
Robert Prior
ENEE 499
Advisor:
Dr. Jonathan Simon

Using PCA to Remove Biological Noise from MEG Data

 Introduction:

 Magnetoencephalography (MEG) is a promising new technique for observing

neural activity in the brain. MEG is similar to its older counterpart,

electroencephalography (EEG), but differs in focusing on magnetic fields generated by

neural currents rather than electrical activity. To detect these fields, a network of 157

sensors is placed on the scalp of a subject. Three others are set up in an orthogonal

reference system nearby to capture ambient magnetic fields.

As is apparent from the extremely weak fields in the brain (only a few hundred

femtoteslas in most cases), noise in the signal recordings is a significant problem, as even

fields of a few picoteslas can completely obscure the desired data. To reduce this noise

in the output, a hardware notch filter is used to remove 60 Hz line noise, and Mu-metal

shielding (which blocks magnetic fields) is often employed.

A major goal in MEG analysis is to efficiently remove as much noise as possible,

without causing loss in signal. One such method, known as Principal Component

Analysis (PCA) is highly effective at removing environmental noise, and offers potential

for functionality without bulky and expensive shielding (de Cheveigné and Simon, 2006).

However, biological noise is inevitable in recordings of the brain. Therefore, it must be

processed out. The algorithms for removing environmental noise are very effective, but

rely on external reference channels to provide them with the information they require.

External reference channels cannot be non-invasively obtained in a subject, however. If

reference channels can be found, the PCA algorithm can be adapted to remove major

biological noise sources as well, further expanding its potential as an analysis tool.

Methodology:

Denoising through Reference Channel Synthesis

Two forms of biological noise are most troublesome: heartbeat and eye blinks.

Both of these signals occur frequently, and generate high-amplitude spikes in recorded

data. Neither signal is regular enough to be removed easily by filtering. Eye blinks are

highly erratic, and may occur sporadically, or several times in only a few seconds.

Heartbeat cannot be suppressed. Blinking can be suppressed by asking a subject to close

his or her eyes. This causes many subjects to fall asleep during the test, which changes

brain activity dramatically.

In conscious patients, the areas of the brain that demonstrate the strongest

interference from heartbeat and eye blinks are the peripheral regions near the eyes and

extending back across the temples toward the ears. The sensors in these areas are directly

affected by this noise, and their utility is reduced.

To solve the problem of heartbeat and blink noise in the sensors, reference

channels must be created. One method of doing this has been explored with regard to

Fast LMS (Ahmar, 2005; Ahmar and Simon, 2005). Synthesis for the modified PCA

algorithm used here takes symmetrical pairs of peripheral channels that most strongly

showed the effects of biological noise. In terms of the recorded data, these pairs are

channels (0, 23), (1, 22) and (2, 21) (see Fig. 1, next page).

Fig. 1: The sensor network. The biological noise channels are labeled and highlighted. The channels

surrounding the highlighted ones are also strongly influenced by the noise.

 These pairs were selected to effectively capture blinking and heartbeat, as well as

for the approximate symmetry they exhibit, which allows simple mathematical

manipulation (see Fig. 2). Due to the overall field characteristics through the human

head, field lines will enter one side and exit the other. Because of the symmetry between

the channels, the magnitudes of the signals can be added to create a set of reference data

vectors which contain the same number of samples as the other channels. This is actually

accomplished by subtraction of the pairs (0-23, 1-22, 2-21). This is important for the

matrix manipulations performed during PCA. The PCA algorithm itself must then be

modified to generate these synthetic reference channels and employ them in place of the

external channels. When executed, the algorithm will treat the noise-heavy peripheral

channels as reference, and remove biological noise as though it were external.

Fig. 2.a: This is a sample of the test MEG file used to develop the modified PCA denoising algorithm. The

plot shows four seconds of reference data from channel 0, after PCA was applied once to remove

environmental noise. The arrows label the strong peaks typical of heartbeat and eye blinks in

peripheral channels. Channel 23 (paired with 0) demonstrates a very similar pattern, reversed in

amplitude.

Fig. 2.b: This plot shows .8 seconds from a PCA-denoised version of the test file (biological noise present,

environment filtered). The axes are samples (X-axis) and field amplitude (Y-axis) as above. The red box

outlines an eye blink. The disruption of data lasts approximately .2 seconds. This pattern must be

effectively processed so that signal can be recovered.

