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Using PCA to Remove Biological Noise from MEG Data 

 Introduction: 

 Magnetoencephalography (MEG) is a promising new technique for observing 

neural activity in the brain.  MEG is similar to its older counterpart, 

electroencephalography (EEG), but differs in focusing on magnetic fields generated by 

neural currents rather than electrical activity.  To detect these fields, a network of 157 

sensors is placed on the scalp of a subject.  Three others are set up in an orthogonal 

reference system nearby to capture ambient magnetic fields. 

As is apparent from the extremely weak fields in the brain (only a few hundred 

femtoteslas in most cases), noise in the signal recordings is a significant problem, as even 

fields of a few picoteslas can completely obscure the desired data.  To reduce this noise 

in the output, a hardware notch filter is used to remove 60 Hz line noise, and Mu-metal 

shielding (which blocks magnetic fields) is often employed.   

A major goal in MEG analysis is to efficiently remove as much noise as possible, 

without causing loss in signal.  One such method, known as Principal Component 

Analysis (PCA) is highly effective at removing environmental noise, and offers potential 

for functionality without bulky and expensive shielding (de Cheveigné and Simon, 2006).  

However, biological noise is inevitable in recordings of the brain.  Therefore, it must be 

processed out.  The algorithms for removing environmental noise are very effective, but 

rely on external reference channels to provide them with the information they require.  



External reference channels cannot be non-invasively obtained in a subject, however.  If 

reference channels can be found, the PCA algorithm can be adapted to remove major 

biological noise sources as well, further expanding its potential as an analysis tool. 

Methodology: 

Denoising through Reference Channel Synthesis 

Two forms of biological noise are most troublesome: heartbeat and eye blinks.  

Both of these signals occur frequently, and generate high-amplitude spikes in recorded 

data.  Neither signal is regular enough to be removed easily by filtering.  Eye blinks are 

highly erratic, and may occur sporadically, or several times in only a few seconds.  

Heartbeat cannot be suppressed.  Blinking can be suppressed by asking a subject to close 

his or her eyes.  This causes many subjects to fall asleep during the test, which changes 

brain activity dramatically.  

In conscious patients, the areas of the brain that demonstrate the strongest 

interference from heartbeat and eye blinks are the peripheral regions near the eyes and 

extending back across the temples toward the ears.  The sensors in these areas are directly 

affected by this noise, and their utility is reduced. 

To solve the problem of heartbeat and blink noise in the sensors, reference 

channels must be created.  One method of doing this has been explored with regard to 

Fast LMS (Ahmar, 2005; Ahmar and Simon, 2005).  Synthesis for the modified PCA 

algorithm used here takes symmetrical pairs of peripheral channels that most strongly 

showed the effects of biological noise.  In terms of the recorded data, these pairs are 

channels (0, 23), (1, 22) and (2, 21) (see Fig. 1, next page). 

 



 

 

Fig. 1:  The sensor network.  The biological noise channels are labeled and highlighted.  The channels 

surrounding the highlighted ones are also strongly influenced by the noise. 

 

 These pairs were selected to effectively capture blinking and heartbeat, as well as 

for the approximate symmetry they exhibit, which allows simple mathematical 

manipulation (see Fig. 2).  Due to the overall field characteristics through the human 

head, field lines will enter one side and exit the other.  Because of the symmetry between 

the channels, the magnitudes of the signals can be added to create a set of reference data 

vectors which contain the same number of samples as the other channels.  This is actually 

accomplished by subtraction of the pairs (0-23, 1-22, 2-21).  This is important for the 

matrix manipulations performed during PCA.  The PCA algorithm itself must then be 

modified to generate these synthetic reference channels and employ them in place of the 



external channels.  When executed, the algorithm will treat the noise-heavy peripheral 

channels as reference, and remove biological noise as though it were external. 

 

 

Fig. 2.a:  This is a sample of the test MEG file used to develop the modified PCA denoising algorithm.  The 

plot shows four seconds of reference data from channel 0, after PCA was applied once to remove 

environmental noise.  The arrows label the strong peaks typical of heartbeat and eye blinks in 

peripheral channels.  Channel 23 (paired with 0) demonstrates a very similar pattern, reversed in 

amplitude. 



 

Fig. 2.b:  This plot shows .8 seconds from a PCA-denoised version of the test file (biological noise present, 

environment filtered).  The axes are samples (X-axis) and field amplitude (Y-axis) as above.   The red box 

outlines an eye blink.  The disruption of data lasts approximately .2 seconds.  This pattern must be 

effectively processed so that signal can be recovered. 

