

LS = ∥∥M − AST
∥∥2

F (1)

he Frobenius norm of the complex error matrix. For any
f sensor locations and complex dipole locations, the re

ng array of complex dipole strengths,ST, is the one tha
inimizesJLS, i.e. ST = A+M, for A+ the pseudoinverse
. Lastly, the dipole location is obtained by minimizingJLS.
inimization methods range from grid search and down

implex searches to global optimization schemes (Uutela e
l., 1998).

It should be emphasized that the key feature of this me
s the generalization of both the magnetic field and the so
ectors to complex quantities (Lutkenhoner, 1992). Aside
rom this essential difference, the algorithm is unchan
rom the real version. Related algorithms that estimate a
or neural source (or source distribution) can be genera
nalogously.

.2.2. The complex vectors
Like its real counterpart, the complex equivalent-cur

ipole is described by a location and a vector, but in this c
he vector is complex, with twice the degrees of freedom
eal vector. Any complex vector can be decomposed in
eal and imaginary components, each a vector itself,

= vRe + jvIm. (2)
Min Max
etweenθMax andθMin, a phase advance of 90◦ does corre
pond to a spatial angle of 90◦ since semimajor and semim
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nor axes are always spatially perpendicular. Note also that a
particular orientation with phaseθMax is physically indistin-
guishable from the opposite orientation andθMax + 180◦. This
ambiguity can be fixed by always requiring 0≤ θMax < 180◦,
but other resolutions may be more appropriate, e.g. unwrap-
ping θMax smoothly for small stimulus parameter changes,
which is the method used below.

Another useful parameter of the complex vector is its
sharpnessη, where,

η = |vMin |
|vMax| (5)

and 0≤ η ≤1. Whenη ≈ 0, the ellipse is highly elongated
(very sharp, or eccentric) along the axis parallel tovMax. Con-
versely, whenη = 1, the ellipse degenerates into a circle. The
sharpnessη is related to the eccentricity of the ellipse,e, by
e2 = 1− η2.

2.2.3. Single orientation approximation
For complex dipole vectors whose swept ellipse is very

sharp, the complex dipole vector simplifies. In the limitη =0,
the path simplifies to a straight line segment, whose ends are
reached at the phasesθMax andθMax + 180◦. This dipole can
be described as having one orientation (the direction ofvMax),
one strength (|vMax|), and one phase (θMax). The degree to
which this is a good approximation is quantified by the sharp-
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particular, there may be several distinct locations of neu-
ral sources, each with its own strength and orientation, but
only the averaged quantities are expressed by the equivalent-
current dipole.

In cases where the complex equivalent-current dipole vec-
tor’s swept-out trajectory is approximately line-like,η ≈0,
the physiological interpretation is closely related to that
of a real equivalent-current dipole but with one additional
parameter, the phase. A complex dipole with high eccentric-
ity oscillates at a single orientation; its phase corresponds
to the delay, measured in cycles, of the oscillations maxi-
mum. Indeed, an oscillating compact neural source can be
described in entirety by its orientation, the phase at which
the current is maximum, and the value of the maximum
current.

A complex dipole with non-zeroη describes an effec-
tive source comprising an extended or distributed neural
source(s): in this case more than one orientation, and its new
corresponding strength, will be seen. For instance, several
distinct neural sources in separate but nearby areas, with
different strengths, orientations, and phases, will combine
into a single complex equivalent-current dipole. The loca-
tion of the single complex equivalent-current dipole will be
an average of the locations of the distinct neural sources.
The different strengths, orientations, and phases will average
into two effective strengths and orientations and an overall
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essη. This is a simpler generalization of a real vector th
eneral complex vector, adding only one degree of free
the phase) to the three degrees of freedom of a real ve

When η �= 0, we can still characterize a fully compl
ipole vector by these same four degrees of freedom

wo extra degrees of freedom are needed: the sharpnη,
nd a second orientation, given by the azimuthal angle o
irection ofvMin relative to the direction ofvMax. These two
xtra degrees of freedom bring the total to six, e.g. the
egrees of freedom of the real vector components plus
ore from the imaginary components. In the special ca

he Sarvas Model, the direction of the secondary orient
s constrained, since it must be orthogonal to bothvMax and
he radial direction, and the only freedom left is whether
ector cross-productvMax × vMin (which must be perpen
icular to both and therefore radial), is radially outward

nward.