Synthesizing Additional Reference Channels

The effectiveness of PCA scales with the number of reference channels. Because

the reference channel synthesis method is not hardware limited to three channels, more

can be synthesized if desired. For example, the subtracted pairs (0-23), (1-22), (2-21) can

be used with addition pairs, for a total of six reference channels (New channels being

(0+23), (1+22), (2 +21)). This exploits the increased power of PCA without requiring

designation of more data channels as reference, allowing for a more aggressive noise

reduction scheme than the three-channel denoising.

Because this method effectively exceeds the hardware limitations the PCA was

originally intended to observe, a few careful modifications are required over the three-

channel denoising discussed above. The algorithm must be adjusted to include the

additional channels in its reference block. Also important are modifications to the output

file generation routine, so that all the correct channels are written into the output.

Results:

Synthesis of Three Reference Channels

When the modified PCA is applied to remove biological noise, the reduction of

heartbeat and eye blink pulses is substantial. The initial PCA pass removes

approximately 80% of the power within the signal. The subsequent pass to remove

biological noise eliminates approximately 23% of the remaining power, and with it, much

of the heartbeat and eye blink pulses. The results of the biological denoising are

encouraging, as the final result generally tracks the first denoise very closely, except

where a peak due to noise has been removed or reduced (see Fig. 3, below). These

characteristics are most notable in the peripheral channels.

Fig. 3: 1.5 seconds of denoised data from channel 3 (in the peripheral region). The blue plot represents

PCA. The red shows the subsequent application of modified PCA. The character of the signals is the

same, but noise spikes at heartbeats and other biological noise sources are reduced, and in some cases,

removed altogether.

Not all the results of this approach are ideal, however. Upon close examination,

the results of the biological denoising occasionally show what appears to be a small shift

of a few samples between peaks of the two signals (fig. 4). Considering the space

between the two sensors in each pair, and the fact that the sensor network on the head is

not perfectly symmetrical, it does make sense that the same information may show up at a

slightly different time in different channels.

 One other factor that is cause for some concern is the potential for loss of signal

through the denoising process. In tests, the percentage of power removed by the second

denoise was approximately 23% of what was present beforehand. This suggests the

possibility of some signal loss, possibly due to the shifting behavior of the modified PCA

with only three channels. This can be addressed by the addition of the counterbalancing

addition channels.

Fig. 4.a: This is an amplitude-squared plot of channel 3 in the test file. The amplitude squared axis is

truncated to better contrast the environmental denoise (blue) and the data after biological noise is

removed (shown in red). Maximum environmental amplitude is actually approximately 2.5 x10^6

near sample 5000.

Fig. 4.b: This shows a magnification of the denoise/biological denoise plot. The effectiveness of the

second denoise can be seen in most peaks, along with some of its less-effective behavior in and around the

central peak. Also, the shifting problem discussed above can be clearly seen in the central peak and a few

others.

Denoising with Additional Synthesized Channels

 Denoising that uses six reference channels synthesized from the channels already

selected yields an algorithm that is extremely aggressive and effective at removing noise.

This algorithm removes 34.5% of the power remaining after environmental denoising,

opposed to 23% for three channels. The three subtraction-based reference channels

combined with three addition-based channels from the same pairs reduces the time shift

seen in the three-channel case. The comparison of performance between three- and six-

channel algorithms can be seen by plotting the signal that remains, below (Fig. 5). The

more aggressive denoising brings signal range down to levels expected of magnetic fields

in the brain, with minimal distortion.

Fig. 5.a: Signal plot for three-channel biological denoising; the plot shows four seconds of the denoised

file. This is a fairly clean signal, covering an amplitude range of only about 350 pT. Fig. 3

contains the first 750 samples of this plot, and is therefore useful for putting these plots in context.

Fig. 5.b: Signal plot for six-channel biological denoising; the plot shows four seconds of the denoised file.

The signal is thoroughly denoised, covering an amplitude range of 150 pT or less.

