Dynamic Estimation of Auditory Response Function with Confidence Intervals

Sahar Akram1,2, Jonathan Z. Simon1,2,3, Behtash Babadi1,2

1Department of Electrical and Computer Engineering, 2 Institute for Systems Research, 3 Department of Biology
University of Maryland, College Park, MD

Overview

Cocktail Party Effect
The ability to identify and track a target speaker amid a cacophony of acoustic interference.

Temporal Response Function (TRF)
A sparse kernel relating the auditory neural response to the envelope of the speech stream.

Attention Decoding via Dynamic TRF Estimation

Objectives
1) Dynamic TRF estimation with high temporal resolution.
2) Dynamic estimation of confidence intervals.
3) Tracking listeners’ auditory attention, using M100\textsubscript{TRF} amplitudes.

References

Dynamic TRF Estimation
The instantaneous filtering error at time i defined as: $\epsilon_t = y_t - \phi(X_t)^T \hat{a}_t$, where $y_t = (y_t, \ldots, y_t)$, and $X_t = \mathcal{X}(t, t - M + 1, \ldots, t - 2, t - 1, t)^T$. The cost function: $f(\epsilon_t, \epsilon_{t-1}, \ldots, \epsilon_{t-M}) = \sum_{j=0}^{M-1} \epsilon_t^2(1 - \lambda)^j$, where $0 < \lambda < 1$.

$$\min_{\hat{a}_t} f(\epsilon_t, \epsilon_{t-1}, \ldots, \epsilon_{t-M})$$

The Proposed Algorithm

Dynamic Computation of Confidence Intervals

> Removing the bias of the \hat{a}-regularized estimate:

$$\hat{a}_t^{\text{biased}} = \hat{a}_t^{\text{unbiased}} - \hat{a}_t R^{-1} \hat{a}_t^T \hat{a}_t$$

where $\hat{a}_t^{\text{unbiased}}$ is relaxed inverse approx. of $E(\hat{a}_t) = R^{-1} E(\hat{a}_t) R$, computed via node-wise regression:

A 2nd SPARLS implemented in parallel with the TRF estimation to solve:

$$\hat{a}_t = \arg\min_{\hat{a}_t} \| D^{1/2}(\hat{a}_t) E(\hat{a}_t) - E(\hat{a}_t) E(\hat{a}_t)^T \hat{a}_t + \nu \|$$

where $E(j)$ is the jth column of E, and $E_{(j)}$ the submatrix of E without the jth column.

Then: $\hat{a}_t = \{ \hat{a}_t(1), \ldots, \hat{a}_t(K) \}_{K \neq j}$,

and $\hat{a}_t^{\text{biased}} = \{ \hat{a}_t^{\text{unbiased}}(1), \ldots, \hat{a}_t^{\text{unbiased}}(K) \}_{K \neq j}$;

Set: $\hat{a}_t = \text{diag} \{ \hat{a}_t(1), \ldots, \hat{a}_t(K) \}$

> Confidence intervals at significance level of ϵ:

$$\pm \epsilon^{-1} (1 - \epsilon/2) \text{c.d.f.} \left(\Phi \left(\frac{\mathcal{X}(X_{(i)}) \cdot \hat{a}_t}{\hat{a}_t^T \hat{a}_t} \right) \right)$$

where $\Phi(.)$ is c.d.f. of $\chi^2(0.5)$.

Amplitude Modulations

M50\textsubscript{TRF}: Not significantly modulated by attention.

M100\textsubscript{TRF}: Strongly modulated by attention.

Attention Decoding

Constant-attention: Listeners attended to a target speaker during 60 s trials.

Attention-switch: Listeners switched their attention from one speaker to the other, after 30 s.

Acknowledgement

The authors thank Alessandro Prossaco for providing part of the data for this study.