.3. The physiology of complex equivalent-current
ipoles

Recall that a real equivalent-current dipole is aneffective
averaged) neural source: all the neural currents contrib
o the measured magnetic field can be effectively replace
ne idealized source (Lutkenhoner, 2003). If the true source i
ompact, then the equivalent-current dipole is a good ap
mation of the location, strength, and orientation of the cur
ource. Alternatively, if the true source is extended, the
quivalent-current dipole represents the averaged loc
trength, and orientation of the extended neural sourc
hase (vMax, vMin andθMax). Or equivalently but more spec
cally, into a primary orientation and strength (vMax), its phase
θMax), the relative intensity in the direction of a second
rientation (η), and the secondary orientation itself (descri
y a single azimuthal angle since it must also be perpe
lar tovMax).

Thus, sharpness can serve as an experimental meas
he extended or distributed nature of a neural source. A
lex dipole of highη is inconsistent with a single, compa
eural source, and so indicates an extended source or
le sources.η near zero is consistent with a single, comp
eural source and so is less likely to be generated by mu
ources.

.4. Evaluation of neural source estimates

Common evaluation techniques that measure how we
tted dataMfit match the measured dataMexpalso generaliz
o complex data. The correlation coefficient becomes c
lex and is given by,

= N
∑N

n=1M∗
fit,nMexp,n − ∑N

n=1M∗
fit,n

∑N
n=1Mexp,n√√√√√√√

(∑N
n=1|Mfit,n|2 −

∣∣∣∑N
n=1Mfit,n

∣∣∣2
)

×
(

N
∑N

n=1|Mexp,n|2 −
∣∣∣∑N

n=1Mexp,n

∣∣∣2
)

, (6)

here * is the complex conjugate operator. The phaser
xpresses how much phase rotation should be applied
tted data to get a purely realr such that 0 <r < 1. The mag
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nitude|r| is what the value ofr would be if the above rotation
were applied, and has the same interpretation as for realr
restricted to positive values. As in the real case, a perfect
fit corresponds tor = 1, a fit that is otherwise perfect, except
that the orientation is exactly opposite, corresponds tor =−1,
and less-then perfect fits give|r| < 1. The complex case, how-
ever, allows additional phase offsets between the fitted and
measured data.

The goodness of fit, being a power ratio, remains real and
is given by

GOF= 1 −
∑N

n=1|Mfit,n − Mexp,n|2∑N
n=1|Mexp,n|2

(7)

where a GOF of 1 is a perfect fit. The main caveat for
the GOF of complex distributions is that typical values
are often much lower than for comparable real distribu-
tions. This is because complex distributions have twice as
many degrees of freedom as real distributions (for the same
number of channels), and the GOF distribution depends
the number of degrees of freedom (c.f. the statisticalF
distribution).

2.5. Auditory MEG SSR experimental methods

Sinusoidally amplitude-modulated sounds of 1 s duration
w stim-
u Hz)
a ctave
p re-
s vals
f 0 dB
S sub-
j ts is
a and
n ere
a ew
b the
p
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r eter
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Table 1
Complex dipoles. The dipole (left and right) and evaluation (whole-head)
parameters, for dipole fits to the data illustrated inFig. 1

Parameter 16 Hz 32 Hz 48 Hz 64 Hz

Amplitude|vMax|
Left 28 dB 32 dB 25 dB 15 dB
Right 27 dB 33 dB 25 dB 15 dB

PhaseθMax

Left 107◦ 30◦ −45◦ −107◦
Right 116◦ 25◦ −46◦ −109◦

Sharpnessη
Left 0.26 0.27 0.07 0.21
Right 0.17 0.41 0.11 0.03

Location
Left

x 45 mm 35 mm 36 mm 19 mm
y 17 mm 7 mm 14 mm 12 mm
z −4 mm 17 mm 21 mm 28 mm

Right
x −52 mm −34 mm −46 mm −39 mm
y 3 mm 8 mm 19 mm 12 mm
z 13 mm −8 mm 13 mm 18 mm

Orientation
Left 31◦ 50◦ 140◦ 123◦

300◦ 258◦ 71◦ 357◦

Right 14◦ 29◦ 161◦ 143◦
6◦ 233◦ 119◦ 215◦

GOF 0.51 0.70 0.52 0.45

∠r 7◦ −9◦ 16◦ −3◦

|r| 0.81 0.86 0.89 0.84

The orientation parametersθ andϕ refer to elevation (downward from the
z-axis) and azimuth. The secondary orientation is omitted since the Sarvas
model requires it to be radial.