Conclusion:

 Modifying the PCA algorithm and generating artificial reference channels based

on biological noise-heavy channels is a powerful method. It is highly successful at

removing biological noise after environmental noise has been eliminated. Heartbeat and

eye blinks can be almost completely removed from MEG data by this method. It is an

entirely software-based approach, meaning that no new hardware is needed, and exploits

the power of PCA to accomplish a goal where classical measurement is difficult at best.

The ability to synthesize and add other reference channels without hardware limitations

also makes modification to the algorithm less difficult. The denoising can be readily

tailored to fit multiple levels of denoising rigor, as desired. In particular, the effects of

adding the pair-addition channels to balance the effects of the subtraction are excellent, as

this resolves or reduces many of the problems that arise with this method, such as time

shifting between the original and resulting files. As more aggression is demanded of the

algorithm, more noise is removed, at the cost of a small amount of signal that will be

removed as well, due to random correlation with the reference data.

Works Cited:

Ahmar, Nayef. “Da Vinci’s Encephalogram: In Search of Significant Brain Signals”.

2005. Graduate thesis. Pages 35-49.

Ahmar, Nayef and Jonathan Z. Simon. “MEG Adaptive Noise Suppression using Fast

LMS”. Neural Engineering, 2005. Conference Proceedings. 2nd International

IEEE EMBS Conference on. March 16-19, 2005 Pages:29 – 32

De Cheveigné, Alain and Jonathan Z. Simon. “Magnetoencephalography Denoising

based on Time-Shift PCA”. September, 2006. Submitted for publication.

Appendix: MATLAB code used for the modified PCA algorithms:

 These MATLAB functions are both heavily based on the PCA algorithm of Drs.

Simon and de Cheveigné.

Three-channel denoising:

function denoise_mod3(file1, file2, ntaps, noisy)
% denoise - suppress noise correlated with reference channels from MEG data
%
% denoise(file1, file2, [ntaps], [noisy]) denoises data from file1 and puts it into file2.
% file2 is squashed.
%
% ntaps: number of taps to apply to ref channels
% noisy: list of noisy channel numbers to set to zero
%
% Alain de Cheveigne
% CNRS / ENS / Universite Paris 5
% and Shamma lab, ISR, University of Maryland
% November 2005.

%Last modified 11/27/06 by Bob Prior
%Changes:
% Modified ref definition.
% PCA section should behave as though it has 3 ref channels.

%chunksize=50000; % samples, size of processing chunks
chunksize=10000; % samples, size of processing chunks
boost=10000; % factor to boost reference channels

verbose = 1;
showplots = 0;

if nargin<4; noisy=[]; end
if nargin<3; ntaps=200; end
if nargin<2; help denoise; return; end
if strcmp(file1,file2); error('files should be distinct'); end
if exist ([pwd, filesep, file2], 'file'); delete (file2); end

info=sqdread(file1, 'info');
nsamples=get(info, 'SamplesAvailable');
channelcount=get(info, 'ChannelCount');
ndata=157; % number of data channels
nref=3; % number of noise reference channels
if mod(ntaps,2)
 ntaps=ntaps+1; % ensure ntaps even
 disp(['warning: setting ntaps=',num2str(ntaps)]);
end

% The idea is to rotate the data such that the first dimensions are colinear
% with the subspace spanned by the reference channels and all filtered

% versions of the ref channels.

% This is done by (a) time-shifting the reference channels over a range of shifts
% (positive and negative), (b) boosting the amplitude of these shifted reference
% channels, (c) performing a PCA with these and the data channels, and (d)
% discarding the first nrefs*ntaps PCA components.
% The remaining components are orthogonal to this subspace, ie they are stripped
% of environmental noise common to all sensors. They are then rotated back
% to sensor space.