 

Synthesizing Additional Reference Channels 

The effectiveness of PCA scales with the number of reference channels.  Because 

the reference channel synthesis method is not hardware limited to three channels, more 

can be synthesized if desired.  For example, the subtracted pairs (0-23), (1-22), (2-21) can 

be used with addition pairs, for a total of six reference channels (New channels being 

(0+23), (1+22), (2 +21)).  This exploits the increased power of PCA without requiring 



designation of more data channels as reference, allowing for a more aggressive noise 

reduction scheme than the three-channel denoising. 

Because this method effectively exceeds the hardware limitations the PCA was 

originally intended to observe, a few careful modifications are required over the three-

channel denoising discussed above.  The algorithm must be adjusted to include the 

additional channels in its reference block.  Also important are modifications to the output 

file generation routine, so that all the correct channels are written into the output. 

 

Results:   

Synthesis of Three Reference Channels 

When the modified PCA is applied to remove biological noise, the reduction of 

heartbeat and eye blink pulses is substantial.  The initial PCA pass removes 

approximately 80% of the power within the signal.  The subsequent pass to remove 

biological noise eliminates approximately 23% of the remaining power, and with it, much 

of the heartbeat and eye blink pulses.  The results of the biological denoising are 

encouraging, as the final result generally tracks the first denoise very closely, except 

where a peak due to noise has been removed or reduced (see Fig. 3, below).  These 

characteristics are most notable in the peripheral channels.  



 

Fig. 3: 1.5 seconds of denoised data from channel 3 (in the peripheral region).  The blue plot represents 

PCA.  The red shows the subsequent application of modified PCA.  The character of the signals is the 

same, but noise spikes at heartbeats and other biological noise sources are reduced, and in some cases, 

removed altogether. 

  

Not all the results of this approach are ideal, however.  Upon close examination, 

the results of the biological denoising occasionally show what appears to be a small shift 

of a few samples between peaks of the two signals (fig. 4).  Considering the space 

between the two sensors in each pair, and the fact that the sensor network on the head is 

not perfectly symmetrical, it does make sense that the same information may show up at a 

slightly different time in different channels.   



 One other factor that is cause for some concern is the potential for loss of signal 

through the denoising process.  In tests, the percentage of power removed by the second 

denoise was approximately 23% of what was present beforehand.  This suggests the 

possibility of some signal loss, possibly due to the shifting behavior of the modified PCA 

with only three channels.  This can be addressed by the addition of the counterbalancing 

addition channels. 

 

Fig. 4.a:  This is an amplitude-squared plot of channel 3 in the test file.  The amplitude squared axis is 

truncated to better contrast the environmental denoise (blue) and the data after biological noise is 

removed (shown in red).  Maximum environmental amplitude is actually approximately 2.5 x10^6 

near sample 5000. 



 

Fig. 4.b:  This shows a magnification of the denoise/biological denoise plot.  The effectiveness of the 

second denoise can be seen in most peaks, along with some of its less-effective behavior in and around the 

central peak.  Also, the shifting problem discussed above can be clearly seen in the central peak and a few 

others. 

 

Denoising with Additional Synthesized Channels 

 Denoising that uses six reference channels synthesized from the channels already 

selected yields an algorithm that is extremely aggressive and effective at removing noise.  

This algorithm removes 34.5% of the power remaining after environmental denoising, 

opposed to 23% for three channels.  The three subtraction-based reference channels 

combined with three addition-based channels from the same pairs reduces the time shift 

seen in the three-channel case.  The comparison of performance between three- and six-

channel algorithms can be seen by plotting the signal that remains, below (Fig. 5).  The 

more aggressive denoising brings signal range down to levels expected of magnetic fields 

in the brain, with minimal distortion. 



 

Fig. 5.a:  Signal plot for three-channel biological denoising; the plot shows four seconds of the denoised 

file.  This is a fairly clean signal, covering an amplitude range of only about 350 pT.  Fig. 3 

contains the first 750 samples of this plot, and is therefore useful for putting these plots in context. 

 

Fig. 5.b:  Signal plot for six-channel biological denoising; the plot shows four seconds of the denoised file.  

The signal is thoroughly denoised, covering an amplitude range of 150 pT or less.     