Calculations were performed in MATLAB (MathWorks,
Natick, Massachusetts), which treats complex numbers trans-
parently.

2.6. Models and simulations

The complex field configuration due to a pair of dipoles,
found from the complex Sarvas approximation to the complex
data set shown inFig. 1a, is shown inFig. 3a. The parameters
of that dipole pair, and of the dipole pairs analogously derived
from the complex data sets shown inFig. 1b–e, are given in
Table 1.

The complex magnetic field shown inFig. 3a is faithful to
the most prominent features from in data shown inFig. 1a, all
peaks (regions of largest phasors) are in the same locations,
with the same relative strengths, covering the same areas,
and with phases in the same directions. The phases are not
constant within each hemisphere, especially so in the right
hemisphere. It will be seen below that this is due to non-zero
sharpness.

Simulated complex magnetic fields were generated from
pairs of ideal complex dipole point sources in left and right
ere presented to three subjects (two male). The 12
li had four modulation frequencies (16, 32, 48 and 64
nd three carriers (pure tone; 1/3 octave pink noise; 2-o
ink noise; all centered at 400 Hz). All 12 stimuli were p
ented 100 times in random order with interstimulus inter
rom 400 to 550 ms. The loudness was approximately 7
PL. The responses to 2-octave carrier stimuli for one

ect are depicted here in detail, but all data for all subjec
nalyzed below. The subjects reported normal hearing
o history of neurological disorder. The procedures w
pproved by the University of Maryland institutional revi
oard and written informed consent was obtained from
articipants.

Recordings were performed in a magnetically shie
oom, using a 160-channel, whole-head axial gradiom
ystem (KIT, Kanazawa, Japan). The magnetic signals
andpassed between 1 and 200 Hz, notch filtered at 6
nd sampled at 1000 Hz. All 157 neural channels w
enoised with a Block-LMS adaptive filter using the th
eference channels.

The measured responses from 50 to 1050 ms post-stim
ere concatenated, giving 12 total responses (T = 100 s) for
ach channel. The discrete Fourier transform was appli

he concatenated data. The whole-head SSR is the mag
nd phase at the modulation frequency for each channe

Pairs of dipoles sources were estimated using the
lex Sarvas approximation described above and a mod
implex search (Uutela et al., 1998). Five of the thirty-six fre
uency× bandwidth× subject searches did not lead to t
eparated dipoles and were discarded.
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Fig. 3. Model fit and simulations. The whole-head complex SSR from model-fit and simulated auditory MEG experiments. The complex magnetic field is
generated by a pair of complex point dipole sources. (a) The complex magnetic field generated by the pair of complex point dipole sources fit to the data
illustrated inFig. 1a using the complex Sarvas model. (b–e) The location, orientation, and intensity of every simulated dipole is set equal to those of the pair
of dipoles used in (a), but the phase, sharpness and secondary orientation have been idealized: the phase is constant for both dipoles and across all simulations
and the left dipole has sharpnessη = 0 across all simulations. (b) The right hemisphere dipole hasη = 0 as well. Each hemisphere is dominated by a classic
pattern of dipole-like generated activity, and, in this case, the phase of the complex field is constant (mod 180◦) everywhere. (c) The right hemisphere dipole
gains a secondary orientation contribution with relative strengthη = 0.25. The magnetic field in the right hemisphere is no longer constant phase, but has phase
shifts of up to 90◦ for channels further from magnetic dipole peaks. The magnetic field in the left hemisphere is largely unaffected. (d) The right hemisphere
dipole hasη = 0.5. Over the right hemisphere, the phase shift for the medial channels is now substantial, and even some left hemisphere channels are affected in
phase. There is a visual impression of phase flow. (e) The right hemisphere dipole hasη = 1. Over the right hemisphere, channels with phase shifts of 90◦ can
dominate over the original phase. The effect of on the medial and posterior left hemisphere is substantial, and the visual impression of phase flow is striking.