% first pass: covariance matrix
nchunks=ceil(nsamples/chunksize);
R=zeros(ndata+nref*ntaps);
if verbose; tic; disp('Scan file to calculate covariance matrix...'); end
for k=0:nchunks-1
 from=k*chunksize+1;
 to=min(from+chunksize-1,nsamples);
 x=xsqdread(file1, [from-ntaps/2 to+ntaps/2], (1:160)-1, nsamples);

 ref=x(:,1:3)-x(:,24:-1:22); % reference channels
 data=x(:,1:157); % data channels
 for c=noisy; data(:,c)=0; end % set noisy channels to zero

 n=to-from+1;
 shifts=ones(n,ntaps);
 shifts=cumsum(shifts)+cumsum(shifts,2)-1; % shift indices
 yy=zeros(n,nref*ntaps);
 %yy=[];
 for k=0:nref-1
 y=ref(:,k+1);
 % yy=[yy,y(shifts)];
 yy(:,k*ntaps+1: k*ntaps+ntaps)=y(shifts);
 end
 data=data(ntaps/2+1:ntaps/2+n,:);
 z=[data,boost*yy]; % append boosted ref channels
 z=z - ones(size(z,1),1)*mean(z); % remove mean
 R=R+z'*z; % accumulate into covariance matrix
 if verbose; fprintf(1,'.'); end
end
R=R/nsamples;
if verbose; disp(' done'); toc; end

% PCA matrix
[V, S] = eig(R) ;
[eigenvalues, idx] = sort(diag(S)') ;
idx = fliplr(idx) ;
eigenvectors = V(:,idx);
clear R x y yy ref z data;

% clip matrix to discard noise components
eigenvectors=eigenvectors(:,nref*ntaps+1:end);

% second pass: rotate to principal components
e1=0; e2=0;
if verbose; disp('Rescan file to rotate to principal components...'); end

for k=0:nchunks-1
 from=k*chunksize+1;
 to=min(from+chunksize-1,nsamples);
 x=xsqdread(file1, [from-ntaps/2 to+ntaps/2], (1:192)-1, nsamples);
 %Generate biological noise signals from noisy peripheral channels.
 %x(:,161) = x(:,1) - x(:,24); %Indeces start at 1.
 %x(:,162) = x(:,2) - x(:,23);
 %x(:,163) = x(:,3) - x(:,22);
 %x(:,164) = x(:,4) - x(:,21);
 %x(:,165) = x(:,5) - x(:,20);

 ref=x(:,1:3)-x(:,24:-1:22); % reference channels
 junk=x(:,161:end); % additional channels
 data=x(:,1:157); % data
 for c=noisy; data(:,c)=0; end % set noisy channels to zero

 n=to-from+1;
 shifts=ones(n,ntaps);
 shifts=cumsum(shifts)+cumsum(shifts,2)-1; % shift indices
 yy=zeros(n,nref*ntaps);
 %yy=[];
 for k=0:nref-1
 y=ref(:,k+1);
 % yy=[yy,y(shifts)];
 yy(:,k*ntaps+1: k*ntaps+ntaps)=y(shifts);
 end
 clear y;
 e1=e1+sum(sum(data.^2)); % variance before
 data=data(ntaps/2+1:ntaps/2+n,:);
 z=[data,boost*yy]; % append boosted ref channels
 z=z - ones(size(z,1),1)*mean(z); % remove mean
 y=(z*eigenvectors*eigenvectors'); % rotate to pcs and back
 y=y(:,1:157); % clip to remove boosted channels

 e2=e2+sum(sum(y.^2)); % variance after

 if showplots;
 z=z(:,1:157);
 subplot 231
 draw_topo_fast((sum(z.^2).^.5));
 title('before');
 subplot 234;
 draw_topo_fast(sum(y.^2).^.5);
 title('after');
 subplot 432;
 plot([z(1:600,1), y(1:600,1), y(1:600,1)]); title('sensor 1 (blue: before, red: after)'); xlabel('samples');
 subplot 435;
 plot([z(1:600,2), y(1:600,2), y(1:600,2)]); title('sensor 2'); xlabel('samples');
 subplot 438;
 plot([z(1:600,3), y(1:600,3), y(1:600,3)]); title('sensor 3'); xlabel('samples');
 subplot (4,3,11);
 plot([z(1:600,4), y(1:600,4), y(1:600,4)]); title('sensor 4'); xlabel('samples');
 set(gcf, 'name', 'denoise')

 subplot (4,3,3), pwelch(z(:,1),[],[],[],500)
 subplot (4,3,6), pwelch(y(:,1),[],[],[],500)

 drawnow;
 end

 ref=ref(ntaps/2+1:ntaps/2+n,:);
 junk=junk(ntaps/2+1:ntaps/2+n,:);
 y=[y,ref,junk];
 sqdwrite(file1, file2, 'Action', 'Append', 'Data', y);
 if verbose; fprintf(1,'.'); end
end

if verbose
 disp(' done'); toc;
 disp(['Discarded ', num2str((e1-e2)/e1*100), ' % of data channel variance.']);
end