Conclusion: 

 Modifying the PCA algorithm and generating artificial reference channels based 

on biological noise-heavy channels is a powerful method.  It is highly successful at 

removing biological noise after environmental noise has been eliminated.  Heartbeat and 

eye blinks can be almost completely removed from MEG data by this method.  It is an 

entirely software-based approach, meaning that no new hardware is needed, and exploits 

the power of PCA to accomplish a goal where classical measurement is difficult at best.  

The ability to synthesize and add other reference channels without hardware limitations 

also makes modification to the algorithm less difficult.  The denoising can be readily 

tailored to fit multiple levels of denoising rigor, as desired.  In particular, the effects of 

adding the pair-addition channels to balance the effects of the subtraction are excellent, as 

this resolves or reduces many of the problems that arise with this method, such as time 

shifting between the original and resulting files.  As more aggression is demanded of the 

algorithm, more noise is removed, at the cost of a small amount of signal that will be 

removed as well, due to random correlation with the reference data. 
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Appendix:  MATLAB code used for the modified PCA algorithms: 

 These MATLAB functions are both heavily based on the PCA algorithm of Drs. 

Simon and de Cheveigné.   

Three-channel denoising: 

function denoise_mod3(file1, file2, ntaps, noisy) 
% denoise - suppress noise correlated with reference channels from MEG data 
% 
%   denoise(file1, file2, [ntaps], [noisy]) denoises data from file1 and puts it into file2. 
%   file2 is squashed. 
% 
%   ntaps: number of taps to apply to ref channels 
%   noisy: list of noisy channel numbers to set to zero 
%  
%  Alain de Cheveigne 
%  CNRS / ENS / Universite Paris 5 
%  and Shamma lab, ISR, University of Maryland 
%  November 2005. 
  
  
%Last modified 11/27/06 by Bob Prior 
%Changes: 
% Modified ref definition. 
% PCA section should behave as though it has 3 ref channels. 
 
 
%chunksize=50000; % samples, size of processing chunks 
chunksize=10000; % samples, size of processing chunks 
boost=10000;   % factor to boost reference channels 
  
verbose = 1; 
showplots = 0; 
  
if nargin<4; noisy=[]; end 
if nargin<3; ntaps=200; end 
if nargin<2; help denoise; return; end 
if strcmp(file1,file2); error('files should be distinct'); end 
if exist ([pwd, filesep, file2], 'file'); delete (file2); end 
  
info=sqdread(file1, 'info'); 
nsamples=get(info, 'SamplesAvailable'); 
channelcount=get(info, 'ChannelCount'); 
ndata=157; % number of data channels 
nref=3;    % number of noise reference channels 
if mod(ntaps,2) 
    ntaps=ntaps+1; % ensure ntaps even 
    disp(['warning: setting ntaps=',num2str(ntaps)]); 
end 
    
% The idea is to rotate the data such that the first dimensions are colinear 
% with the subspace spanned by the reference channels and all filtered 



% versions of the ref channels. 
  
% This is done by (a) time-shifting the reference channels over a range of shifts 
% (positive and negative), (b) boosting the amplitude of these shifted reference 
% channels, (c) performing a PCA with these and the data channels, and (d) 
% discarding the first nrefs*ntaps PCA components. 
% The remaining components are orthogonal to this subspace, ie they are stripped 
% of environmental noise common to all sensors.  They are then rotated back 
% to sensor space. 
  
  
% first pass: covariance matrix 
nchunks=ceil(nsamples/chunksize); 
R=zeros(ndata+nref*ntaps); 
if verbose; tic; disp('Scan file to calculate covariance matrix...'); end 
for k=0:nchunks-1 
    from=k*chunksize+1; 
    to=min(from+chunksize-1,nsamples); 
    x=xsqdread(file1, [from-ntaps/2 to+ntaps/2], (1:160)-1, nsamples); 
     
    ref=x(:,1:3)-x(:,24:-1:22);    % reference channels 
    data=x(:,1:157);               % data channels 
    for c=noisy; data(:,c)=0; end  % set noisy channels to zero 
  
    n=to-from+1;    
    shifts=ones(n,ntaps); 
    shifts=cumsum(shifts)+cumsum(shifts,2)-1; % shift indices   
    yy=zeros(n,nref*ntaps); 
    %yy=[]; 
    for k=0:nref-1 
        y=ref(:,k+1);      
       % yy=[yy,y(shifts)]; 
        yy(:,k*ntaps+1: k*ntaps+ntaps)=y(shifts); 
    end 
    data=data(ntaps/2+1:ntaps/2+n,:); 
    z=[data,boost*yy];                     % append boosted ref channels    
    z=z - ones(size(z,1),1)*mean(z);    % remove mean 
    R=R+z'*z;                           % accumulate into covariance matrix 
    if verbose; fprintf(1,'.'); end 
end 
R=R/nsamples; 
if verbose; disp(' done'); toc; end 
  