auditory cortex. The resulting complex fields are shown in
Fig. 3b–e. To ease comparison with the experimental data
shown inFig. 1a and the dipole fit shown inFig. 3a, the
location, orientation, and intensity of every simulated dipole
is set equal those of the pair of dipoles used inFig. 3a, but
the phase, sharpness and secondary orientation have been
idealized: the phase is constant for both dipoles and across
all simulations; the left dipole has sharpnessη = 0 across all
simulations; the right dipole has sharpness with the values
(0.0, 0.25, 0.50, 1.0) with secondary orientation in the same
direction.

The simulation withη = 0 in both hemispheres (Fig. 3b)
has constant phase (mod 180◦) for all sensors. This is the
single orientation approximation. It has a very simple phase
structure, but it fares poorly in the right hemisphere at approx-
imating the data inFig. 1a. The simulations with intermediate
right hemisphere sharpness (Fig. 3b–c) show that slowly
varying phase is generated only by a fully complex dipole
(note that right hemisphere dipole inFig. 3a hasη = 0.41).
The simulation withη = 1 in the right hemisphere has no pre-
ferred orientation, and the phase distribution in the magnetic
field shows phases of all angles. Note that the non-zeroη

cases show that phase structure of mild to high complexity is
easy to generate even in the idealized case of zero noise.

3. Results

3.1. Transfer function example

As an example of the complex equivalent-current dipole
analysis method, we calculate a set of transfer functions:
the response strength and phase of the complex equivalent-
current dipole, as a function of the auditory stimulus modula-
tion frequency. The transfer functions are calculated and com-
pared for three carriers of different bandwidths. The auditory
whole-head SSR is measured for the four stimulus modula-
tion frequencies, as shown for inFig. 1b–e, and the response
is characterized by the single, complex, equivalent-current
dipole in each hemisphere (parameters summarized inTable 1
for one subject and one bandwidth). The response strength is
measured by the dipole’s|vMax|, and its phase by the dipole’s
phaseθmax. The sharpness is ignored for this analysis. Sepa-
rate transfer functions are calculated for each hemisphere.
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Fig. 4. Transfer functions. Transfer functions derived from equivalent-current dipoles fit to each hemisphere averaged over all subjects. (a) Amplitude in dB as
a function of stimulus frequency for each carrier bandwidth. Mean amplitude over hemispheres (solid lines); Right-minus-Left amplitude difference (dashed
lines). (b) Phase in degrees as a function of stimulus frequency for each carrier bandwidth (using circular mean). Mean phase over hemispheres (solidlines);
Right-minus-Left phase difference (dashed lines).

The transfer functions, averaged over all subjects and both
hemispheres, are illustrated inFig. 4, with separate plots
for amplitude and phase. Phases are unwrapped (from their
180◦ ambiguity) to be downwardly monotonic. Plotted sepa-
rately are the averages over all subjects of the corresponding
Right-minus-Left responses (dashed lines). The hemispheric
differences in amplitude are small relative to their means.
The hemispheric differences in phase are more noticeable;
phase differences between the hemispheres imply a differ-
ential time lag in their processing (e.g. 45◦ at 32 Hz gives
4 ms difference). Note that the stimulus frequencies chosen
for this example, by omitting 40 Hz, miss much of the inter-
esting behavior known to occur at that frequency (Ross et al.,
2000, 2005).

In short, the complex dipole captures both the strength and
the phase of a response in an unambiguous manner, without
the need for ad-hoc methods otherwise used determine a sin-
gle dipole origin from time-varying signal.

Three subjects are not sufficient to draw conclusions (or
calculate trustworthy confidence intervals) regarding any of
the observations above, but it appears that bandwidth may
not be an important parameter in the transfer functions for
frequencies above 16 Hz.