% extended read function returns zeros if 'samples' out of bounds
function x=xsqdread(file, samples, channels, nsamples)
from=samples(1);
to=samples(2);
x=sqdread(file, 'samples', [max(from,1) min(to,nsamples)], 'channels', channels);
if from<1; x=[zeros(1-from, size(channels,2)); x]; end
if to>nsamples; x=[x; zeros(to-nsamples, size(channels,2))]; end

Six-Channel Addition/Subtraction Denoising:

function denoise_mod4(file1, file2, ntaps, noisy)
% denoise - suppress noise correlated with reference channels from MEG data
%
% denoise(file1, file2, [ntaps], [noisy]) denoises data from file1 and puts it into file2.
% file2 is squashed.
%
% ntaps: number of taps to apply to ref channels
% noisy: list of noisy channel numbers to set to zero
%
% Alain de Cheveigne
% CNRS / ENS / Universite Paris 5
% and Shamma lab, ISR, University of Maryland
% November 2005.

%Last modified 12/15/06 by Bob Prior
%Changes:
% Modified ref definition, data output code.
% PCA section should behave as though it has 6 ref channels.

%chunksize=50000; % samples, size of processing chunks
chunksize=10000; % samples, size of processing chunks
boost=10000; % factor to boost reference channels

verbose = 1;
showplots = 0;

if nargin<4; noisy=[]; end
if nargin<3; ntaps=200; end
if nargin<2; help denoise; return; end
if strcmp(file1,file2); error('files should be distinct'); end
if exist ([pwd, filesep, file2], 'file'); delete (file2); end

info=sqdread(file1, 'info');
nsamples=get(info, 'SamplesAvailable');
channelcount=get(info, 'ChannelCount');
ndata=157; % number of data channels
nref=6; % number of noise reference channels
if mod(ntaps,2)
 ntaps=ntaps+1; % ensure ntaps even
 disp(['warning: setting ntaps=',num2str(ntaps)]);
end

% The idea is to rotate the data such that the first dimensions are colinear
% with the subspace spanned by the reference channels and all filtered
% versions of the ref channels.

% This is done by (a) time-shifting the reference channels over a range of shifts
% (positive and negative), (b) boosting the amplitude of these shifted reference
% channels, (c) performing a PCA with these and the data channels, and (d)

% discarding the first nrefs*ntaps PCA components.
% The remaining components are orthogonal to this subspace, ie they are stripped
% of environmental noise common to all sensors. They are then rotated back
% to sensor space.

% first pass: covariance matrix
nchunks=ceil(nsamples/chunksize);
R=zeros(ndata+nref*ntaps);
if verbose; tic; disp('Scan file to calculate covariance matrix...'); end
for k=0:nchunks-1
 from=k*chunksize+1;
 to=min(from+chunksize-1,nsamples);
 x=xsqdread(file1, [from-ntaps/2 to+ntaps/2], (1:160)-1, nsamples);

 ref=[x(:,1:3)-x(:,24:-1:22) x(:,1:3) + x(:,24:-1:22)]; % reference channels
 data=x(:,1:157); % data channels
 for c=noisy; data(:,c)=0; end % set noisy channels to zero

 n=to-from+1;
 shifts=ones(n,ntaps);
 shifts=cumsum(shifts)+cumsum(shifts,2)-1; % shift indices
 yy=zeros(n,nref*ntaps);
 %yy=[];
 for k=0:nref-1
 y=ref(:,k+1);
 % yy=[yy,y(shifts)];
 yy(:,k*ntaps+1: k*ntaps+ntaps)=y(shifts);
 end
 data=data(ntaps/2+1:ntaps/2+n,:);
 z=[data,boost*yy]; % append boosted ref channels
 z=z - ones(size(z,1),1)*mean(z); % remove mean
 R=R+z'*z; % accumulate into covariance matrix
 if verbose; fprintf(1,'.'); end
end
R=R/nsamples;
if verbose; disp(' done'); toc; end