% PCA matrix 
[V, S] = eig(R) ; 
[eigenvalues, idx] = sort(diag(S)') ; 
idx = fliplr(idx) ; 
eigenvectors = V(:,idx); 
clear R x y yy ref z data; 
  
% clip matrix to discard noise components 
eigenvectors=eigenvectors(:,nref*ntaps+1:end); 
  
% second pass: rotate to principal components 
e1=0; e2=0; 
if verbose; disp('Rescan file to rotate to principal components...'); end 



for k=0:nchunks-1 
    from=k*chunksize+1; 
    to=min(from+chunksize-1,nsamples); 
    x=xsqdread(file1, [from-ntaps/2 to+ntaps/2], (1:192)-1, nsamples); 
   %Generate biological noise signals from noisy peripheral channels. 
    %x(:,161) = x(:,1) - x(:,24); %Indeces start at 1. 
    %x(:,162) = x(:,2) - x(:,23); 
    %x(:,163) = x(:,3) - x(:,22); 
    %x(:,164) = x(:,4) - x(:,21); 
    %x(:,165) = x(:,5) - x(:,20); 
     
    ref=x(:,1:3)-x(:,24:-1:22);         % reference channels 
    junk=x(:,161:end);        % additional channels 
    data=x(:,1:157);             % data 
    for c=noisy; data(:,c)=0; end  % set noisy channels to zero 
  
    n=to-from+1;    
    shifts=ones(n,ntaps); 
    shifts=cumsum(shifts)+cumsum(shifts,2)-1; % shift indices    
    yy=zeros(n,nref*ntaps); 
    %yy=[]; 
    for k=0:nref-1 
        y=ref(:,k+1);      
       % yy=[yy,y(shifts)]; 
        yy(:,k*ntaps+1: k*ntaps+ntaps)=y(shifts); 
    end 
    clear y; 
    e1=e1+sum(sum(data.^2));     % variance before 
    data=data(ntaps/2+1:ntaps/2+n,:); 
    z=[data,boost*yy];                       % append boosted ref channels 
    z=z - ones(size(z,1),1)*mean(z);      % remove mean 
    y=(z*eigenvectors*eigenvectors');     % rotate to pcs and back 
    y=y(:,1:157);                         % clip to remove boosted channels 
  
    e2=e2+sum(sum(y.^2));     % variance after 
  
    if showplots; 
        z=z(:,1:157); 
        subplot 231 
        draw_topo_fast((sum(z.^2).^.5)); 
        title('before'); 
        subplot 234; 
        draw_topo_fast(sum(y.^2).^.5); 
        title('after'); 
        subplot 432; 
        plot([z(1:600,1), y(1:600,1), y(1:600,1)]); title('sensor 1 (blue: before, red: after)'); xlabel('samples'); 
        subplot 435; 
        plot([z(1:600,2), y(1:600,2), y(1:600,2)]); title('sensor 2'); xlabel('samples'); 
        subplot 438; 
        plot([z(1:600,3), y(1:600,3), y(1:600,3)]); title('sensor 3'); xlabel('samples'); 
        subplot (4,3,11); 
        plot([z(1:600,4), y(1:600,4), y(1:600,4)]); title('sensor 4'); xlabel('samples'); 
        set(gcf,  'name', 'denoise') 
        
        subplot (4,3,3), pwelch(z(:,1),[],[],[],500) 
        subplot (4,3,6), pwelch(y(:,1),[],[],[],500) 



        drawnow; 
    end 
    
    ref=ref(ntaps/2+1:ntaps/2+n,:); 
    junk=junk(ntaps/2+1:ntaps/2+n,:); 
    y=[y,ref,junk];    
    sqdwrite(file1, file2, 'Action', 'Append', 'Data', y); 
    if verbose; fprintf(1,'.');  end  
end 
  
if verbose 
    disp(' done'); toc; 
    disp(['Discarded ', num2str((e1-e2)/e1*100), ' % of data channel variance.']); 
end 
  