3.2. Noise analysis of the distribution of sharpness
values

Data corrupted by noise will show additional spatial phase
variation over the noiseless case, and low spatial frequency
spatial phase variation is likely to influence the complex
dipole fits. This potentiality can be explored by plotting the
sharpness as a function of noise. Here we estimate noise with
the magnitude of the correlation coefficient defined in Eq.
(6).

Fig. 5 shows sharpness as a function of correlation coef-
ficient magnitude, with points identified by their stimulus
frequency (a) or their stimulus bandwidth (b). First, we exam-
ine the data by stimulus frequency. Typical 16 Hz responses
have the lowest correlation between the model and the data
of any of the stimulus frequencies, and hence are the noisiest.
Their sharpness values are widely distributed between 0 and
1, and the most parsimonious explanation is that those esti-
mates of sharpness are contaminated by noise. In contrast, the
responses at 48 and 64 Hz are striking in their higher corre-
lation coefficient values, implying less corruption by noise.
Comparing the two, it can be seen that for similarly high
correlation coefficients, as a population the 48 Hz responses

F tion of c y
( eing a t
ig. 5. Noise analysis for sharpness distribution. Sharpness as a func
a) and their stimulus bandwidth (b). Probability of the neural source b
orrelation coefficient magnitude, with points identified by their stimulus frequenc
compound source increases upward. Inferred reliability increases tohe right.
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have sharpness values closer to zero than those of 64 Hz. As
stated above, three subjects are not sufficient to draw conclu-
sions, but it is plausible that responses at 48 Hz may be better
approximated by the single orientation approximation than
corresponding responses at 64 Hz. No such effects are seen
as a function of stimulus bandwidth.

4. Discussion

The complex magnetic field distributions occurring from
Fourier transformed MEG data have a natural interpretation
as oscillations with a specified amplitude and phase. Visual
representations of the complex responses over the whole-
head are invaluable in identifying structure and patterns in the
whole-head response. The addition of (real) magnetic field
contours; derived from the complex field, increase a viewer’s
ability to see natural structures such as dipolar configurations.

Using the complex generalization of the spherical head
model, we can find complex equivalent-current dipoles that
are the best fit to the whole-head complex magnetic field. In
addition to its location, a complex equivalent-current dipole
vector has six degrees of freedom, twice that of a real vector:
a strength and orientation (similar to all the degrees of free-
dom of a real vector), a complex phase, and two additional
parameters—the sharpness and a secondary orientation.
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plex EEG data, but the process explicitly requires that the
dipole be fit to data with a single phase. This is equivalent to
requiring the single orientation approximation (illustrated in
Fig. 3b) and does not allow for all six degrees of the com-
plex source.Lutkenhoner (1992)went substantially further
and showed that standard MEG localization methods gener-
alize straightforwardly to complex data and naturally result
in complex neural sources. Fully complex sources using all
six degrees of freedom, however, are not considered. Indeed,
all the illustrative examples are forward model simulations
with single orientation.

Finally, since the use of fully complex sources is ananal-
ysis method, it is straight-forward to apply it to previously
obtained (periodic or oscillatory) data as well as to new exper-
iments. Applications range from using the complex dipole
to capture both the strength and the phase of a response in
an unambiguous manner, to explicit analyses of the dipole
sharpness as a measure of neural source configuration.
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ingle orientation approximation (η = 0) and behave similar
o a real dipole but with the addition of phase. In contr
losely spaced discrete sources with differing orienta
roduce an effective complex dipole with non-zero sharp
nd a conspicuous secondary orientation. Thus, any com
ipole of moderate sharpness constitutes evidence fo
xistence of multiple sources. The use of this techniqu
eveal multiple sources is less susceptible to error tha
xplicit multiple source fit because fitting to closely-spa
ources is prone to error, requires more parameters t
ingle complex dipole fit, and may be genuinely unattain
ith the limited spatial resolution of MEG (Lutkenhoner
003).

The presence of closely spaced, difficult to sepa
ources can be recognized by detecting transitions from
harpness to low (or vice versa). One example illustr
bove arises in the search for SSR sources as a fun
f modulation frequency or carrier bandwidth. The form
earch is motivated by group delay evidence that high an
requency SSR responses originate from different sou
Ross et al., 2000; Schoonhoven et al., 2003). Another exam
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