% PCA matrix
[V, S] = eig(R) ;
[eigenvalues, idx] = sort(diag(S)') ;
idx = fliplr(idx) ;
eigenvectors = V(:,idx);
clear R x y yy ref z data;

% clip matrix to discard noise components
eigenvectors=eigenvectors(:,nref*ntaps+1:end);

% second pass: rotate to principal components
e1=0; e2=0;
if verbose; disp('Rescan file to rotate to principal components...'); end
for k=0:nchunks-1
 from=k*chunksize+1;
 to=min(from+chunksize-1,nsamples);
 x=xsqdread(file1, [from-ntaps/2 to+ntaps/2], (1:192)-1, nsamples);
 %Generate biological noise signals from noisy peripheral channels.

 %x(:,161) = x(:,1) - x(:,24); %Indeces start at 1.
 %x(:,162) = x(:,2) - x(:,23);
 %x(:,163) = x(:,3) - x(:,22);
 %x(:,164) = x(:,4) - x(:,21);
 %x(:,165) = x(:,5) - x(:,20);

 ref=[x(:,1:3)-x(:,24:-1:22) x(:,1:3) + x(:,24:-1:22)]; % reference channels
% junk=x(:,161:end); % additional channels
 junk=x(:,158:end); % additional channels
 data=x(:,1:157); % data
 for c=noisy; data(:,c)=0; end % set noisy channels to zero

 n=to-from+1;
 shifts=ones(n,ntaps);
 shifts=cumsum(shifts)+cumsum(shifts,2)-1; % shift indices
 yy=zeros(n,nref*ntaps);
 %yy=[];
 for k=0:nref-1
 y=ref(:,k+1);
 % yy=[yy,y(shifts)];
 yy(:,k*ntaps+1: k*ntaps+ntaps)=y(shifts);
 end
 clear y;
 e1=e1+sum(sum(data.^2)); % variance before
 data=data(ntaps/2+1:ntaps/2+n,:);
 z=[data,boost*yy]; % append boosted ref channels
 z=z - ones(size(z,1),1)*mean(z); % remove mean
 y=(z*eigenvectors*eigenvectors'); % rotate to pcs and back
 y=y(:,1:157); % clip to remove boosted channels

 e2=e2+sum(sum(y.^2)); % variance after

 if showplots;
 z=z(:,1:157);
 subplot 231
 draw_topo_fast((sum(z.^2).^.5));
 title('before');
 subplot 234;
 draw_topo_fast(sum(y.^2).^.5);
 title('after');
 subplot 432;
 plot([z(1:600,1), y(1:600,1), y(1:600,1)]); title('sensor 1 (blue: before, red: after)'); xlabel('samples');
 subplot 435;
 plot([z(1:600,2), y(1:600,2), y(1:600,2)]); title('sensor 2'); xlabel('samples');
 subplot 438;
 plot([z(1:600,3), y(1:600,3), y(1:600,3)]); title('sensor 3'); xlabel('samples');
 subplot (4,3,11);
 plot([z(1:600,4), y(1:600,4), y(1:600,4)]); title('sensor 4'); xlabel('samples');
 set(gcf, 'name', 'denoise')

 subplot (4,3,3), pwelch(z(:,1),[],[],[],500)
 subplot (4,3,6), pwelch(y(:,1),[],[],[],500)
 drawnow;
 end

 ref=ref(ntaps/2+1:ntaps/2+n,:);

 junk=junk(ntaps/2+1:ntaps/2+n,:);
 % y=[y,ref,junk];
 y=[y,junk];
 sqdwrite(file1, file2, 'Action', 'Append', 'Data', y);
 if verbose; fprintf(1,'.'); end
end

if verbose
 disp(' done'); toc;
 disp(['Discarded ', num2str((e1-e2)/e1*100), ' % of data channel variance.']);
end

% extended read function returns zeros if 'samples' out of bounds
function x=xsqdread(file, samples, channels, nsamples)
from=samples(1);
to=samples(2);
x=sqdread(file, 'samples', [max(from,1) min(to,nsamples)], 'channels', channels);
if from<1; x=[zeros(1-from, size(channels,2)); x]; end
if to>nsamples; x=[x; zeros(to-nsamples, size(channels,2))]; end