% extended read function returns zeros if 'samples' out of bounds 
function x=xsqdread(file, samples, channels, nsamples) 
from=samples(1); 
to=samples(2); 
x=sqdread(file, 'samples', [max(from,1) min(to,nsamples)], 'channels', channels); 
if from<1; x=[zeros(1-from, size(channels,2)); x]; end 
if to>nsamples; x=[x; zeros(to-nsamples, size(channels,2))]; end  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Six-Channel Addition/Subtraction Denoising: 

function denoise_mod4(file1, file2, ntaps, noisy) 
% denoise - suppress noise correlated with reference channels from MEG data 
% 
%   denoise(file1, file2, [ntaps], [noisy]) denoises data from file1 and puts it into file2. 
%   file2 is squashed. 
% 
%   ntaps: number of taps to apply to ref channels 
%   noisy: list of noisy channel numbers to set to zero 
%  
%  Alain de Cheveigne 
%  CNRS / ENS / Universite Paris 5 
%  and Shamma lab, ISR, University of Maryland 
%  November 2005. 
  
  
%Last modified 12/15/06 by Bob Prior 
%Changes: 
% Modified ref definition, data output code. 
% PCA section should behave as though it has 6 ref channels. 
 
 
%chunksize=50000; % samples, size of processing chunks 
chunksize=10000; % samples, size of processing chunks 
boost=10000;   % factor to boost reference channels 
  
verbose = 1; 
showplots = 0; 
  
if nargin<4; noisy=[]; end 
if nargin<3; ntaps=200; end 
if nargin<2; help denoise; return; end 
if strcmp(file1,file2); error('files should be distinct'); end 
if exist ([pwd, filesep, file2], 'file'); delete (file2); end 
  
info=sqdread(file1, 'info'); 
nsamples=get(info, 'SamplesAvailable'); 
channelcount=get(info, 'ChannelCount'); 
ndata=157; % number of data channels 
nref=6;    % number of noise reference channels 
if mod(ntaps,2) 
    ntaps=ntaps+1; % ensure ntaps even 
    disp(['warning: setting ntaps=',num2str(ntaps)]); 
end 
    
% The idea is to rotate the data such that the first dimensions are colinear 
% with the subspace spanned by the reference channels and all filtered 
% versions of the ref channels. 
  
% This is done by (a) time-shifting the reference channels over a range of shifts 
% (positive and negative), (b) boosting the amplitude of these shifted reference 
% channels, (c) performing a PCA with these and the data channels, and (d) 



% discarding the first nrefs*ntaps PCA components. 
% The remaining components are orthogonal to this subspace, ie they are stripped 
% of environmental noise common to all sensors.  They are then rotated back 
% to sensor space. 
  
  
% first pass: covariance matrix 
nchunks=ceil(nsamples/chunksize); 
R=zeros(ndata+nref*ntaps); 
if verbose; tic; disp('Scan file to calculate covariance matrix...'); end 
for k=0:nchunks-1 
    from=k*chunksize+1; 
    to=min(from+chunksize-1,nsamples); 
    x=xsqdread(file1, [from-ntaps/2 to+ntaps/2], (1:160)-1, nsamples); 
     
    ref=[x(:,1:3)-x(:,24:-1:22) x(:,1:3) + x(:,24:-1:22)];    % reference channels 
    data=x(:,1:157);               % data channels 
    for c=noisy; data(:,c)=0; end  % set noisy channels to zero 
  
    n=to-from+1;    
    shifts=ones(n,ntaps); 
    shifts=cumsum(shifts)+cumsum(shifts,2)-1; % shift indices   
    yy=zeros(n,nref*ntaps); 
    %yy=[]; 
    for k=0:nref-1 
        y=ref(:,k+1);      
       % yy=[yy,y(shifts)]; 
        yy(:,k*ntaps+1: k*ntaps+ntaps)=y(shifts); 
    end 
    data=data(ntaps/2+1:ntaps/2+n,:); 
    z=[data,boost*yy];                     % append boosted ref channels    
    z=z - ones(size(z,1),1)*mean(z);    % remove mean 
    R=R+z'*z;                           % accumulate into covariance matrix 
    if verbose; fprintf(1,'.'); end 
end 
R=R/nsamples; 
if verbose; disp(' done'); toc; end 
  
% PCA matrix 
[V, S] = eig(R) ; 
[eigenvalues, idx] = sort(diag(S)') ; 
idx = fliplr(idx) ; 
eigenvectors = V(:,idx); 
clear R x y yy ref z data; 
  
% clip matrix to discard noise components 
eigenvectors=eigenvectors(:,nref*ntaps+1:end); 
  
% second pass: rotate to principal components 
e1=0; e2=0; 
if verbose; disp('Rescan file to rotate to principal components...'); end 
for k=0:nchunks-1 
    from=k*chunksize+1; 
    to=min(from+chunksize-1,nsamples); 
    x=xsqdread(file1, [from-ntaps/2 to+ntaps/2], (1:192)-1, nsamples); 
   %Generate biological noise signals from noisy peripheral channels. 



    %x(:,161) = x(:,1) - x(:,24); %Indeces start at 1. 
    %x(:,162) = x(:,2) - x(:,23); 
    %x(:,163) = x(:,3) - x(:,22); 
    %x(:,164) = x(:,4) - x(:,21); 
    %x(:,165) = x(:,5) - x(:,20); 
     
    ref=[x(:,1:3)-x(:,24:-1:22) x(:,1:3) + x(:,24:-1:22)];         % reference channels 
%    junk=x(:,161:end);        % additional channels 
    junk=x(:,158:end);        % additional channels 
    data=x(:,1:157);             % data 
    for c=noisy; data(:,c)=0; end  % set noisy channels to zero 
  
    n=to-from+1;    
    shifts=ones(n,ntaps); 
    shifts=cumsum(shifts)+cumsum(shifts,2)-1; % shift indices    
    yy=zeros(n,nref*ntaps); 
    %yy=[]; 
    for k=0:nref-1 
        y=ref(:,k+1);      
       % yy=[yy,y(shifts)]; 
        yy(:,k*ntaps+1: k*ntaps+ntaps)=y(shifts); 
    end 
    clear y; 
    e1=e1+sum(sum(data.^2));     % variance before 
    data=data(ntaps/2+1:ntaps/2+n,:); 
    z=[data,boost*yy];                       % append boosted ref channels 
    z=z - ones(size(z,1),1)*mean(z);      % remove mean 
    y=(z*eigenvectors*eigenvectors');     % rotate to pcs and back 
    y=y(:,1:157);                         % clip to remove boosted channels 
  
    e2=e2+sum(sum(y.^2));     % variance after 
  
    if showplots; 
        z=z(:,1:157); 
        subplot 231 
        draw_topo_fast((sum(z.^2).^.5)); 
        title('before'); 
        subplot 234; 
        draw_topo_fast(sum(y.^2).^.5); 
        title('after'); 
        subplot 432; 
        plot([z(1:600,1), y(1:600,1), y(1:600,1)]); title('sensor 1 (blue: before, red: after)'); xlabel('samples'); 
        subplot 435; 
        plot([z(1:600,2), y(1:600,2), y(1:600,2)]); title('sensor 2'); xlabel('samples'); 
        subplot 438; 
        plot([z(1:600,3), y(1:600,3), y(1:600,3)]); title('sensor 3'); xlabel('samples'); 
        subplot (4,3,11); 
        plot([z(1:600,4), y(1:600,4), y(1:600,4)]); title('sensor 4'); xlabel('samples'); 
        set(gcf,  'name', 'denoise') 
        
        subplot (4,3,3), pwelch(z(:,1),[],[],[],500) 
        subplot (4,3,6), pwelch(y(:,1),[],[],[],500) 
        drawnow; 
    end 
    
    ref=ref(ntaps/2+1:ntaps/2+n,:); 



    junk=junk(ntaps/2+1:ntaps/2+n,:); 
    % y=[y,ref,junk];    
    y=[y,junk];    
    sqdwrite(file1, file2, 'Action', 'Append', 'Data', y); 
    if verbose; fprintf(1,'.');  end  
end 
  
if verbose 
    disp(' done'); toc; 
    disp(['Discarded ', num2str((e1-e2)/e1*100), ' % of data channel variance.']); 
end 
  
% extended read function returns zeros if 'samples' out of bounds 
function x=xsqdread(file, samples, channels, nsamples) 
from=samples(1); 
to=samples(2); 
x=sqdread(file, 'samples', [max(from,1) min(to,nsamples)], 'channels', channels); 
if from<1; x=[zeros(1-from, size(channels,2)); x]; end 
if to>nsamples; x=[x; zeros(to-nsamples, size(channels,2))]; end  
 


